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ON THE PRODUCT OF OPERATOR VALUED MEASURES

F. J. FERNANDEZ FERNANDEZ-ARROYO, Madrid

(Received January 29, 1988)

In the context of the locally convex spaces, a theorem about the existence and
integral representation of the product of operator valued measures is proved under
certain conditions; and Fubini’s type theorems are obtained for various types of
functions. These results make it possible to study some problems concerning the
convolution and the representation of the product of vector measures. Finally, several
examples of products (and convolution) of measures are given.

INTRODUCTION

In 1970, I. Dobrakov [4] developed a theory of integration for functions with
values in Banach spaces with respect to operator valued measures, generalizing thus
the countably additive case of the bilinear integral of R. G. Bartle []] Later, in 1979,
Dobrakov himself, in the same context of the Banach spaces, gave necessary and
sufficient conditions for the existence and integral representation of the product
of two measures of the type considered above.

Indeed, as C. Swartz remarked in 1984 [4], “even in the case of inductive tensor
product measures great difficulties can arise concerning the integrability of the
sections and the measurability of the partial integral”.

In 1981, C. Debieve [3], introducing certain modifications, introduced an integral
in which he replaced one of the two Banach spaces considered by a locally convex
space.

In 1985, Rodriguez Salazar [l 1], using a technique introduced in 1979 by Rodriguez
Salinas [12], introduced an integral which generalizes Dobrakov’s one, and in which
locally convex spaces are considered. For this integral, the problem about the exis-
tence of the product measure is still open. '

In recent works (see [6], [7]), we have developed the theory of an integral strictly
more general than R. Salazar’s one; which, therefore, also generalizes Dobrakov’s
integral; and which will be used in this paper.
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A theorem (I1.3) about the existence and integral representation of the product
of two operator valued measures, under. certain conditions, is given here, in the
context of the locally convex spaces, for the first time. These conditions concerning
the measures (which are automatically verified in a less general context (see [6]))
are rather ‘“‘natural”, as seems to be suggested by various examples and the relative
analogy existing with the results obtained for Sivasankara’s integral in [10] and [13].
Moreover, in certain cases one of these conditions is also necessary (see [8]).

Later it is proved (Lemmas IL4 and ILS5) that this product measure ‘‘inherits”
interesting properties of the measures o and . These results will be used in the proof
of Theorem IIL.6.1, which states the “‘asscciativity’ (under certain conditions) of the
product of measures. Moreover, this theorem allows us to obtain a Fubini type
result and, furthermore, will be used later for proving the associativity of the convolu-
tion of measures.

A Fubini type theorem is proved in IL3 for O-simple and simple*-functions (see
[6], [7]). Nevertheless, when (¢ ® B)-integrable functions are considered, serious
difficulties appear, which force us to impose-certain restrictions.

In a context less general than that one considered until now (and assuming that
two -of the four spaces dealt with are normed), we obtain (in II.7) a Fubini theorem
for functions with equicontinuous range which are pointwise limit (not almost
uniform) of a sequence of simple functions, satisfying a boundedness condition. Last
theorem is a generalization, under certain conditions, of Theorem 16 stated by I.
Dobrakov in [5] (see also [4]).

Under the same hypothesis about the measures « and f3, a class of (oc ® P)-integrable
functions (the x-integrable functions) is considered in Section II.8; and a Fubini
theorem (I1.8.2) is proved for these functions, in a situation more general than in
the preceding section.

The attempts to obtain analogous results for a large class of functions have met
with considerable obstacles, related with the semivariations of the product measure.
Nevertheless, the consideration of various examples has suggested the possibility
of imposing a restrictive condition, the strong **’-condition (see IL.9). If we suppose
that the product measure verifies it (which does not occur in general, as we prove
with a counterexample due to Dobrakov, which is presented in II.9.3), then, with
a hypothesis more restrictive than that in the last sections about one of the spaces
considered, we prove in I1.10 a Fubini type theorem for any (« ® f)-measurable
function F with an equicontinuous range (if Z has finite dimension, it suffices that F
have (¢ ® B)-essentially bounded range); and in IL.11 we give a similar Theorem
for any function that is *-integrable except in a (¢ ® f)-null set.

In Part III, we use the last results for studying, in this context, other questions
related with the product measure.

Section III.1 treats the convolution of vectcr measures, and the integration of
functions with respect to this convolution product, obtaining several results analogous
to the classical scalar case. The fact that the convolution product of measures preser-
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ves certain properties of these measures, together with Theorem I1.6.1, allows us to
prove, under certain conditions, the associativity of the convolution (Theorem 1.6.1).
We generalize in this way (see I1I.1.8) several results obtained by J. E. Huneycutt [9]
for normed spaces and measures of bounded variation, although the technique of
some proofs is fairly different. This section is concluded with some considerations
about the generalization of Dirac’s delta, which, as is natural, behaves as a “‘unit”
for the convolution.

Section III.2 is devoted to the operator product representation. We suppose that
the measurable spaces considered are compact and Hausdorff topological spaces,
with their respective Borel g-algebras. Operators are defined in certain spaces of
continuous mappings (endowed with a locally convex topology), and they have
values in spaces of type L(Z, Y) (where Z, Y are LCTVSs). Using a result obtained
very recently by R. Bravo [2], and also Theorem IL.3, we prove that, under the
usual hypothesis, if two linear and continucus operators T; and T, are represented,
respectively, by the measures o and f, then the product cperator Ty ® T, is repre-
sented by the product measure « @ f (Proposition 2.1).

Finally, we include various examples of product measures and of convolution
of vector measures.

I. PRELIMINARIES AND NOTATION

X,Y,Z and S will be Hausdorff LCTVSs; 2 (or Q, %, &), a generating and
directed family of continuous seminorms of X (or of Y, Z, S); we will denote by
L(X, Y) (L(Y, S), L{X, S)) the vector space of linear and continucus functions from X
into Y (from Yinto S, from X into S}; (@, &) and (E, &) will be measurable spaces;
a:f - LIX,Y) (B: & > L(Y, S)) will be a countably additive measure. We will
suppose that Yand S are complete.

We consider in L(X, Y) the topology of the pointwise convergence given by the
family of seminorms {g,} ,co «ex (Where q,(f) = q(f(x)), for f € L(X, Y)). (We define
the topologies of L(Y, S) and L'X, S) in a similar way).

For every pair of seminorms g€ Q and p € 2, the semivariation of o associated to ¢q
and p will be the mapping |, ,: o - B* U {+c0} defined by [af, (4) =

= sup q( Y «(C;) (x;)) (4 € o), where the supremum is taken over all finite measurable
i=1

partitions {Cy, ..., C,} of A and all finite collections {xi, ..., x,} of elements in X

such that p(x;) < 1,fori = 1,..., n.

Analogously we define the semivariation of f§ associated to every pair of seminorms
seS and g€ Q.

We say that the measure o (f) is of bounded semivariation if, for every seminorm
geQ (se ), there exists a seminorm pe 2 (q e Q) such that [af, (Q) < + o

(18l+(E) < +0).
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We will suppose that « and f are of bounded semivariation.

If F is a mapping from Q into L(Z, X), we will write (p,) (F) = sup p(F(2)), for
every pe?,zeZ and A < Q.

L1. Definition. We say that the semivariation |||, (g € Q. p € 2) is continuous if,
for every disjoint sequence (A4,),ey = &, the sequence |[ac||w( U A))uen converges
to zero.

We will say that the measure a is continuous if, for every q € Q, there exists p € 2
such that the semivariation [|«/,,, is continuous.

Remark that, since a is of bounded semivariation, we can suppose that [|a[, ,(2) <
< 4+ o0.

Remark also that each continuous measure of bounded semivariation is countably
additive.

1.2. Definition. We will say that a countably additive measure a: & — L{X, Y)
is Mackey-bounded if there exists a mapping 1: o/ — R* such that

(1) 4 is bounded;

(2) if (A)uey = & is a disjoint sequence, then the sequence (AU 4;)),en s
convergent to zero; izn

(3) for every seminorm g € Q, there exists p € 2 and M, > 0 such that g, («(4)) <
< M, p(x) (A4), for all xe X and 4 € .

If 2 verifies also the condition (3) for every seminorm g € Q, there exists p € 2
and M, > 0 such that |af|, (4) £ M, A(A), for all A€ o, then 2 is said to be
Mackey*-bounded.

Remark that 3') implies 3).

1.3. Remark. We prove in [6] that, if Y is metrizable and « is continuous, then o
is Mackey*-bounded (and, therefore, Mackey-bounded).!)

Furthermore, it is easy to check that, if a is Mackey*-bounded, then o must be
continuous. )

1.4. Definition. We say that the measure o verifies the *'-condition if, for every
seminorm q € Q, there exists a seminorm p € 2 and a finite and countably additive
measure v, ,: o/ —» R* such that |«,, < v,,, (||,,, is absolutely continuous with
respect to v, ,; i.e., foralle > 0 there exists & > O such that, if 4 € o and v, (4) < 6,
then [«|, (A4) < &, remark that ||, , is continuous iff this condition occurs).

1.5. Definition. We say that the measure f: & — L(Y, S) satisfies the u-condition
if, for every Hausdorff locally convex space X, all sequences of f-measurable functions
from E into L{X, Y), which are pointwise convergent, are uniformly f-measurable

(see [7]).

1y On the other hand, a measure be Mackey*-bounded without being ¥ — metrizable, as
we will see in an example.
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Remark (see [6]) that, if Y is a normed space, then B satisfies the u-condition.
The converse is not true, as is easily checked.

II. PRODUCT OF MEASURES AND FUBINI'S THEOREMS

Let us denote by &/ ® & the o-algebra (over Q x E) generated by & x &.
It is immediately verified that G, = {t e Q/(t,s) € G} e o/ and G' = {s€ E[(t,s) €
eGlebforallGeL/ @ &, scEand te Q.

IL.1. Definition. As usual, under the product measure of the measures o and f
(which we will denote by o ® B) we mean the countably additive measure & ® f:
o @ & - L(X,S) such that (x @ B)(4 x B) = B(B)o(A) for every A x Be
e X &.

IL.2. Proposition. If the product measure exists, then it is unique.
Proof. It is analogous to the proof given in [13] for the product measure considered
by Sivasankara.

IL.3. Theorem. Let us suppose that o is Mackey-bounded®) and B verifies the
u-condition®) and the *'-condition.
Then the following assertions hold:
(i) There exists a bounded absolutely convex set B = L{X, Y) such that «(A) € Ly
for every Ae o *).
(ii) There exists M > 0 such that pg(a(A)) < M, for all Ae .
(iif) The mapping
p(#(G.)): E » R*
s = ps(«(Gy))
is measurable (in the sense of the inverse images) forallGe A ® 6.
(iv) The function
«G.): E - L(X, Y)
s — aGy)

is ﬂ-integmbles) (and has equicontinuous range) for all Ge o x &.
(V) The product measure of o. and B exists, is of bounded semivariation, and

(« ® B)(G) = [g(G.)dB forall Gest ® &.5)
(vi) If F: Q x E > L{Z, X) is a simple* (0-simple) function with equicontinuous

2y In particular, « is Mackey-bounded if it is continuous and Y is metrizable.

3) Which, in particular, occurs if Y is normed.

4 Following the notation of Grothendieck, Ly denotes the vector subspace generated by B.
We denote by pp Minkowski’s functional associate with B.

5) In the sense of [7].

%) Remark (see Proposition I1.2) that, if « @ B exists, then it is unique.
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range, then the mapping

F(+.5): @ > L(Z, X)

t — F(t,s)

is simple* (0-simple) and has equicontinuous range for all s € E. Moreover, the
function

foF(-, =)da: E > L(Z, Y)

s = [oF(+,s)da

is almost B-integrable and with an equicontinuous range (and, therefore, it is
B-integrable), and

onEFd(“ ® ﬂ) = IE(IQ F(': —)d“) dg.

Proof. Let /: &/ - R* be a mapping verifying the conditions (1), (2) and (3)
of 1.2. Let M > 0 be an upper bound of ().

Let '

PN 1
B {A(A) w(A)/A € ,)(4) + 0} {0} .
It follows easily from the condition (3) of 1.2 that B is bounded.

Let B = ((B)*)° be the absolutely convex hull of B; evidently, B is a bounded,
convex and equilibrate set.

It is not difficult now to prove (i) («(#/) = L) and (ii) (because py{a(4)) < A(4) =
< M for all 4 e ). For proving (iii), it suffices to see that, if we denote by ¥ the
set of all Ge o/ ® & such that the mapping pg{a(G.)): E - R* is measurable (in
the sense of the inverse images), % contains the algebra generated by o/ x & and
moreover it is a monotone class (it is closed with respect to increasing union and
decreasing intersection); and, therefore, ¥ = & ® &. On the other hand, the set &
of all Ge o/ ® & such that the mapping «(G.): E » L(X,Y) is p-measurable,
contains the cartesian product &/ x & and is closed with respect to differences and
increasing unions (see [6], [7]); therefore, it coincides with &/ ® &; applying the
results of [6] (see also [7]), and having in mind the properties of 4, we obtain (iv).

Moreover, it is trivial to check that the mapping

e B A ®E - LX,S)
G - [po(G.)dp
is a finitely additive measure; and, since the measure f verifies the *'-condition and
the u-condition, from Theorem 1.7.12 of [6] (6.12 of [7]) it results that & @ B is
countably additive. On the other hand, for every seminorm s € & there exist semi-
norms g€ Q and pe 2 such that |af,(Q). |B]s(E) < +00; and a calculation
shows that [a ® B[ (@ x E) £ |af,(Q). |B]sE) < +c. Furthermore,

(¢ ® B) (A4 x B) = B(B) ofA) for every A x Be o/ x &. This completes the proof
of (v).
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Using the properties of the integral considered, we obtain (vi) for 0-simple func-
tions; this, together with some results obtained in [6] (see also [7]), allows us,
having in mind that the measure f verifies the u-condition, to deduce (vi) in the case
of F being simple* (and with an equicontinuous range). Q.E.D.

I1.4. Lemma. Under the hypothesis of Theorem I1.3, if the measure o is conti-
nuous, then the product measure & @ B is also continuous.

Proof. Since B verifies the *'-condition and « is continuous (and of bounded
semivariation), for every seminorm s € & there exist seminorms g€ Q and p e 2,
and a finite and countably additive measure v, ,: & - R*, such that [[B]|;,, < v, 4
(and, therefore, ||B|;(E) < +), and the semivariation [a],, is bounded and
continuous.

A calculation permits to prove the inequality

(@0 Ja® Fluf6) = (p [alulGy) . 18].(B) +

olGs)) - |Bls.(E—B) forall Ge # ® & and Beé.

+ (sup |af
seE—B
We will denote by & the set of all G € & ® & such that the map
leo.(G): E > R*
s = Jla,/(Gs)

is measurable (in the sense of the inverse images).

The continuity of the semivariation |a],,, implies that # is a monotone class;
and since it contains the algebra generated by &/ x & (as is easily checked), # must
coincide with & ® &. From the Egoroff Theorem it now follows by virtue of the
inequality (4.1) (remark that |B|,,, < v, and that ||, is continuous) that the
semivariation |« ® B|,,, is continuous. Q.E.D.

IL.5. Lemma. Under the hypothesis of Theorem 113, if the measure o verifies the
*'-condition, then the product measure o ®  also verifies it.

Proof. Since the measures a and f verify the *-condition, for every continuous
seminorm s € & there exist seminorms g € Q and p e 2, and countably additive
finite measures v, ,: & —» R* and p, ,: & — R*, such that ||, < v, ,and |af,, <
< g, (and, therefore, the semivariation ||«|,,, is bounded and continuous, and
[B]ls,{(E) < +0). As we have seen in the proof of Lemma IL4, the semivariation
[« ® B|s,p is continuous.

Applying Theorem IL3 to the case in which X = Y=S=R, a = y,, and
B = v, we have that the product measure g, ,® v,,: ¥ ® & = R ~ L(R, R)
exists, is finite and countably additive, it is given by (i, ® v,,.) (G) =
= [gp, (G.)dy,, (Ge o @ &), and it is positive.

7Y In particular, « is continuous if it is Mackey-bounded; the converse is true if Y is metrizable.
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Since the measures 4,,, and v, , are positive, we have that, if (y,, ® v,,) (G) =0
(G e o ® &), then there exists B € & such that v, ((B) = 0 and p, (G,) = 0 for all
se€ E — B; and the inequality (4.1) implies that |« ® B|, (G) = 0.

It follows, having in mind that the semivariation Ha ® [3"5,,, is continuous that
o ® Blls,, < tg,p ® Vs,q ®). This completes the proof.

I1.6. On the “associativity* of the measures product. We will denote by Ta complete
and Hausdorff locally convex space; (M, Z) will be a measurable space; y: X — L(S ,T),
a countably additive measure of bounded semivariation.

We identify the sets @ x (E x M), Q x E x M and (2 x E) x M as usual.
It is easily checked that, with this identification, & ® (6 ® 2) = o( x & x X) =
=(¥®) .

IL6.1. Theorem. 6.1.1. If the product measures « ® (B ® y) and (¢ ® B) ® y
exist, then they coincide.

6.1.2. If Yis normed, S is metrizable, the measure a is continuous, the measures f
and y verify the ¥'-condition, and y verifies furthermore the u-condition®), then the
product measures ¢ @ B, 7, « ® (B®7y) and (« @ ) ® y exist and are of
bounded semivariation.

Proof. 6.1.1 is immediate, because the countably additive measures (oc ® ﬁ) ® v
and @ @ (B ® y), if there exist, coincide on the cartesian product o/ x & x X.

6.1.2 follows from Theorem IL.3, by virtue of Lemmas II.4 and IL5, and from
several results on the properties of the measures, obtained in [6] and stated in I
(see also [7]).

11.6.2. Corollary. The functions
#(Go): E x M - L(X,Y)
(s,0) - “(G<s,v))
«G.,): E > L(X, Y)
s = oGw)

and

are integrable with respect to the measures B ® y and B, respectively, for any

8y Proceeding by contradiction, let us suppose that there exists ¢ < 0 such that, for every

ne N, there is G,€ &/ ® & which verifies: (1, ,® v, ) (G,) < 1/2" and [t ® Bll; o(G,) >e.

Let L= ()({ G,). We have (1, ® v, ) (L) = 0; and, therefore, |« ® Bli,,(L) = 0. If

neN m>n

D,= ) G, and H,= D, — D, (n€ N), we have that the sequence (|« ® B |l;,p ( U H))nen
m2n

converges to zero, and e <|a ® Bl; (G = [¢® Bl p( U H), for all ne N Whlch is
impossible.

) In particular, y verifies the u-condition if S is normed.
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Ged ®(E QL) = (4 ® &) ® X and ue M; the function
(x® B)(G.): M - L(X, S)

w > @® §)(G) = [s4(Gn) 4B
is y-integrable for all G e o(sf x & x X), and we have that

Jexm Go) d(B ® 7) = (x ® (B ®7)) (G) =

=(=® ) ®2)(6) = [u([r:G.~)dp)dy .
(We obtain thus a new Fubini type equality.)

IL7. Theorem. Let us suppose that the vector space Z has a countable (or finite)
dimension, X and Y are normed spaces (with the topologies induced by their norms,
which we will denote, respectively, by p and q), and the measures o and B verify
the *'-condition'°).

Let F: Q x E — I(Z,X) be a function with an equicontinuous range, which is
the pointwise limit of a sequence of simple functions, (F,),cy 11), such that
Sug (pz)QXE(Fn) < +o0.

ne/
Then, we have

(7.1) F is (¢ ® B)-integrable .
(7.2) F(-,s) is a-integrable, for every s€E .
(7.3) The function

fo F(+, =) da: E > I{Z, Y)

s = [oF(+,s)da
is f-integrable.

(7.4) foxp Fd(e ® B) = [Jo F(-, —)da)dp .
Proof. We will indicate only the main steps.

Since the measures o and f verify the #'-condition, there exist countably additive
finite measures pu: o - R* and v: & - R* such that [af|,, < x and [|v[;, < v,
(and, therefore, |||, (2) < + o and ||Bs,(E) < + ) for every seminorm s € .
(Remark that p does not depend on s).

As we have seen in I1.3 and I1.5, the product measure u ® v, exists and is positive,
and o ® B, < 1 ® v (se &).

(7.1) By hypothesis, the sequence (p,(F — F,)),ey converges pointwise to zero,
for every z € Z; and since F, are simple*, it is easily proved that every function

10y In particular, « is continuous (because it verifies the *’-condition) and Mackey-bounded
(because it is continuous, being Y metrizable); and S verifies the u-condition (since Y is normed).
Theorem II.3 implies that the product measure a ® J exists.

11y Remark that, since Z has countable (or finite) dimension and X is normed, all simple
functions are simple*, as is easily checked.
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p{F — F,): Q2 x E—> R" (zeZ, meN) is measurable (in the sense of the inverse
image).

Since & ® fs,, < 1 ® v, (s € &), and Z has a countable (or finite) base, we can
prove, using Egoroff Theorem, that, given any & > 0, there exists K, ;e &/ ® &
such that |lo ® |, (K. ) < & and Fxgxg-,  is simple.

Furthermore, F is of an equicontinuous range, so we have that F is (oc ® p)-
integrable.

(7.2) is proved in a similar way.

In fact, it is proved that the sequence (F,(*,s)),y converges almost uniformly
to F(-, s), for every s € E.

(7.3) Since F, are simple*, Theorem IL.3 yields that the functions

faF(*, —)da: E—> L(Z,Y) (neN)
s = g F(-,s)da

are f-integrable. Since for every s € E, the sequence (F,,(-, s)),,eN is bounded (by the
hypothesis) and converges almost uniformly to F(-, s) (according to what we have
seen in the proof of (7.2)), we have that the sequence ([, F,(*, —) da),,y converges
pointwise to [, F(+, —) da.

From Theorem IL.3 and some results about f-measurable functions (see [6], [7]),
it follows that there exists, for everys e &,as — (ﬁ-null) set V; such that the function
q.(fo(F — F,)(+, =) da) zg_y,: E > R* — is measurable (in the sense of the inverse
images) for any ze Z and ne N.

From the Egoroff Theorem it results, since Z has countable (or finite) base and
[Blls.a < vs (s€ &) that [o F(+, —)da is the almost uniform limit of the sequence
of B-measurable functions ([q F,(+, —)da),y, and since Y is normed, it follows
(see [6], [7]) that the function [q F(+, —)da: E » L(Z, Y) is f-measurable. More-
over, it has equicontinuous range, since F has it. And, therefore, jg F( ) da is
p-integrable, as we wanted to prove.

(7.4) Since the sequence ([q F,(+, —)da),.y is bounded and converges almost
uniformly to [, F(+, —) da, according to we have proved in (7.3), we have

(141)  Je(ja F(. ~) do) dB = lim o (fa F(-, =) do) dB.
In a similar way we obtain that
(7.4.2) foxp Fd(x ® B) = li+m foxe Frd(e® B).

From (7.4.1) and (7.4.2) it follows, by virtue of Theorem IL3 (F, are simple*)
that

foxp Fd(x® f) = [5(fa F(+, =) do) dp .
(Remark that L{Z, S) is Hausdorff, since S is Hausdorff). Q.E.D.
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I1.7.1. Remarks. 1.1. Since F is the pointwise limit of the bounded sequence
(Fu)nen» the set F(Q x E) is bounded in L{Z, X) (for the topology of the pointwise
convergence), which implies that F(Q x E) is equicontinuous, if Z has a finite
dimension. In general, if Z has a countable dimension, a subset of L{Z, X) can
be bounded without being equicontinuous'?).

1.2. In the particular case in which Z = R, F, is O-simple for all ne N, X and S
are Banach spaces, and the measures o« and f# are countably additive in the strong
topology of L(X,Y) and L{Y, S). respectively, then Theorem IL7 coincides with
Theorem 16 of I. Dobrakov [5] (see also [4]) for the case in which o and B verify
the *'-condition.

11.8.1. Definition. We say that a function F: Q x E — L(Z, X) is #-integrable
if the following conditions are verified:

(8.1.1) F(Q x E) is equicontinuous.

(8.1.2) There exists a bounded absolutely convex set B = L{Z, X), a sequence
(F\)uen of simple* functions from Q x E into L{Z, X), and M > 0 such that

(i) F(2 x E) = Ly;

(ii) F(Q x E) = Ly for all neN;

(iii) the sequence (ps(F — F,)).ey convergences pointwise to zero;

(iv) pa(Fu(t,s)) = M for all (1,5) e @ x E and neN.

(Remark that, if Z has a finite dimension, (8.1.2) implies (8.1.1)).

Using different results obtained in [6] (see also [7]), we have the following
Theorem, whose proof we will omit.

I1.8.2. Theorem. Let us suppose that Y is a normed space (with a norm q), and
that the measures o and f verify the «'-condition.

If F: Q x E— L(Z,X) is a =-integrable function, then we have:

(8.2.1) Fis (x ® P)-integrable.

(8.2.2) The function F(+,s): Q - I(Z, X) is o-integrable for every s € E.

(8.2.3) If Z has a countable (or finite) dimension, then the function [g F(+, —) da:
E — L(Z, Y) is B-integrable, and moreover

foxe Fd(@® B) = [g(Jo F(+, =) dw)dB .

IL.9. The *"'-condition. I1.9.1. Definition. We will say that the measure o verifies
the *"'-condition if, for every seminorm ¢ € Q, there exists a seminorm p € 2,
and a countably additive finite measure v, ,: & — R*, such that ||, , is continuous,

m
12) For instance, if Z = R(x) with the topology induced by the norm (¥ a;x") = max |a;|
i=o <i<

<ism
n
and X = R, the functions g, (n€ N) given by g,(ap + a;x + ...+ a,x™) = > a; (where g; = 0
i=0

if 7 > m) constitute a subset of L(Z, X) which is pointwise bounded and not equicontinuous.
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and |af,, <> v,, (ie., |a],,(4) = 0if and only if v, (4) = 0 (4 € )."%)
Obviously, the **'-condition implies the *’-condition.

I1.9.2. Definition. Let us suppose that Y is normed (with norm ¢) and the measures
a and B verify the **’-condition.*)

We will say that the product measure o ® B verifies the strong ="'-condition
if there exists a seminorm p € 2, and countably additive finite measures v;: & - R
(for every seminorm se %) and p,: o — R*, such that [«f,, < u, [Blsq < v
and o ® B, =1, ® v, 7).

I1.9.3. Remark. The measures o« and B can verify the ="’-condition, being Y
normed, even if the product measure o ® S does not verify the strong *”’-condition,
as the following example due to I. Dobrakov [5] shows:

Let X =R, Y=S = ¢y, q((x,)nen) = max Ix,,l (x)nen€co)y Q=E =N, o =
neN

= & = P(N) be. We denote by P (resp. I) the set of the pair (resp. odd) natural
numbers. It is easy to check that the functions a: P(N) — L(R, ¢,) and B: P(N) —
— L(co, ¢o) given by

a(4) (x) = (1—;—""2 x,w(n))

(A4, Be P(N), x € R, (X,),en € Co) are well defined and they are countably additive
vector measures, which verify the *"’'-condition; and that the product measure
o ® B = 0 does not verify the strong **’-condition.

and A(B) ((xulen) = (:— xW(ro)

2
neN n neN

IL.10. Theorem. Let us suppose that: the (locally convex) vector space Z has
a countable (or finite) dimension; X and Y are normed (with norms p and q,
respectively); S is a Fréchet space; the measures o and B verify the *'-condition,
and the product measure verifies the strong *"'-condition.

Then, if F:Q x E— L(Z,X) is a (¢ ® B)-measurable function with equi-
continuous range'®), we have:

(10.1) F is (x ® P)-integrable.

(10.2) There exists a set De &, -null, such that the function F(+, s): Q@ » L(Z, X)
is a-integrable, for all se E — D.

13) Remark that, if [ llg,p < vg,ps then [lafl, (@) < +.

14y From Theorem II.3 and Lemma IL5 it follows (remark that a is continuous, because it
verifies the *’-condition) that o @ B exists, it is of bounded semivariation, and it fulfils the
*’-condition.

15) Remark that [« ® Blls,p is continuous, as we have seen in IL.4.

’6) Remark that F(2 X E) is bounded because it is equicontinuous. (If Z has finite dimension,
we can substitute (10.1) by a weaker hypothesis that F is (¢ &) f)-essentially bounded; i.e., that
there exists a (¢ ® B)-null set G = 2 X E such that F(2 X E — G) is bounded).
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(10.3) The function
h = .[Q F(', c)dfl: E - L(Z, Y)
_ [foF(+,s)dx, if s€eE—-D
s"”’(s)“{o, if seD

is p-integrable.
(10.4) Jaxp Fd(2 ® ) = [&(fo F(, ) da) dB.

Proof. We can suppose that & is countable, because S is a Fréchet space. Let
5? = {Sn}neN'

Since F is (oc ® p)-measurable, for every n, meN there exists H, ,e o/ @ &
such that ||a ® B|, (H,.) < 1/m and Fioxg-u,,, is simple*'7).

IfH,= () H,, and F, = Fygxg_y, for every n e N, it is easily checked that the

m,l<n

set H=H, is (a ® B)-null, and that the function FYoxg-p is the pointwise
neN

limit of the sequence of simple* functions (F,),.y. Moreover, (p,)oxg-u(F,) <
< (p.)axp(F) < +oforallneN and z€ Z.

On the other hand, the semivariations ||, [[B]ls..c and [« ® B|s,,, (for every
n € N) are, by hypothesis, bounded and continuous. Moreover, there exist countably
additive finite measures p: & — R* and v,: & > R* such that [|af|, , < 1, [|B...q <
< v, and o @ B, < u ® v,

Since the set H is (¢ ® f)-null, and ||« ® B|,,, <> 1 ® v, (n € N), we have that
Jem(H)dv, = (1 ® v,) (H) = 0. Since u and v, are positive measures, it follows
that there exists a set D, € &, for every n e N, such that v,(D,) = 0 and u(H,) = 0
if seE — D, )

It is trivial to check that the set D = [ D, is f-null, and that, for every se E — D,
neN

lotllq. /(Hs) = O (and, therefore, o G da = [o_p, G do, for any a-integrable function
G: Q- X)

Theorem II.10 is obtained now in a similar way as Theorem IL.7.

We state without proof the following result:

I1.11. Theorem. Let us suppose that Y is normed (with a norm q), S is a Fréchet
space, the measures o and B verify the *-condition, and the product measure
o @ P verifies the strong *"'-condition.

If F: Q x E — L(Z, X) is a function essentially '-integrable with respect to the
measure o ® B'®), then we have:

(11.1) Fis (« @ B)-integrable.

17) Since X is normed and Z has countable (or finite) dimension, any simple function from
Q x Einto L(Z, X) is simple*.

18) That is, such that F. yox g—pg is *-integrable (see I1.8.1), where H is an («® f)-null set.
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(11.2) There exists a B-null set D € & such that the function F(-,s): Q - I(Z, X)
is a-integrable for all se E — D.

(11.3) If Z has a countable (or finite) dimension, then the function
h=foF(,o)da: E—> L(Z, Y)
_(JoF(-,s)da, if seE—D
s—+l1(s)—{0’ if seD

is p-integrable, and furthermore

Joxe Fd(x ® B) = [&(fo F(*, o) du) df .

ITI. ON CONVOLUTION, AND OPERATORS PRODUCT
REPRESENTATION

II.1. Convolution. We will suppose that: @ = E = G is a topological semigroup;
s/ = & is the Borel o-algebra of G; and the measures o: & — L(X,Y) and B: § —
— L(Y, S) verify the hypothesis of Theorem II.3.

We will denote by ¢ the internal operation of G.

ML1.1. Definition. We will call convolution (or convolution’s product) of the
measures o and f, and we will denote it by o * f, to the function (obviously well
defined)

a* o > L(X,S)
A= (axp)(4) = (2= B)(07'(4) -

It is easily checked that « * 8 is a countably additive measure of bounded semi-
variation.

IIL.1.2. Proposition. If the measure o is continuous, then the convolution o * f§
is continuous.

Proof. This is an immediate consequence of Lemma I1.4. »

(Remark that B is continuous, because it verifies the *"-condition).

IIL.1.3. Definitions. 1.3.1. We say that a finite positive measure pu: of — R* is
G-invariant if (A .s) = u(A), for all se G and Ae .o/ (where A.s = ¢p(A.s) =
= {o(1, s) | te A}).

1.3.2. We say that the measure o: & — L(X,Y) verifies the G-invariant *'-
condition if, for every seminorm g € Q, there exists a seminorm pe £ and a G-
invariant, positive and countably additive measure y, ,: &/ — R™, such that "a”,,‘,, <
< ly,p:

We state without proof the following:

II1.1.4. Propositions. 1.4.1. If G is a group, and the measure o verifies the G-
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invariant *'-condition, then the convolution’s product o * B verifies also the G-
invariant *'-condition.

1.4.2. If F: G —» I(Z, X) is a simple (resp. O-simple) function with equicontinuous
range, then the function F o ¢: G x G — L(Z, X) is simple (resp. O-simple) and it
has equicontinuous range, and moreover we have that

fe Fd(a*B) = [oxc Fod=p).

II1.1.5. Observation. From Proposition 1.4.1 and Lemma ILS5 it results that, if G
is a group and the measure « verifies the G-invariant #'-condition, then the last
result (1.4.2) remains true if F is *-integrable.

II1.1.6. Associativity of the convolution. Let T be a complete and Hausdorff locally
convex space, and let y: & — L(S, T) be a countably additive measure of bounded
semivariation.

We will identify the sets o ® (o ® ) and (o/ ® ) ® < as usual.
We will suppose that the product measures o ® (f ® y) and (¢ ® B) ® y exist.

1.6.1. Theorem. If the convolution products o = (B * y) and (« * ) x y exist, then
they coincide.
Proof.

Let us consider the functions
Y:G x(GxG)—>GxG
(t, s, u) = (1, (s, u))
Y0 (GxG)xG->GxG

(t,s,u) = (o(t, 5), u),

which evidently are measurable.

and

We have
(«® (B*7)(4 x B) = (B*7)(B) o o 4) =
=(B®) (@7 (B)ould) = (x®@(B®7)(4 x ¢7'(B)) =
=(@®(B®7)(Yi'(Ax B) forall 4 x Best x o .
Since the map
dp: A ® o - L'X, S) '
D = 6¢(D) = (« ® (B ® 7)) (V1 (D))

is a countably additive measure, it follows that it must coincide with & @ (8 * y).
Analogously we prove that ((x ® B) ® 7) (5 (D)) = ((« x B) ® y) (D) for all
Ded @ . E
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On the other hand,
i@ (A4) = {(t,s,u) e G x G x Go(t, p(s, u)) =
= o(o(t.5). u)e A} = Y3 (07'(4)),

forall Ae .

From Theorem II.6 it follows that
(@x(B*7)(4) = (@@ (B*7)(p7'(4)) =
=(@@ @)U e (4) = ((x® ) ®») (W5 (¢~'(4)) =
=((x*B)®@7)(¢7"(A4)) = ((x*B) *y)(4) forevery Aes/.

Q.E.D.

1.6.2. Observation. If we suppose that Yis normed, S is metrizable, the measure o
is continuous, the measures f and y verify the *’-condition, and y verifies also the
u-condition, then it results from Theorem IL.6.1(2) that the product measures
«®pB, f®y, «®(B®y) and (¢ ® B) ® y exist and have bounded semivariation.

Besides, the convolution o * f is continuous (see Proposition 1.2); and, therefore,
it is Mackey-bounded, since Y'is normed.

On the other hand, if G is a group and the measure f§ verifies the G-invariant
*'-condition, then the convolution product § * y verifies the #'-condition (by Propo-
sition 1.5), and it verifies also the u-condition, because Y is normed.

From Theorem II.3 it results that, under these conditions, the product measures
x® (B*7) and (x* f) ® y exist, and hence, the convolution products o * (B * 7)
and (o * f) * y exist as well.

III.1.7. ““Unit* in the convolution. We will suppose that the semigroup G has zero
element, which we will denote by e.

It is easily verified that the function
dy: o = L(Y, )
Id, if eed
A = 54(4) = {0, if e¢A

is a countably additive measure of bounded semivariation, which is Mackey*-
bounded and verifies the *”'-condition and the u-condition.

It is not difficult to prove the following result:

1.7.1. Propositions. 7.1.1. Any function F:G — L(X,Y) is &y-integrable, and
jG Fdéy = F(e).

7.1.2. We have o * 3y = o and 6y * f = B.

IIL.1.8. Observation. Proceeding in a similar way we can define the convolution

of measures for the bilinear case considered by Sivasankara [1 3] (exposed also by Rao
Chivukula and Sastry [10]), obtaining analogous resultsi(except 1.7). Several results
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were attained by J. E. Huneycutt in [9] (for the case in which X, Yand Z are normed,
the measures a and B are of bounded semivariation, and G is a locally compact
Hausdorff topological semigroup) are thus generalized.

ITL.2. On the operators product representation. We will suppose that Q and E are
compact Hausdorff topological spaces, &/ and & are their respective Borel o-algebras,
Z has a countable (or ﬁnite) dimension, X is metrizable; and the measures a: &/ —
- L(X,Y) and B: & - L(Y, S) verify the hypothesis of Theorem IL3.

We will denote by C,, C, and C; the vector spaces of the continuous mappings
from Q into I(Z, X), from E into I(Z, Y) and from Q x E into L(Z, X), respectively,
and by Sy, S, and S; the corresponding vector spaces of simple functions.

As is proved in R. Bravo [2], C; = S; (i = 1,2, 3).
We consider in C,; the locally convex vector topology induced by the family of
seminorms ((p;)q)pes zcz- Analogously we define the topologies of C, and Cs.

We will suppose that Ty: C, - L(Z,Y) and T,: C, > L(Z, S) are continuous
linear operators.

It is easily checked that, if F € Cs, then F(+, s) € C, for every s € E; and the mapping
T,(F(-, —)): E—> L(Z,Y)
s = Ty(F(",s))
is continuous.
Moreover, the operator
T, ® T,: C3 - L(Z,S)
F — (T, ® T) (F) = ToTy(F(+, -)))
is continuous and linear.
As usual, we will say that the measure « represents the operator T; (we will write
T, = T,) it Ty(F) = (o F da for all function F € C,.
Theorem II.3 yields the following result:

IIL.2.1. Proposition. If the measures a and B represent the operators T, and T,,
respectively, then the product measure a ® f represents the operator Ty ® T.

1IV. EXAMPLES

LletX=1,Y=1,S=c.Q=E=N, o =2&=P(N).
Evidently, (N, +) is a topological semigroup (T = /).
We consider the maps o: P(N) —» L(I,., I,) and B: P(N) — L{I,, c,) given by

o) () = (3 2i)

2"
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and

In
A n/ne. = n
A ) = (25,20
(A € P(N)a (xn)neN € lom (yn)neN € 11)
It is easily checked that « and f are countably additive measures which verify
the **’-condition (hence being of bounded semivariation).
<Remark that
n 1 .
leclly o, 0(4) = ilele;O 5 x4(i) (4€P(N))

and

UB1 ot n:(4) = max (1 ! > if A+0 (4€P(N)) )

+ n
A calculation shows that the product meaéure a® B A ® & — Lly, ¢o) is given
by

(=@ BO) () = (72 (1) (G @8 (shavel)
eN
while the convolution o * f: & — L(l,, ¢,) is expressed as

(2% B) (4) (<)o) = (2 T xi,{(n)).EN (4 e P(N)).
where
34 ={neN[2ne A} .
2. Let Q =E = (—1, 1), let o = & be the Borel g-algebra of Q, and 1: o/ —» R*
the Lebesgue measure. We put X = Y=R, S=1_,, a =1 (identifying R with
L(R, R)); and

BA) (x) = x <,—ﬁ o (ﬁ»iv :

forevery xe Rand A€ &.
o and f are countably additive measures which verify the **’-condition.

(Remark that
1 1
Bl .1 1(A4) = max €AV (AeN, A £0).
181y 1(4) T T ( )
The product measure ¢ @ f: o/ ® & — L(R, 1,,) is given by

(x® B)(G) ~ <] _: 2 i(GI/(l-i»n))) (Ged ®6E). .

neN
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If we consider the usual product in (— 1, 1), the convolution « * f8 is given by

<«*/s>(A>:( :

L +n
(As usual, we denote by (1 + n) A the set {(1 + n)t/te A} (neN, Ae /).)

5 M@+ n)A)n(-1, l))) ) forevery Ae.sf .

3. Letd > 0,2 = E = (—0,d],let & = & be the Borel g-algebra of Q. We put
X = R(x) (with the topology mduced by the non decreasing sequence of seminorms

P = (Pu)uen given by p,,(z )= Ia l where a; = 0if i > m), Y = R® (with the

topology induced by the famlly of seminorms Q = (I lr)rcn Teinice 8iven by |f|p =
= z | /(1) for every fe Y and every finite subset T of R), and S = RV (with the

topology induced by the non decreasing sequence of seminorms &% = (s,),.y given
by s,(f) = . |f(i))| — feS—).
i=0

(Remark that Yis not metrizable, and X and S are not normed.)

m

We consider the mapping o: &7 — L(X Y) given by «(A4) (Y, a;x) (1) =
i=0
= Z a; fangiy(1), for every Ae o, Za x' eR(x), 1eR.

It is easily checked that o is well defined and it is a countably additive measure.
Moreover, for every finite subset T of R, and every m € N such that maxT < m

we have [ ,.p(A) = Y xan1(i) = Y x4(i) (A € #); hence « verifies the *'-con-
i=0 i=0

dition and the u-condition, and besides, since sup Q = d < +cc, m can be fixed
independently of T (it is enough to take m > d). Therefore, o is Mackey*-bounded.

Let f: & — L(Y,S) be the countably additive measure defined by B(A)(f) =
= (f1an (A€ &, feY).

For every neN let us consider T, = {0, 1,...,n} (T, = {0}). We have that

I8

o(A) = -ZOXA(i) (A4 € &). Hence, B verifies the " '-condition and the u-condition.

It is easily checked that the product measure o ® f is given by
(x ® B)(G) (Y aix’)(n) = a,xg((n. n)) (where a, = 0if n > m){(Ge/ ® &, neN,
i=0
{ag, ..., a,} = R).

We consider in Q = (— o0, d] the structure of commutative semigroup given by
the mapping (obviously continuous)

P2 x Q—Q

(t,s) > o(t,s) =1 +s—d.
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We have that, for every A e o, n, m e N and {do; -+ an} < R,

(2= By (A) ( i a;x')), = auXi-(A*-d)(n) (a, =0if n>m),
i=o
where
HA + d) = {xeR[2x - de A} .
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