Czechoslovak Mathematical Journal

Jan Trlifaj

On countable vo Neumann regular rings

Czechoslovak Mathematical Journal, Vol. 41 (1991), No. 1, 1-7

Persistent URL: http://dml.cz/dmlcz/102427

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL
 Mathematical Institute of the Czechoslovak Academy of Sciences
 V. 41 (116), PRAHA 26. 3. 1991, No 1

ON COUNTABLE VON NEUMANN REGULAR RINGS
 Jan Trlifaj, Praha

(Received July 4, 1986)

1. INTRODUCTION

In the present note, we study properties of countable von Neumann regular rings. Finite regular rings have simple homological properties since they are completely reducible (i.e., finite direct sums of full matrix rings over division rings). The same is far from being true of the countable ones. There are various examples of non-completely reducible countable regular rings, usually constructed as endomorphism rings of infinite dimensional linear spaces or direct limits of completely reducible rings (see [3]). Homological properties of such rings may be independent of ZFC. For example, the Whitehead property of all (or some) non-zero countable modules over any simple countable non-completely reducible regular ring is independent of ZFC + GCH (see [7]). In fact, this property is assured by Jensen's diamond, but excluded by a combinatorial principle due to Shelah.

In our note we show that a version of Shelah's principle is even equivalent to a property concerning the bifunctor Ext that is close to the Whitehead property. We also get a structure theorem for countable regular \otimes-rings. Finally, we obtain a splitting-type theorem for modules over regular rings such that each left ideal is countably generated.

2. PRELIMINARIES

In what follows, an ordinal is identified with the set of its predecessors and a cardinal is an ordinal which is not equipotent with any of its predecessors. If κ is a cardinal, then $\operatorname{cf}(\kappa)$ denotes its cofinality and κ^{+}denotes the successor cardinal to κ. For a set A, the cardinality of A is denoted by card (A). Let E be a subset of $\left.\chi_{1}{ }^{1}\right)$. Then E is cofinal if $\sup E=\chi_{1}$. Further, E is closed if $\sup F \in E \cup\left\{\chi_{1}\right\}$ for every non-empty subset F of E. We say that E is stationary if $E \cap F \neq \emptyset$ for every closed and cofinal subset F of χ_{1}. We say that E is costationary if $\chi_{1}-E$ is stationary.

[^0]In what follows, all rings are associative with unit. If R is a ring and $n>0$ a natural number, then $M_{n}(R)$ denotes the full matrix ring of degree n over R. The Jacobson radical of a ring R is denoted by $\operatorname{Rad}(R)$. The ring of integers is denoted by Z. A subset $\left\{e_{\alpha} \mid \alpha<\kappa\right\}$ of R is a set of orthogonal idempotents if, for each $\alpha<\kappa$, e_{α} is a nontrivial idempotent of R and $e_{\alpha} e_{\beta}=0$ whenever $\alpha \neq \beta<\kappa$. For a ring R, the categories of unitary left and right R-modules are denoted by R-mod and mod- R, respectively. A unitary left R-module is simply called a module. A sum and a direct sum of submodules are denoted by \sum and $\dot{\sum}$, respectively. Let M be a module. If κ is an ordinal, $\kappa>0$, then $M^{(\kappa)}$ and M^{κ} denote the direct sum and the direct product, respectively, of κ copies of M. If $x \in M$, then Ann (x) denotes the left annihilator of x in R. Further, M is said to be properly κ-generated if κ is the smallest cardinal such that there is a generating set of M of cardinality κ. The Z-module of rational numbers is denoted by Q.

A ring is said to be a \otimes-ring if there are only trivial orthogonal theories of the tensor product bifunctor (see [5, Introduction]), i.e. $M \otimes N \neq 0$ for each non-zero $M \in \bmod -R$ and $N \in R$-mod. Recall that by [2, Appendix A] a ring is a left T-ring if there are only trivial orthogonal theories of the Ext bifunctor, i.e. Ext $(M, N) \neq 0$ for each non-projective module M and each non-injective module N. Further concepts and notation can be found e.g. in [1].

3. HOMOLOGICAL PROPERTIES OF COUNTABLE REGULAR RINGS

3.1. Lemma. Let R be a simple non-completely reducible regular ring, M a singular module and $K=\operatorname{End}(M)$. Assume that the right K-module M is countably generated. Then there are orthogonal idempotents $e_{i}, i<\chi_{0}$ such that $M=$ $=\dot{\sum}_{i<\chi_{0}} e_{i} M$.
Proof. Let $\left\{x_{i} \mid i<\chi_{0}\right\}$ be a generating set of the right K-module M. We construct the idempotents $e_{i}, i<\chi_{0}$ by induction. First, put $e_{0}=1-e$, where e is any nontrivial idempotent such that $e \in \operatorname{Ann}\left(x_{0}\right)$. Assume orthogonal idempotents e_{0}, \ldots \ldots, e_{n-1} such that $1 \neq f=e_{0}+\ldots+e_{n-1}$ and $\sum_{i<n} x_{i} K \subseteq \sum_{i<n} e_{i} M$ have been constructed. If $x_{n} \in \sum_{i<n} e_{i} M$, let e_{n} be any non-trivial idempotent of the ring $(1-f)$. . $R(1-f)$. Otherwise, put $y_{n}=(1-f) x_{n}$. Since Ann $\left(y_{n}\right)$ is not finitely generated, [3, Proposition 2.11] easily yields the existence of orthogonal idempotents f_{0}, f_{1}, satisfying $R f=R f_{0} \quad$ and $f_{j} \in \operatorname{Ann}\left(y_{n}\right), j=0,1$. Put $\quad e_{n}=\left(1-f_{1}\right)(1-f)$. Then f, e_{n} are orthogonal idempotents and $f+e_{n} \neq 1$. Moreover, $y_{n}=e_{n} y_{n}$ and the induction works.
3.2. Lemma. Let R be a regular ring. Then the following conditions are equivalent:
(i) R is $a \otimes$-ring.
(ii) $I+J \neq R$ for each maximal right ideal I and each maximal left ideal J. Proof. (i) implies (ii). Easy.
(ii) implies (i). Assume $A \otimes B=0$ for some non-zero $A \in \bmod -R$ and $B \in R$-mod. Then, for each cardinal $\kappa, \operatorname{Hom}_{Z}\left(A \otimes B,(Q \mid Z)^{\kappa}\right)=0$, whence $\operatorname{Hom}\left(B,\left(\operatorname{Hom}_{Z}(A, Q / Z)\right)^{\kappa}\right)=0$. Since A is a flat right R-module, the module $\operatorname{Hom}_{\mathrm{Z}}(A, Q / Z)$ is injective and not a cogenerator. By [1, Proposition 18.15], there is a simple module W such that $\operatorname{Hom}\left(W,\left(\operatorname{Hom}_{Z}(A, Q / Z)\right)^{x}\right)=0$ for all cardinals κ. Hence $A \otimes W=0$. Using the right-hand homomorphisms, we get similarly the existence of a simple right R-module V satisfying $V \otimes W=0$. Now, let I be a maximal right ideal with $V \simeq R / I$ and J a maximal left ideal with $W \simeq R / J$. Using the commutative diagram of $[1,19.17]$, it is easy to see that the canonical inclusion $V . J \rightarrow V$ is a Z-isomorphism, whence $I+J=R$.
3.3. Lemma. Let R be a regular ring. Then
(i) if R is $a \otimes$-ring, then R is simple;
(ii) if each maximal right ideal is countably generated and all simple modules are isomorphic, then R is a \otimes-ring;
(iii) if R is a simple left and right T-ring, then R is a \otimes-ring.

Proof. (i) By 3.2, every two-sided ideal is a superfluous submodule of R and hence is contained in $\operatorname{Rad}(R)=0$.
(ii) Let I and J be a maximal right and left ideal, respectively. By [3, Proposition 2.14], there are a cardinal $\kappa \leqq \chi_{0}$ and orthogonal idempotents $e_{i}, i<\kappa$ such that $I=\sum_{i<\kappa} e_{i} R$. Put $I^{\prime}=\sum_{i<\kappa} R e_{i}$. Then $I^{\prime} \neq R$, whence $\operatorname{Hom}\left(R / I^{\prime}, R / J\right) \neq 0$. Let $r \in R$ be such that $r \notin J$ and $e_{i} r \in J$ for all $i<\kappa$. Then even $r \notin I+J$, and 3.2 applies.
(iii) By [6, Theorem II.3], [2, Proposition A.3.5] and (ii).
3.4. Theorem. Let R be a countable regular ring. Then R is $a \otimes$-ring if and only if there are a natural number $n>0$ and a division ring D such that $R \simeq M_{n}(D)$.

Proof. The sufficiency is easy. Assume R is a countable regular ring. If R is not simple, then 3.3 (i) shows R is not a \otimes-ring. If R is simple and non-completely reducible, take a simple module M and put $K=\operatorname{End}(M)$. Then $\operatorname{dim}_{K}(M)=\chi_{0}$, and 3.1 yields the existence of orthogonal idempotents $e_{i}, i<\chi_{0}$ such that $M=$ $=\sum_{i<\chi_{0}} e_{i} M$. Let I be a maximal right ideal containing all $e_{i}, i<\chi_{0}$, and J a maximal left ideal such that $M \simeq R / J$. Then $I+J=R$ and, by $3.2, R$ is not a \otimes-ring. Hence, R is simple and completely reducible, q.e.d.

Let E be a subset of χ_{1} and F the set of limit ordinals of E. Let $\varrho_{E}={ }^{\prime}\left(n_{v} \mid v \in E\right)$ be a sequence of strictly increasing χ_{0}-sequences such that, for each $v \in F$, sup $n_{v}(i)=$ $=v$, and, for each $i<\chi_{0}$ and $v \in F$, there is a limit ordinal $p_{v}(i)$ with $n_{v}(i)=p_{v}(i)+$ $+i+1$. Denote by $C_{\left(E, e_{E}\right)}$ the following combinatorial principle: ,,for any sequence $\left(h_{v} \mid v \in E\right)$ of functions from χ_{0} to χ_{0} there is a function $f: \chi_{1} \rightarrow \chi_{0}$ such that $\forall v \in F$ $\exists j_{v}<\chi_{0} \forall i>j_{v}:\left(n_{v}(i)\right) f=(i) h_{v}{ }^{\prime}$.

Let R be a simple countable non-completely reducible regular ring and let $\mathscr{S}=$ $=\left(I_{v} \mid v \in F\right)$ be a sequence of properly χ_{0}-generated left ideals of R. By [3, Proposition 2.14], for each $v \in F$ there are orthogonal idempotents $e_{i v}, i<\chi_{0}$ such that $I_{v}=\sum_{i<\chi_{0}} R e_{i v}$. Denote by $M_{\left(E, \mathscr{C}_{E}, \mathscr{C}\right)}$ the module $R^{\left(x_{1}\right)} / G$, where G is a submodule of $R^{\left(\chi_{1}\right)}$ generated by the elements $g_{i v} \in R^{\left(\chi_{1}\right)}, i<\chi_{0}, v \in F$, the v-th projection of $g_{i v}$ being $-e_{i v}$, the $n_{v}(i)$-th projection being $e_{i v}$, and all other projections being zero. Let P be a simple module. Then the right dimension of P over End (P) is χ_{0}, and by 3.1 , there are orthogonal idempotents $e_{i}, i<\chi_{0}$ such that $P=\dot{\sum}_{i<\chi_{0}} e_{i} P$. Denote by I_{P} the left ideal of R generated by the set $\left\{e_{i} \mid i<\chi_{0}\right\}$ and by \mathscr{S}_{P} the constant sequence ($\left.I_{P} \mid v \in F\right)$.
3.5. Theorem. Let R be a simple countable non-completely reducible regular ring, let E be a subset of χ_{1}, and let ϱ_{E} be as above. Then the following conditions are equivalent:
(i) $C_{\left(E, Q_{E}\right)}$;
(ii) $\operatorname{Ext}\left(M_{\left(E, e_{E}, \mathscr{G}\right)}, N\right)=0$, for any countably generated module N and any \mathscr{S};
(iii) there is a simple module P such that $\operatorname{Ext}\left(M_{\left(E, \varrho_{E}, \mathscr{S}_{P}\right)}, P\right)=0$.

Proof. (i) implies (ii). An easy generalization of [7, Theorem 2.2].
(ii) implies (iii). Obvious.
(iii) implies (i). Let $\left(h_{v} \mid v \in E\right)$ be a sequence of functions from χ_{0} to χ_{0}. Let e_{i}, $i<\chi_{0}$ be orthogonal idempotents such that $P=\sum_{i<\chi_{0}} e_{i} P$. Since R is simple and countable, for each $i<\chi_{0}$ there is a bijection $r_{i}: e_{i} P \rightarrow \chi_{0}$. Define $p \in \operatorname{Hom}(G, P)$ by $\left(g_{i v}\right) p=(i) h_{v} r_{i}^{-1}$ for $i<\chi_{0}$ and $v \in F$. Since $\operatorname{Ext}\left(M_{\left(E, \mathscr{Q}_{E}, \mathscr{S}_{P}\right)}, P\right)=0$, there is a $q \in \operatorname{Hom}\left(R^{\left(\chi_{1}\right)}, P\right)$ such that $\left(g_{i v}\right) q=(i) h_{v} r_{i}^{-1}$ for each $i<\chi_{0}$ and $v \in F$. Define a function $f: \chi_{1} \rightarrow \chi_{0}$ by $\alpha f=\left(e 1_{n_{v}(i)} q\right) r_{i}$ if there are $i<\chi_{0}$ and $v \in F$ such that $\alpha=n_{v}(i)$, and $\alpha f=0$ otherwise. Now, for each $v \in F$, there is a $j_{v}<\chi_{0}$ such that $1_{v} q \in \sum_{i \leq j v} e_{i} P$, whence $e_{i} 1_{v} q=0$ for all $i>j_{v}$. Hence, for each $v \in F$ and each $i>j_{v}$, we get $(i) h_{v}=\left(g_{i v}\right) q r_{i}=\left(e_{i} 1_{n_{v}(i)} q-e_{i} 1_{v} q\right) r_{i}=\left(n_{v}(i)\right) f$, q.e.d.
3.6. Remark. Note that if E is a stationary costationary subset of χ_{1}, then, for any $\varrho_{E}, C_{\left(E, \varrho_{E}\right)}$ is independent of $\mathrm{ZFC}+\mathrm{GCH}$ (see [4]). If E is not stationary, then, for any simple module P and any ϱ_{E}, the module $M_{\left(E, \varrho_{E}, \mathscr{Y}_{P}\right)}$ is projective, and hence $C_{\left(E, e_{E}\right)}$ holds for any ϱ_{E}.
3.7. Lemma. Let κ be an infinite cardinal and R a ring such that each left ideal is κ-generated. Let $\lambda .>0$ be a cardinal, $F=R^{(\lambda)}$, and I a submodule of F. Then I is $\max (\kappa, \lambda)$-generated.

Proof. We prove the assertion by induction on λ. It is clear for $\lambda=1$. For $1 \leqq$ $\leqq \lambda<\chi_{0}$, let I be a submodule of $R^{(\lambda+1)}, I=\sum_{\alpha<\mu} R x_{\alpha}$. In fact, $x_{\alpha}=\left(y_{\alpha}, z_{\alpha}\right)$, where $y_{\alpha} \in R^{(\lambda)}$ and $z_{\alpha} \in R$ for each $\alpha<\mu$. Hence, there is a set $A \subseteq \mu$ such that card $(A) \leqq$
$\leqq \kappa$ and, for each $\alpha<\mu$, there are a finite subset $A_{\alpha} \subseteq A$ and elements $r_{\alpha \beta} \in R$, $\beta \in A_{\alpha}$ such that $z_{\alpha}=\sum_{\beta \in A \alpha} r_{\alpha \beta} z_{\beta}$. Put $B=\left\{\left(y_{\alpha}-\sum_{\beta \in A \alpha} r_{\alpha \beta} y_{\beta}, 0\right) \mid \alpha \in(\mu-A)\right\}$. Then $B \cup\left\{\left(y_{\alpha}, z_{\alpha}\right) \mid \alpha \in A\right\}$ is a generating set of I. By the premise, B can be replaced by its subset of cardinality $\leqq \kappa$. For λ infinite (i.e. λ a limit ordinal), take a cofinal subset of ordinals $\lambda_{\alpha}, \alpha<\operatorname{cf}(\lambda)$. Then clearly $I=\bigcup_{\alpha<\operatorname{cf}(\lambda)}\left(I \cap R^{\left(\lambda_{\alpha}\right)}\right)$ and the induction works.

Let R be a regular left hereditary ring, F a free module, and I a submodule of F. Let κ be the cardinal such that I is properly κ-generated. By [1, Corollary 26.2] and [3, Proposition 2.14], there are $x_{\alpha} \in I, \alpha<\kappa$ such that $I=\sum_{\alpha<\kappa} R x_{\alpha}$. We can assume that $F=R^{(\delta)}$ for a cardinal $\delta>0$. For $k<\delta$ denote by ξ_{k} the k-th natural projection of F to R. For $B \subseteq \kappa$ put $J_{B}=\sum_{\alpha \in B} R x_{\alpha}$, and for $C \subseteq \delta$ put $F_{C}=\sum_{k \in C} F \xi_{k}$. If there is a finite set $C \subseteq \delta$ such that $I \subseteq F_{C}$, we say that I belongs to case 1 . If there is a countable set $C \subseteq \delta, C=\left\{c_{i} \mid i<\chi_{0}\right\}$, such that $I \subseteq F_{C}$, but $I \nsubseteq F_{C_{n}}$, for each $n<\chi_{0}$ and $C_{n}=\left\{c_{i} \mid i \leqq n\right\}$, we say that I belongs to case 2 . Further, denote by $\operatorname{SPLIT}(I, F, \kappa)$ the following splitting property: ,there is a subset $A \subseteq \kappa$ such that $\operatorname{card}(A)=\kappa$ and J_{A} is a direct summand of $F^{\prime \prime}$. Denote by $\operatorname{WSPLIT}(I, F, \kappa)$ the following (wekaer) splitting property: ,there is a submodule $M \subseteq I$ such that M is properly κ-generated and M is a direct summand of $F^{\prime \prime}$. If $\operatorname{SPLIT}(I, F, \kappa)$ for any free module F and any properly κ-generated submodule I of F, we write $\operatorname{SPLIT}(\kappa)$.
3.8. Theorem. Let R be a regular ring such that each left ideal is countably generated.
(i) If $\kappa \neq \chi_{0}$, then $\operatorname{SPLIT}(\kappa)$.
(ii) Let $\kappa=\chi_{0}$, let F be a free module and I a properly χ_{0}-generated submodule of F. Then either
(1) I belongs to case 1 and not $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$, or
(2) I belongs to case 2 and $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$.

If (2) holds, then SPLIT $\left(I, F, \chi_{0}\right)$ iff there is a subset $A \subseteq \chi_{0}$ such that card $(A)=\chi_{0}$ and $J_{A} \cap F_{C_{n}}$ is finitely generated for all $n<\chi_{0}$. Moreover, if R is not completely reducible and (2) holds, then both possibilities (i.e. SPLIT (I, F, χ_{0}), or $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$ but not $\left.\operatorname{SPLIT}\left(I, F, \chi_{0}\right)\right)$ can occur.

Proof. (i) Take a fixed free module $F=R^{(\delta)}$ and a properly κ-generated submodule I of F. By 3.7 we have $\kappa \leqq \max \left(\kappa_{0}, \delta\right)$. If $\kappa<\chi_{0}$, then the assertion is well-known ([3, Theorem 1.11]). The rest of the proof of part (i) follows from the next two lemmas:
3.9. Lemma. Assume $\chi_{0}<\kappa \leqq \delta$ and $\mathrm{cf}(\kappa) \neq \chi_{0}$. Then SPLIT (κ).

Proof. We generalize the proof of [6 , Theorem II.3] as follows. Let N be a module. Let $P=\operatorname{Hom}(I, N)$ and $\lambda_{0}=\operatorname{card}(P)$, i.e. $P=\left\{p_{v} \mid \gamma<\lambda_{0}\right\}$. For $i<\chi_{0}$, put $\lambda_{i+1}=\lambda_{i}^{+}$and let $\lambda=\sup _{i<\chi_{0}} \lambda_{i}$. Clearly, $\operatorname{cf}(\lambda)=\chi_{0}$. Let $N_{i}, i<\chi_{0}$, and N_{λ} be as
in [6, Lemma II.2]. Then $N^{\lambda} / N_{\lambda}$ is injective, whence $\operatorname{Ext}\left(F / I, N^{\lambda} / N_{\lambda}\right)=0$. Define $f \in \operatorname{Hom}\left(I, N^{\lambda} / N_{\lambda}\right)$ by $x_{\alpha} f=n_{\alpha}+N_{\lambda}, \alpha<\kappa$, where $n_{\alpha} \pi_{v}=x_{\alpha} p_{v}$ if $v<\lambda_{0}, n_{\alpha} \pi_{v}=$ $=x_{\alpha} p_{\mu}$ if $v=\lambda_{i}+\mu, i<\chi_{0}, \mu<\lambda_{0}$, and $n_{\alpha} \pi_{v}=0$ otherwise. Then there exist $y_{k} \in N^{\lambda}, k<\delta$ such that $\left(\sum_{k} x_{\alpha} \xi_{k} y_{k}-n_{\alpha}\right) \in N_{\lambda}$ for each $\alpha<\kappa$. For $i<\chi_{0}$, put $A_{i}=\left\{\alpha<\kappa \mid\left(\sum_{k} x_{\alpha} \xi_{k} y_{k}-n_{\alpha}\right) \in N_{i}\right\}$. Then $A_{i} \subseteq A_{i+1}, i<\chi_{0}$, and $\kappa=\bigcup_{i<\chi_{0}} A_{i}$, whence thereis a $j<\chi_{0}$ such that $\operatorname{card}\left(A_{j}\right)=\kappa$. Put $A=A_{j}$. Then for each $\lambda_{j} \leqq$ $\leqq v<\lambda$ and each $\alpha \in A,\left(\sum_{k} x_{\alpha} \xi_{k} y_{k}-n_{\alpha}\right) \pi_{v}=0$. Let $g \in \operatorname{Hom}\left(J_{A}, N\right)$. Then there is a $\gamma<\lambda_{0}$ such that $p_{\gamma} \mid J_{A}=g$. Put $\mu_{0}=\lambda_{j}+\gamma$. Then for each $\alpha \in A, x_{\alpha} g=$ $=n_{\alpha} \pi_{\mu_{0}}=\left(\sum_{k} x_{\alpha} \xi_{k} y_{k}\right) \pi_{\mu_{0}}$. Define $h \in \operatorname{Hom}(F, N)$ by $1_{k} h=y_{k} \pi_{\mu_{0}}, k<\delta$. Then $x_{\alpha} g=x_{\alpha} h$ for each $\alpha \in A$. Now, consider the particular case of $N=I$ and g the canonical inclusion of J_{A} to I. Denote by g_{1} the canonical inclusion of J_{A} to F and by g_{2} the canonical projection of I to J_{A}. Then $1_{J_{A}}=g_{1} h g_{2}$, whence $J_{A}=\operatorname{im} g_{1}$ is a direct summand of F.
3.10. Lemma. Assume $\chi_{0}<\kappa \leqq \delta$ and $\operatorname{cf}(\kappa)=\chi_{0}$. Then $\operatorname{SPLIT}(\kappa)$.

Proof. Let $\left(\kappa_{i} \mid i<\chi_{0}\right)$ be a sequence of regular cardinals such that $\kappa_{0}=0$, $\chi_{0}<\kappa_{1}, \kappa_{i}<\kappa_{i+1}, i<\chi_{0}$ and sup $\kappa_{i}=\kappa$. By induction on $i<\chi_{0}$ we construct sets of ordinals $B_{i} \subseteq \kappa$ and $C_{i} \subseteq \delta, \mathrm{i}<\chi_{0}$ such that $\kappa_{i} \subseteq B_{i} \subseteq B_{i+1}, C_{i} \subseteq C_{i+1}$, $\operatorname{card}\left(B_{i}\right)=\operatorname{card}\left(C_{i}\right)=\kappa_{i}, J_{B_{i}} \subseteq F_{C_{i}}$ and $J_{\left(\kappa-B_{i}\right)} \cap F_{C_{i}}=0$. Put $B_{0}=C_{0}=\kappa_{0}$ and assume that B_{i} and C_{i} are defined for some $i<\chi_{0}$. Let $D_{0}=C_{i} \cup\{k<\delta \mid \exists \alpha<$ $\left.<\kappa_{i+1}: x_{\alpha} \xi_{k} \neq 0\right\}$. By 3.7, card $\left(D_{0}\right)=\kappa_{i+1}$. Assume D_{j} is defined for some $j<\chi_{0}$ so that $D_{0} \subseteq D_{j}$ and card $\left(D_{j}\right)=\kappa_{i+1}$. Let \mathscr{H} be the set of finite subsets $H \subseteq \kappa$ satisfying $J_{H} \cap F_{D_{j}} \neq 0$ and $J_{H^{\prime}} \cap F_{D_{j}}=0$ for any proper subset $H^{\prime} \subseteq H$. Using 3.7 it is easy to see that $\operatorname{card}(\mathscr{H})=\kappa_{i+1}$. Put $D_{j+1}=D_{j} \cup\{k<\delta \mid \exists H \in \mathscr{H}$ $\left.\exists \alpha \in H: x_{\alpha} \xi_{k} \neq 0\right\}$. Then card $\left(D_{j+1}\right)=\kappa_{i+1}$. Now, it suffices to put $C_{i+1}=\bigcup_{j<\chi_{0}} D_{J}$ and $B_{i+1}=\left\{\alpha<\kappa \mid x_{\alpha} \in F_{C_{i+1}}\right\}$. Further, for $i<\chi_{0}$, put $A_{i}=B_{i+1}-B_{i}$. If $i>0$ and $\alpha \in A_{i}$, then $x_{\alpha}=\left(y_{\alpha}, z_{\alpha}\right)$ for some $y_{\alpha} \in F_{C_{i}}$ and $z_{\alpha} \in F_{\left(C_{i+1}-C_{i}\right)}$. Note that the elements $z_{\alpha}, \alpha \in A_{i}$, are independent, as $J_{\left(\kappa-B_{i}\right)} \cap F_{C_{i}}=0$. If $\alpha \in A_{0}$, we put $z_{\alpha}=x_{\alpha}$. Anyway, it follows from 3.9 that for each $i<\chi_{0}$ there is a subset $A_{i}^{\prime} \subseteq A_{i}$ such that $\operatorname{card}\left(A_{i}^{\prime}\right)=\kappa_{i+1}$ and $\sum_{\alpha \in A_{i}^{\prime}}^{\dot{\prime}} R z_{\alpha}$ is a direct summand of $F_{\left(C_{i+1}-C_{i}\right)}$. Now, it
suffices to put $A=\bigcup A_{i}^{\prime}$. suffices to put $A=\bigcup_{i<\chi_{0}} A_{i}^{\prime}$.
(ii) If I belongs to case 1 , then obviously not $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$. Assume I belongs to case 2 . Then the assertion concerning $\operatorname{SPLIT}\left(I, F, \chi_{0}\right)$ follows immediately from the fact that a submodule N of F_{C} is a direct summand iff $N \cap F_{C_{n}}$ is finitely generated for all $n<\gamma_{0}$ (see the proof of [6, Lemma III.3]). The rest of the proof of part (ii) follows from the following lemma:
3.11. Lemma. Let I belong to case 2 . Then $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$. If R is not complete-
ly reducible, there exist I_{1} and I_{2} such that $\operatorname{SPLIT}\left(I_{1}, F, \chi_{0}\right)$, and $\operatorname{WSPLIT}\left(I_{2}, F, \chi_{0}\right)$ but not $\operatorname{SPLIT}\left(I_{2}, F, \chi_{0}\right)$.

Proof. Define a set $\left\{y_{i} \in I \mid i<\chi_{0}\right\}$ as follows. First, $y_{0}=x_{0}$. Assume $y_{i}, i \leqq n$ are independetn for some $n<\chi_{0}$. Let j be the least natural number such that $\sum_{i \leqq n} R y_{i} \subseteq F_{C_{j}}$. Take $i<\chi_{0}$ such that $x_{i} \notin F_{C_{j}}$. Then there are some $u_{i} \in F_{C_{j}}$ and $0 \neq v_{i} \in F_{\left(C-c_{j}\right)}$ such that $x_{i}=\left(u_{i}, v_{i}\right)$. Let $e \in R$ be the idempotent such that Ann $\left(v_{i}\right)=R(1-e)$ and put $y_{n+1}=e x_{i}$. Then $y_{i}, i \leqq n+1$ are independent and $\dot{\sum}_{i<\chi_{0}} R y_{i}$ is a direct summand of F_{C}. Hence, $\operatorname{WSPLIT}\left(I, F, \chi_{0}\right)$. To prove the second assertion, consider a set $\left\{e_{i} \mid i<\chi_{0}\right\}$ of orthogonal idempotents of the ring R. For $n<\chi_{0}$, let 1_{n} be the element of $R^{\left(\chi_{0}\right)}$ such that $1_{n} \xi_{i}=0$ if $i \neq n$, and $1_{n} \xi_{n}=$ $=1$. For $i<\chi_{0}$, put $x_{i}=\sum_{n \leqq i} e_{i-n} 1_{n}$. Then $I_{1}=R^{\left(x_{0}\right)}$ and $I_{2}=\sum_{i<\chi_{0}} R x_{i}$ provide the
required examples.
3.12. Remark. Theorem 3.8 is formulated for the class \mathscr{C} of all regular rings such that each left ideal is countably generated. Clearly, \mathscr{C} contains all countable regular rings. Nevertheless, \mathscr{C} contains also all direct limits of countable directed systems of arbitrary simple completely reducible rings. Hence, \mathscr{C} contains rings of arbitrary infinite cardinality.

References

[1] F. W. Anderson and K. R. Fuller: Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
[2] L. Bican, T. Kepka and P. Němec: Rings, modules, and preradicals, M. Dekker Inc., New York-Basel, 1982.
〔3] K. R. Goodearl: Von Neumann regular rings, Pitman, London-San Francisco-Melbourne, 1979.
[4] S. Shelah: Whitehead groups may be not free, even assuming CH, I, Israel. J. Math. 28 (1977), 193-204.
[5] J. Trlifaj and T. Kepka: Structure of T-rings, in Colloq. Math. Soc. Bolyai, 38. Radical theory, 633-655, North-Holland, Amsterdam, 1985.
[6] J. Trlifaj: Ext and von Neumann regular rings, Czech. Math. J. 35 (1985), 324-332.
[7] J. Trlifaj: Whitehead property of modules, Czech. Math. J. 36 (1986), 467-475.

Author's address: Soběslavská 4, 13000 Praha 3, Czechoslovakia,

[^0]: ${ }^{1}$) χ_{0}-denotes the cardinality of the set of all natural numbers, χ_{1}-denotes the successor cardinal to χ_{0}.

