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1. INTRODUCTION

This paper investigates the structure of algebras of given type 7: Q@ — N in regular
classes, and in particular in regular classes of modes (see Section 2, and [RS2]).
Recall that an identity is regular if the sets of variables appearing on each side
are equal ([PH], [RS2]). A class ¥~ of algebras of type t: Q — N is regular if the
only identities satisfied by allalgebras in ¥~ are regular. Otherwise, ¥ is irregular.
The algebras considered in this paper are of type 7: @ » Z* with 2 e 7(Q). The
general references for algebras of given type are [Co] and [ RS2].

Let (S, +) be a (join) semilattice, and Q a set of operation symbols. Then (S, +)
may be considered as an Q-algebra on setting

Xy ... X0 =X; + ...+ X,
for each n-ary w in Q with n = 2 and
xXw = X

for unary @ in Q. Such an algebra is called an Q-semilattice [RS2, p. 31]. Conversely,
given an Q-semilattice (S, 2) one may define a binary operation + on S by

X+ y=xy...ym

for each n-ary w in Q with n = 2. The class of all Q-semilattices forms a variety,
called #¢. It is well-known (cf. [RS2, Proposition 235]) that &/ satisfies exactly all
regular identities between Q-words, and a variety ¥~ of Q-algebras is regular ii and
only if ¥~ contains the variety %7.

If (4, Q) is an Q-algebra in a regular class ¥ of Q-algebras, then (4, Q) has a uni-
versal homorphism onto an Q-semilattice, the so-called Q-samilattice replica of
(A. Q) (cf. [Mal, p. 234] or Section 2 below). In Section 2, an explicit method is
given for constructing such a universal homomorphism. This is done by means of
some special subalgebras of an Q-algebra, namely walls, algebraically open sub-
algebras, and sinks. Their properties, meaning and relationship (for Q-algebras,
and especially for modes) are discussed. The main Decomposition Theorem 2.3 of
this section reads that for every Q-algebra, its semilattice replica is the semilattice
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of its principal walls, and the corresponding fibres (classes of decomposition) are
algebraically open subalgebras.

Section 3 is devoted to construction techniques known generically as ‘“‘semilattice
sums‘‘. These methods allow one to reconstruct algebras in regular classes from their
semilattice replicas and the corresponding fibres. We recall the definitions and basic
properties of the Plonka sum [P{2], [RS2] and the coherent Lallement sum [L],
[RS2]. We give a new, simpler proof of the theorem saying that each Q-algebra
in a regular class is a coherent Lallement sum over an Q-semilattice homomorphic
image. Finally, we give a condition under which a coherent Lallement sum over
a semilattice (S, ) can be embedded into a Plonka sum over the same semilattice
(S, *).

The results of Section 2 and 3 are then applied in Sections 4 and 5. In Section 4
we investigate Q-algebras in a regular class, with fibres belonging to an irregular
variety #". We give a necessary and sufficient condition (Theorem 4.1) for certain
algebras to be subalgebras of a Plonka sum of ¥ -algebras, and discuss some con-
sequences of this theorem. We expect this theorem to be useful in solving the problem
of describing the structure of algebras in regularised varieties. Recall that the
regularisation or regularised variety ¥~ of a variety ¥~ of Q-algebras is the class
of Q-algebras satisfying all the regular identities that are satisfied in #". The structure
of 7" ~-algebras is known in some special cases. If " is a so called strongly irregular
variety [DG], i.e. 7" satisfies an identity

(1.1) Xoy =X

for some binary Q-word x o y (containing both variables x and y), then ¥"~ consists
exactly of Plonka sums of algebra in ¥". Note that such a strongly irregular variety
has a basis for its identities consisting of some set of regular identitites and the unique
irregular identity 1.1 (cf. [Me], [R2]). If ¥" is an irregular variety of semigroups,
then ¥°~ consists of subalgebras of Plonka sums of ¥ -algebras (cf. [S1], [S2].)
However, examples are known of varieties ¥~ of Q-algebras thai are not all neces-
sarily Plonka sums or subalgebras of Plonka sums of ¥ -algebras.

If ¥~ is a regular variety of Q-algebras, then the class of all fibres of ¥ -algebras
does not necessarily form a subvariety. This is the case for barycentric algebras
[RS1], [RS2], [RS3] and commutative binary modes [JK2], [RS2]. In both these
classes, the fibres belong to the quasivariety of cancellative ¥ -algebras. Both
barycentric algebras and commutative binary modes are modes in the sense of [RSZ].
The main Theorem 5.5 of Section 5 states that each coherent Lallement sum of can-
cellative modes is a subalgebra of a Plonka sum of cancellative modes. In particular,
the theorem holds for barycentric algebras (cf. [RS3]) and for commutative binary
modes as discussed in Section 6. Commutative binary modes in regularised varieties
¥~ are just Plonka sums of ¥ -algebras (The-orem 6.2). The final Theorem 6.4
shows that each commutative binary mode is a subalgebra of a Plonka sum of com-
mutative quasigroup modes.



2. DECOMPOSITION OF AN Q2-ALGEBRA OVER ITS SEMILATTICE REPLICA

In this section, the Decomposition Theorem 2.3 is formulated and proved. As its
name implies, it describes how an Q-algebra breaks up into smaller pieces. These
pieces are indexed by a semillatice associated with the Q-algebra. This semilattice
is the (Q —) semilattice replica [RS2, p. 17] (AR, Q) of the Q-algebra (4, Q).
The semilattice (AR, Q) is the quotient (4%, Q) of (4, Q) by the semilattice replica
congruence ¢ such that any Q-homomorphism f: (4, 2) - (S, Q) from (4, Q) to
an Q-semilattice (S, Q) factors as f = (nat ¢) f' through a unique homomorphism
[ = (4% Q) - (S, Q). Thus the congruence g identifies precisely those elements of A
which are identified in all Q-homomorphisms from (4, Q) to Q-semilattices.

The semilattice replica of an Q-algebra may be given an explicit description in
terms of ‘‘walls” of the Q-algebra. Recall that a subset X of an Q-algebra (4, Q)
is a subalgebra of (4, Q) iff

(2.1) VoeQ, Vxi...x,€d, (x,...x,€X)=(x... x,0eX).
A subset Wof A is said to be a wall [RS, p. 61] of (4, Q) iff
(2.2) VoeQ, Vx,...x,ed, (x,...x,eX)s(x .. .x,0eX).

Thus walls are special subalgebras. Each Q-algebra has the improper wall (4, Q).
If (A, Q) is a convex set considered as a barycentric algebra [RS2, RS3], then the
walls in the sense of (2.2) are just the walls in the geometric sense [Mi, p. 8]. (Some
authors also use the term “‘face” here, although the word “‘face” may be used with
different meanings. Compare also the concept of ““filter’”” as used in semigroup theory
[Pe, 1.8.2].) The set of walls of an Q-algebra (A4, Q) is partially ordered by inclusion.
From (2.2), the intersection of a family of walls is again a wall. For a subset X of 4,
let [X] denote the intersection of all walls of (4, 2) containing X. Then the set of
walls of (4, Q) forms a join semilattice under the operation W + W' = [Wu W'].
For a singleton X = {x}, write [{x}] = [x]. Such walls are called principal walls.

Lemma 2.1. For any x, ..., x,in A and n-ary w in Q, one has [x,] + ... + [x,] =
= [x;... x,0].

Proof. On the one hand x; ... x,w € [x; ... x,0] implies x,. ..., x, € [x{ ... X,0]
by (2.2), so [xi], ..., [x.] € [xy ... x,0] and [x,] + ... + [x,] <4 [x ... x,0].
On the other hand, since x, ..., x, are contained in the subalgebra [x,] + ... + [x,],
one has x; ... x,w € [x;] + ... + [x,], whence [x; ... x,0] <, [x;] + ... + [x,]-®

In particular, it follows that for x and y in 4 and n-ary  in 2, one has [x] + [y] =
=[x]+ [y] + ... + [»] = [xy ... yo]. This shows that the principal walls of the
Q-algebra (4, Q) form a subsemilattice (W, +) of the join semilattice of all walls.
Moreover, it shows that the mapping

(2.3) A->W; x—[x]
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is an Q-homomorphism from the Q-algebra (4, 2) onto the Q-semilattice (W, Q) of
principal walls.

If (4, Q) is a barycentric algebra, then walls also have a topological significance.
If the affine hull of a convex set is a finite-dimensional Euclidean space, then the
convex set is open in its affine hull iff it has no proper non-empty walls (see [ RS2,
Exercise 386]. cf. also [N, 4.4]). This motivates the following. An Q-algebra is said
to be algebraically open iff it has no proper non-empty walls.

Proposition 2.2. Let (4, Q) be an Q-algebra. Then the following conditions are
equivalent:
(i) (4, Q) is algebraically open;
(ii) (4, Q) has no proper non-empty walls;
(iii) there is no Q-epimorphism (4, Q) — ({0, 1}, Q) onto the two-element join
semilattice {0 <, 1}.

Proof. If |4| £ 1, the equivalence is clear, so assume |4| > 1. The equivalence
of (i) and (ii) is by definition. Now (ii) implies (iii) since a proper non-empty wall W
furnishes an Q-epimorphism (W — {0}) w ((4 — W) — {1}). Conversely, (iii) implies
(if) since the preimage of 0 under an Q-epimorphism (4, Q) » ({0 <, 1}, Q) is
a proper non-empty wall of (4, Q). m

Theorem 2.3. (Decomposition Theorem). The semilattice replica of an Q-algebra
(4, Q) is its semilattice of principal walls. The fibres over the semilattice are
algebraically open subalgebra of (A4, Q).

Proof. Let (4, Q) be an Q-algebra. Let o be the kernel of the homomorphism
(2.3),s0 that x o y iff [x] = [y]. Then o contains the semillatice replica congruence o.
The g-classes are subalgebras of (A, Q), and have no non-trivial semilattice quotients.
Thus they are algebraically open by Proposition 2.2. It remains to show that o
actually coincides with g.

Now for b in A4, one has

(2.4) Vaeb?, [a]=[b];

certainly a € b® implies [a] < [b?]. Conversely, note that [a] n b¢ is a non-empty
wall of b?, since x; ... x,w€[a] N b® with x,, ..., x, € b® implies Xy, ..., x, €[a],
SO Xy, ..., X, € [a] N bl But b®, being algebraically open, has no proper non-empty
walls. Thus [a] n b? = b, whence b® < [a] and [b°] < [a], completing the verifi-
cation of (2.4).

Also, considering the semilattice replica (4%, Q) as a join semilattice (4%, < .),
one has

@5) [ - U@ s,

for each b in A. Certainly ¢® <, b®implies ¢b ... bw e ® + b® = b® = [b?], whence
c e [b9], so that [6°] 2 U {c?| ¢® £, b%}. On the other hand, the right hand side
of (2.5) is the preimage in (4, ) under nat ¢ of the principal wall {¢?| ¢® <, b%} of
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the semilattice (49, Q) generated by b®. Now preimages of walls under epimorphisms
are walls, so that [b%] is contained in the right hand side of (2.5).

To complete the proof of Theorem 2.3, assume x ¢ y in A. Then by (2.4), one has
[x¢] = [x] = [v] = [»?]- The expression (2.5) then shows x¢ <, y¢and y® <, x°,
whence x2 = y% or x ¢ y. Thus ¢ is also contained in g, so that ¢ and ¢ do indeed
coincide. m

We conclude this section with some consideration of the possibility of replacing
the concept of ‘“‘wall”” by the concept of “‘sink” in the Decomposition Theorem.
A sink [RS2, p. 73] S in an Q-algebra (4, Q) is a subset S of 4 satisfying

(2.6) VoeQ, Vx,,...,x,€Ad, A1 £ign x;€8)=(x;...x,w€8).

In semigroup theory and binary mode theory, sinks have been called “‘ideals” (see
[Pe, p. 4] and [JK2, p. 12]). Poyatos [Po] uses the term “trunk” rather than “ideal”
or “‘sink™. Sinks are automatically subalgebras. The sink (4, ) of an algebra (4, Q)
is described as improper, and all other sinks are called proper. An algebra is called
impermeable [ RS2, p. 74] if it has no proper non-empty sinks. Now from the defining
property of sinks, it follows immediately that for each set X of sinks of the algebra
(A, Q), the union U {S|SeX} and intersection () {S|SeX} are also sinks of
(A4, Q) [Po, Prop. 1]. For a given element a of (4, ), let (a) denote the principal
sink generated by a, the intersection (\{S|a e S} of the sinks S of (A4, Q)
containing {a}.

Note that, in general, the complement of a wall in an Q-algebra is a sink. Con-
versely, although the complement of a sink need not be a subalgebra, the complement
is a wall if it is a subalgebra. Sinks satisfying the latter property are called prime.
Equivalently, a prime sink may be described as a sink satisfying the following
property:

(2.7) VoeQ, Vxi,...x,ed, (x;..x,weS)=31 i< n x;€8).

Theorem 2.3 can be formulated using prime sinks rather than principal walls.

Now let (4, 2) be a mode as defined in [RS2], i.e. (4, Q) is idempotent (each
singleton subset {a} of an algebra (4, Q) is a subalgebra of (4, Q)) and entropic,
(the mapping ': (4", Q) —» (A, Q) is an Q-homomorphism, or equivalently the
identity
(2.8) (xp1 oo X1 m®) oo (Xpg oo X)) © = (X o Xy @) o (X Xy @) @
is satisfied in (4, Q) for each n-ary w in Q).

If (4, Q) is a mode, then in the Decomposition Theorem 2.3 one may replace the
semilattice of principal walls by the semilattice of principal sinks. To prove this,

let us first note that the following lemma, an analogue of Lemma 2.1 for walls,
follows by Proposition 364 and Corollary 366 in [RSZ].

’

Lemma 2.4. For any x,, ..., x, in A and n-ary o in Q, one has (x;) n ... n (x,) =
=(x;...x,0). W
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In particular, it follows that for x and y in A and n-ary w in @, one has (x) N (y) =
=(x)n(y)n...0(y) = (xy... yo). This shows that the principal sinks of the
mode (A4, ) form a subsemilattice (S, N) of the meet semilattice of all sinks. Moreover,
it shows that the mapping

(2.9) A-S; x> (x)

is an Q-homomorphism from the mode (4, 2) onto the Q-semilattice (S, Q) of
principal sinks.

If (4, Q) is a mode, then Proposition 2.2 can be rewritten as follows.

Proposition 2.5. Let (4, Q) be a mode. Then the following conditions are equi-
valent:

(i) (4, Q) is algebraically open;

(ii) (4, Q) has no proper non-empty walls;

(iii) (A, Q) has no proper non-empty sinks;

(iv) (4, Q) is impermeable;

(V) there is no Q-epimorphism (A, Q) — ({0, 1}, Q) onto the two-element join

semilattice {0 <, 1}.

Proof. We need only prove that (iii) and (v) are equivalent. Now (v) implies (iii),
since a proper non-empty sink S contains a proper principal sink (s) for s in S,
whence the homomorphism (2.9) maps (4, 2) onto a non-trivial semilattice that
always has a homomorphism onto the two element semilattice. Conversely (iii)
implies (v), since the preimage of 1 under an Q-epimorphism (4, Q) - ({0 <, 1}, Q)
is a proper non-empty sink of (4, 2). m

By Proposition 2.5, it follows that for a mode (4, Q) the semilattices of principal
walls and principal sinks are isomorphic. We do not know whether this true in
general. Consider, for example, algebras in the Mal'cev product [Ma2] of an ir-
regular variety ¥~ of Q-algebras and the variety &¢ of Q-semilattices. Denote the
Mal’cev product of ¥ and &¢ by ¥ o F£, and recall that this is the class of all
Q-algebras (A, Q) having a homomorphism h: (4, Q) - (S, Q) onto an Q-semilattice
(S. Q) such that the corresponding fibres h™'(s), for s in S, belong to the variety ¥".
No such fibre has an Q-epimorphism onto the two-element semilattice (cf. [RS2,
Proposition 235]). So the condition (v) of Proposition 2.5 is satisfied. But we do not
know if this is equivalent to (iii}. If Q-algebras in the Decomposition Theorem 2.3
belong to the class ¥ o ¢, the words “‘principal walls”” may be replaced by the
words “‘sinks generated by the fibres”. However we do not know if sinks generated
by fibres are principal in general. '

If ¥ is a strongly irregular variety, the following holds.

Proposition 2.6. [R3] Let ¥~ be a strongly irregular variety of Q-algebras. Let
hi (A4, Q) > (S, Q) be a homomorphism of (A, Q) onto its Q-semilattice replica
(S, Q) with the corresponding fibres A; = h™'(s), s in S, in the variety ¥". Then
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a subset B of A is a sink in (4, Q) if and only if B = U (4, |t € T), where Tis a sink
in(S,Q). m

Corollary 2.7. For any x4, ..., X, in A and n-ary o in 2, one has (x;) n ... 0 {x,) =
= (x4 ... X,0).

Proof. It is enough to notice that for x; in A, where i =1,...,n and k =
=ki+ ..+t ky, (x)n(x) =N iz k)o.o(N4; ]z k) =
=(4;|jzk. m

It follows that Proposition 2.5 holds for (4, Q) as described in Proposition 2.6.

3. SEMILATTICE SUMS

Semilattices form the basis for a range of general algebraic construction techniques,
known generically as ‘‘semilattice sums”. The most elegant of these is the Plonka
sum [RS2, Definition 236], introduced by Plonka [P ] under the name “sum of
a direct system” as a generalization of A. H. Clifford’s “strong semilattice of semi-
groups” [C], [Pe, 1.8.7]. The description of Plonka sum in [RS2, 2.3] was based
on meet semilattices, but for current purposes it is more natural to use join semilattices
(S, +), simultaneously considered as Q-semilattices. As a partial order (S, <),
the set S is the set of objects of a small category (S) having a unique morphism x — y
if and only if x <, y. Consider the category () whose objects are Q-algebras,
algebras (4, Q) of a fixed type Q — N [RS2, p. 5]. The morphisms of () are Q-
homomorphisms. Suppose given a covariant functor F: (S) — (). Then the Plonka
sum of the algebras sF (for s in S) is the disjoint union SF = {J {sF | s € S} of the
underlying sets, equipped with the Q-algebra structure given by

(3.1) w: s F x ... % s,F—>s,..5,0F;
(X1, o0 X)) P xy(sy > 5y 0 5,0) F oo x,(s, = sy ... 5,0) Fo

for each n-ary w in € and s, ...,s, in S. Note that there is an Q-algebra
homomorphism 7z: (SF, Q) — (S, Q), called the projection, having restrictions
np: (sF, Q) - ({s}, Q). The subalgebra (sF, Q) of the Plonka sum (SF, Q) are called
the Plonka fibres. Plonka sums give a way of constructing new Q-algebras from
given oncs. As was proved by Plonka [PH] (see also [RS2, p. 34]), the identities
satisfied by a Plonka sum over a non-trivial semilattice are precisely the regular
identities satisfied by each of the fibres. On the other hand, the concept of Plonka
sum provides the following structure theorem for algebras in the regularisation
of an irregular variety.

Theorem 3.1 [P}, 2], [RS2, p. 35]. Let " be a strongly irregular variety of
Q-algebras of fixed type. Then an Q-algebra (A, Q) is in the regularisation ¥~
of ¥ if and only if it is a Plonka sum of ¥ -algebras over its Q-semilattice replica
(S.2. m
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The conditions on a Plonka sum, although natural, are very strong, and do not
obtain in general. It is not true that each Q-algebra projecting onto an Q-semilattice
(S, Q) is a Plonka sum over that semilattice. Here are some counterexamples.

Example 3.2. Let 9 , (see [ R2]) be the variety of groupoids satisfying the identities
(3.2) x . (x.y)=x.y
(3.3) x.(y.z2)=x.(z.y)

(3.4) (x.y).z=(x.(y.2)
(3.5) x.(y.(x.2)=x.(y.2)
(3.6) ((x-x) . (x.x) ((x.x) . (x.x)) = (x.x).(x.x).

By results of [R2], the variety 95, is the regularisation of an irregular variety %, ,
of groupoids defined by the identities (3.2)—(3.6) and

Il

(3.7) X.y=x.z.

The fibres G, of the decomposition of a groupoid (G, *) in ¥; , over its semilattice
replica (S, +) are in %, ,. However, as was shown by Plonka [P12], (G, *) is not
neccssarily a Plonka sum of the (G, -). For example, if (G, *) = (F(2), *) is the
free groupeid in g;,z on two generators x and y, then (G, *) may not be reconstructed
as a Plonka sum of its fibres over its semilattice replica. (See [P12]). =

Example 3.3. Let I and I° be the closed and open unit intervals [0, 1] and 0, 1]
respectively. For each p in I°, define a binary operation ; on I as follows

(3.8) abj = a(l — p) + bp.

Then (1,1°) is a barycentric algebra (as defined in [RS2]}. The semilattice replica
(S,1°) of (1,1°) has three elements, say 0, 1, a, with 0, 1 < a. The corresponding
fibres are I, = {0}, 1, = {1} and I, = 1°. The algebra (I, I°) cannot be reconstructed
as a Plonka sum of I, I; and /,. Indeed, if 0(0 — a) F = x €1°, then for any y
inIand pinI° yp =0y =00-a)F yj=yxp=x(1 - p)+ yp, a contra-
diction. ®

Example 3.4. Replace the closed and open intervals I and I1° from Example 3.3
by the closed and open unit intervals D and D° of dyadic numbers, ie. D =
={xel|x=k2™" keZ neN}, D= {xel®|x=k2™" keZ neNj. Itis
known (see [Ku, V.17]) that in this case the operations defined by (3.8) may be reduced
to the unique operation 4. The groupoid (D, 4) is a commutative binary mode (as
defined in [RS], or “‘commutative idempotent medial groupoid™ in the terminology
of [JK2]). Using a similar argument to that in Example 3.3, one can show that the
mode (D, }) (that is equivalent to (D, D°)) decomposes over the 3-element semilattice
replica (S, +) of Example 3.3, and cannot be reconstructed as a Plonka sum over

(S.4) =m
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In [RS2, Definition 623], a more general construction method called the Lallement
sum was introduced, extending and adapting some semigroup-theoretical work of
Lallement [L, 2.19]. In fact, as was shown by [RS2, Theorem 624], these Lallement
sums have extremely broad applicability. The full generality of Lallement sums is
not required here, but the concepts underlying them are needed.

Let (T, Q) be a sink in an Q-algebra (4, Q). A congruence 6 on (4, Q) is said
to preserve the sink (T, Q) if the restriction of the natural projection A —» 4% a > a°
to the subalgebra (T, Q) injects. The algebra (4, Q) is said to be an envelope of a sub-
algebra (T, Q) if (T, Q) is a sink of (4, Q) such that equality is the only congruence
on (4, Q) preserving (T, Q). For example, the closed unit interval (I, I°) is an envelope
of the open unit interval (I°, I°).

The version of Lallement sums to be used here is as follows (cf. [RS2, 6.2]).

Definition 3.5. Let S be an Q-semilattice (S, Q) and a join semilattice (S, +, =< ).
Suppose given an envelope (E,, Q) of an Q-algebra (4, Q) for each element s in S.
For each s <, t in (S, <), suppose given an Q-homomorphism ¢;,: (4,, 2) =
— (E,, Q) such that:

(a) @s. is the injection of 4, into Ej;

(b) for each n-ary w in Q, and for sy, ..., s, in S with s; ... s,0 = s,
(Asl¢s1,s) . (As"¢s".s) w S As 5
(c) for each s, ...s,0 =s <, tin S and a; in 4, (for i = 1,...,n),

a1¢51,s s an¢s,.,sw¢s,r = a1¢sht X an¢sn,tw;

(d) for each s in S,
E,={a¢, |t <.s aeAd,.
Then the disjoint union 4 = (J (4, I s € S) equipped with the operations
(3.9) 0 Ay, X oo x A, 2 Ay (Ao ) a1, o Gy, (O

where s = 5, ... 5,0, for each n-ary w in Q, is called the coherent Lallement sum of
the algebras (A,, Q) over the semillatice (S, Q) by the mappings ¢,,, or more
briefly a coherent Lallement sum. W

Note that the left hand side of the equality in (c) is defined, since condition (b)
holds. The conditions (a)—{(d) are best viewed as generalizations of the functoriality
in Plonka sums, where the envelopes coincide with their sinks. A coherent Lallement
sum has a projection m: (4, Q) — (S, Q), an Q-homomorphism with restrictions
(4,, 2) = ({s}, Q). The subalgebras (4,, Q) of (4, Q) are also called the fibres of the
Lallement sum.

The significance of coherent Lallement sums resides in Theorem 624 of [RSZ].
The special version of the theorem formulated here has a simpler proof.

Theorem 3.6. Let (A, Q) be an Q-algebra having a homomorphism onto an
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Q-semilattice (S, Q) with corresponding fibres (A, Q), s€ S. Then (4, Q) is a co-
herent Lallement sum of (A,, Q) over (S, Q).

Proof. The proof is based on the following observation (cf. Lemma 1.10 in [R1]).
If (T, Q) is a sink in an Q-algebra (4, ), and 6 a congruence of (A, Q) preserving
(T, Q). then (4%, Q) is an envelope of (T, Q) iff 0 is a maximal congruence of (4, Q)
preserving (T, Q).

Now let P, = | {4, | t < s}. Obviously, P, is a subalgebra of (4, 2), and contains
(4,, ) as a sink. Let 0 be the set of congruences on (P, Q) preserving (4, 2). The
set 0 is nonempty, since it contains the equality relation. Each chain of congruences
0; (iel)in 0 is bounded above by the congruence U {0; | i eI}. By Zorn’s Lemma,
0 has a maximal element p = ,u(s). By the observation at the beginning of the proof,
(E,, @) = (P, Q) is an envelope of (4, Q). (Here and later, we identify the u-class
containing a, in A, with the element a,.) For all s <, tin S, and a; in A4, define

. . t
¢G50 A= E, asp—»a’s‘().

Obviously, each mapping ¢, ; is an injection. For each n-ary w in Q, with s; ... s,0 =
=s and qa; in 4, for i =1,...,n, one has a,d;, ... a,¢, ® = a} ... aho =
=ay...a,0" =a,...a,we A, It follows that the conditions (a) and (b) of Defini-
tion 3.5 are satisfied. Now for each s;...s,w = s <, t, one has a;¢, ;...
- Ay, OP o = a‘;(S) aﬁ(S)qus,t =dag... anwu(S)gbs,t =ay...a,0¢;, =
=a,..a,0"" =a{" ... a" % = a,¢, ,...a,p,, ., whence condition (c) of
Definition 3.5 holds as well. The conditions (d) and (3.9) are obviously satisfied.
In particular, (c) implies that the ¢, are homomorphisms. ®

The next example of a coherent Lallement sum is in a sense opposite to the Ptonka
sum of (A,. Q) over (S, Q), where the envelopes (E, Q) of (A4,, Q) coincide with
(A4, Q).

Example 3.7. Let (4, Q) be an Q-algebra with semilattice replica (S, ) and cor-
responding fibres (4,, Q). Additionally, for each s in S, suppose that the only con-
gruence on (P, Q) preserving (4, Q) is the equality relation. Then for each s in S,
the envelope (E,, Q) of (4, Q) is isomorphic to (P, Q). Obviously, (4, Q) cannot
be reconstructed as a Plonka sum of (4,, Q) over (S, Q). =

In the proof of Theorems 4.1 and 5.5 to be given in Section 4 and 5, a certain
additional condition on coherent Lallement sums is considered. This condition is:
(3.10) Vi <,s<,t, Yaed,, VbeA,

a¢r,s = b¢r’,s = a¢r,t = b¢r’,! .
The significance of condition (3.10) resides in the following

Proposition 3.8. If a coherent Lallement sum satisfies condition (3.10), then it is
a subalgebra of a Plonka sum of its envelopes.

Proof. A functor F:(S) — () will be defined. For s in S, the object sF is the
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envelope (E,, Q). For s <, t, a morphism (s — t) F: E; — E, is needed. Now by (d)
of Definition 3.5, each element x of Ej is of the form a¢, s for ain 4, with r <, s.
Define x(s — ) F to be a¢, . This is certainly an element of E,. The definition is
good, since if x = a¢, ; = b, ; for b in A,., with ' =< s, then a¢, , = b¢,. , by
condition (3.10). To see that (s — t) F is an Q-homomorphism, consider x; =
= ayPp 5o s Xy = U@y, s in Eg, Where ry, ..., 1y <. s. Then for an n-ary w in Q,

xi(s > 1) F...x,(s ) Fo = a1¢r,s--- 4y, @ =
=1 pyrper -+ an¢r,.,r1...r“ww¢r1...rnw,t =

= 41y prrnr - APrrsorio@Prsrro (s = 1) F =

= a,$y, 5 Ay, (s > 1) F = x; ... x,0(s > ) F,

the second and fourth equalities holding by (c) of Definition 3.5, while the third
holds by the definition of (s — ) F. Thus (s — ) F is indeed an Q-homomorphism.
Also x(s > s)F = a¢,, = x, so (s —s) F is the identity on sF. Now suppose
s<,t=<,uinS. Thenx(s » t)F(t > u)F = a¢, (t > u) F = a¢, , = x(s > u)F,
completing the verification that F: (S) — () is a functor. It remains to check that
the Lallement sum (4, Q) is a subalgebra of the Plonka sum by the functor F.
Consider elements a; = a,¢,,,,,...,a, = a,,, . of A. Then for an n-ary w in Q,
a, ...a,o in the Plonka sum is calculated as

ay(ry > ry...ro)F...a(r,>ry...r,0) Fo =

- al(nbrl N ST WO IR and)r,.,n...r,.a)w )

which by (3.9) is just a; ... @, in the Lallement sum. m

4. EMBEDDING OF ALGEBRAS IN ¥ o &/ INTO PLONKA SUMS

Let 7” be an irregular variety of Q-algebras of a fixed type. Let &¢ denote the
variety of Q-semilattices. By the considerations at the end of Section 2, it follows
that each Q-algebra (A4, Q)in ¥ o &¢ has a natural decomposition over its semilattice
replica, in which the fibres are members of the variety ¥". By Theorem 3.6, (4, Q)
may be reconstructed as a coherent Lallement sum of the fibres. This section charac-
terizes those Q-algebrasin ¥ o &£ that are subalgebras of Plonka sums of ¥ -algebras.
The class of subalgebras of Plonka sums of V-algebras is a subclass of the regularisa-
tion ¥~ of ¥". If ¥" is a strongly irregular variety, then the following three classes
coincide: (a) the regularisation ¥"~ of ¥7; (b) the class of Plonka sums of V-algebras;
and (c) the class of subalgebras of Plonka sums of ¥ -algebras. This is not true for
an arbitrary variety of Q-algebras. As was proved by Salii (see [S1] and [S2]),
if #" is an irregular variety of semigroups, then ¥"~ is the class (c) of subalgebras
of Plonka sums of ¥ -algebras, which does not necessarily coincide with the class (b)
of Plonka sums of ¥ -algebras. In [GKW], it was shown that in general the regularisa-
tion ¥°~ of an irregular variety ¥~ does not necessarily consist of subalgebras of
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Plonka sums of ¥ -algebras. An example was given of an algebra with one binary
and one unary operation in the regularisation ¥~ of the variety ¥~ defined by the
unique identity xy= x2, such that the algebra cannot be reconstructed as a sub-
algebra of a Plonka sum of ¥ -algebras.

In what follows we assume that ¥” is defined by a set of regular identities and the
identity X oy = x o z.

Theorem 4.1. Let (4, Q) be an Q-algebra in the class ¥ . Let (S, Q) be its
Q-semilattice replica, with corresponding fibres (A,, Q) (s € S) in the variety V.
Then (A, Q) is a subalgebra of a Plonka sum of ¥ -algebras if and only if (4, Q)
is a coherent Lallement sum of (A, Q) over (S, Q) by mappings ¢, that satisfy
the additional conditions:

(i) a, s = bo, = ad,, = bo, ,;

(“) ((1 ° b) ¢r+r s ((l ° a) ¢rs
forain A,, bin A4,., r,r',s,tinSwithr,r' <, s <, t.

Proof. (<) Note that the condition (i) is just (3.10). By Proposmon 3.8, (4, Q)
is a subalgebra of the Plonka sum of the envelopes (E,, Q) of (4, Q) over (S, Q).
Now for x = a¢,,, and y = bo, ; in E;, by Lemma 4.2 of [R2] and the condition
(ii), one has that Xoy = ad,s0bd, = (aoh)d,sp = (a0a)d,s=ad, 0
oad,, = x o x. It follows that all (E,, Q) belong to the variety ¥ .

(=) Let (4, Q) be a subalgebra of a Ptonka sum (TF, Q) of algebras tF (for ¢ in T)
in ¥ by a functor F:(T) — (Q). Obviously, (S, Q) is a subsemilattice of (T, ).
For each s in S, define

E,={a(r—>s)F|r,seS, r<,s, aed,}.

Let py,..., P, P,sbein Swithp=p, + ... + p, <, s.Fora;in4,,i=1,...,n,
and n-ary w in Q, a,(p; > s) F ... a(p, = s) Fo = ay(p; > p) F ... a,(p, > p) F®
(p—>s)F=ay...a,0(p—s)F is in E, whence E,is a subalgebra of (sF, Q).
Obviously, A, is a subalgebra of (E,, Q). Moreover A is a sink in (E,, Q). Indeed,
forain A, a,(p; = s)F ... a;_y(pi—y = s) Faa;1(pis1 = ) F ... a)(py ~ 5) Fo =
=day...a4;-40d;4, ... a,0is in A, and hence in 4.

Now let p(s) be the relation on P, = () {4, | r £ s} defined by

au(s)b if a(p—>s)F=0bg—-s)F

for p,q <, s,ain A,, bin A,. It is easy to check that y(s) is a congruence on (P, Q)
preserving (4, Q). Suppose A = p(s) is a congruence on (P, Q) preserving (A, ),
and a A b for ain A, bin A, and p,q <, s. Then since a Aa(p — s) F and
bAb(g—s)F, it follows that a(p — s) F = b(q = s) F, implying that A = u(s).
Therefore 2 = y(s), and u(s) is maximal preserving (4,, Q). It follows that (E;, )
is an envelope of (4, Q).

For r and s in S with r <, s, define ¢, : A, — E; by a¢, = a(r > s) F. It is
easy to see that the mappings ¢, satisfy all the conditions (a)—(d) of Definition 3.5.
Now for a in 4,, bin A, r,¥',s, tin S with r,r' <, s <, t, one has that a ¢, , =
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= b ¢, ; implies that
ad,,=a(r—1t)F=a(r—>s)F(s—>1t)F =b(r —s)F(s>1)F =
=b(r'>1)F=b¢,, and (acb)d, . =
=(aob)(r>s)F=a(r—>s)Fob(r—s)F=

a(r—>s)Foa(r > s)F =(aca)(r—s)F =

=(aca)d,,.

The second equality follows by Lemma 4.2 in [ R2]. Consequently, (4, 2) is a coherent
Lallement sum of (A4,, Q) over (S, Q) by mappings ¢,  satisfying (i) and (ii). m

It

Remark 4.2. In general, an Q-algebra (4, Q) in the variety V may be recon-
structed as a coherent Lallement sum of ¥ -algebras (4, Q) over its Q-semilattice
replica (S, Q) by means of many systems of homomorphisms ¢ ,. If, for each system,
any of the conditions (i) and (ii) of Theorem 4.1 is not satisfied, then (4, Q) cannot
be embedded into a Plonka sum of ¥ -algebras. Note that the condition (ii) is not
satisfied in the example given in [GKW].

Remark 4.3. Consider once more the variety {4;2 of groupo.ds defined in Example
3.2. The structure of groupoids in ?;2, and more generally, in the variety 4~ defined
by the identities (3.2)—(3.5), i.e. the regularisation of the variety % of groupoids
defined by the unique identity xy = xz, was described in [R2] by means of certain
special coherent Lallement sums. We give here an example of a groupoid in g;z
that is not a subalgebra of a Plonka sum of %; ,-groupoids. The free ?zz-groupoid
(F(2), *) on two generators x and y consists of elements x, x?, x*, y, y?, y*, xy,
(x»)?, yx, (yx)?, where x*> = x.x and x* = x*. x% (F(2), -) decomposes over its
semilattice replica into the classes {x, x?, x*}, {y, »%, y*}, and {xy, yx, (xy), (yx)*}.
It is easy to see that the set 4 = {x, x?, x*, xp, (xy)?} is a subalgebra of (F(2), +).

Let (B, *) be a groupoid with multiplication defined by the following table

| a a* b b2
| a* a* b b
2 2 2 b2 b2
b b* b* b* b2
b? b* b%> b* b?
It is easy to check that the mapping h: A — B defined by xh = a, x*h = x*h = a?,
(xy) b = b, (xy)> h = b* is a homomorphism. Hence the groupoid (B, *) is in the
variety 5 ,. The semilattice replica of (B, +) consists of two elements 0 and 1 with
0 <. 1, the corresponding fibres being B, = {a, a®} and B, = {b, b*}. Let ¢o;:
By, — E, be any Lallement homomorphism. The elements a ¢o,; and a? ¢o,, are
not in B,. Indeed, if a? ¢o,, Were in By, then

b=ab=adeb=ady,ady, =a*d,, =(a%a*) ¢y, =

= g’ 4)0,1 a2 ¢0,1 = b? 5
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a contradiction. If a ¢o,; Were in B,, then a? ¢, ; would also be in B,. Consequently,
neither a @o,; nor a® ¢ ; is in B,. Now a® ¢, , ¢ B, and (ab) ¢, , = ab = be B,.
It follows that the condition (ii) of Theorem 4.1 is not satisfied, and (B, +) cannot
be embedded into a Plonka sum of %5 ,-groupoids. H

Remark 4.4. More generally, if for each decomposiiion of an Q-algebra (4, Q)
into a coherent Lallement sum of ¥ -algebras (A,, Q) over the semilattice replica
(S, Q), one has (aca) @, ¢ A for some r,s in S with r <, s and a in A,, then
(aoa)¢, s+ ach = (aob)g,, for any b in A, It follows that (4, Q) cannot be
a subalgebra of Plonka sum of ¥ -algebras. In particular, the Q-algebras considered
in Example 3.7, as well as those of Examples 3.3 and 3.4, are not subalgebras of
Plonka sums of ¥ -algebras.

Remark 4.5. A Lallement sum is said to be strict if E; = A for each s in S. (See
[RS2].p.136.) If (A, Q) is a coherent strict Lallement sum of (4, Q) over (S, Q)
by ¢, then the condition (ii) of Theorem 4.1 is always satisfied, since in this case

(a © b) ¢r+r’,s = ad)r.s ob d)r',s =a (/)r,s od ¢r,s = (a © (I) ¢r,x .

The condition (i) guarantees that (4, Q) is a Plonka sum of (4,, Q). ®

Remark 4.6. Let (4, Q) satisfy the assumptions of Theorem 4.1, and let (4, Q)
be idempotent. Then the condition (ii) means that for i’ =s,a0b = (a o b) ¢, =
= (asa) ¢, = a ¢, If this holds, the envelope E, coincides with the algebra A,.
It follows that if (4, Q) is a subalgebra of a Plonka sum of ¥ -algebras (4, Q). then
(4, Q) is itself a Plonka sum of the (4,, Q). =

5. EMBEDDING COHERENT LALLEMENT SUMS OF CANCELLATIVE
MODES INTO PLONKA SUMS

In this section we consider Q-modes (A4, Q) of a fixed type belonging to the Mal'cev
product % o #¢ where € is the class of all cancellative Q-modes. Recall that an
Q-algebra (4, Q) is said to be cancellative[ RS, p. 149]if foreach n-ary win Q,a,.....qa,,
b,cin Aandeachi =1, ...,n,

(5.1) a;...a;_;ba;,,...q,o=a,...a;_,ca;s;...a,0
implies that =c.

Note that if ¥” is a variety contained in 4 o ¢ and ¢’ = ¢ n ¥, then €’ is a quasi-
variety, but in general not necessarily a variety.

In this section, it will be shown that each Q-mode in the class ¢ o &£ is a subalgebra
of a Plonka sum of $-modes. In particular, if ¥” is a variety contained in € - %7,
and the class ¥ of ¥ -algebras having no nontrivial semilattice homomorphic
image is contained in %”, then each ¥ -algebra is a subalgebra of a Plonka sum of
¢'-algebras. In [RS3] we have proved that each barycentric algebra is a subalgebra
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of a Plonka sum of convex sets. Convex sets are precisely the cancellative barycentric
algebras. In Section 6, we use results of this section to prove some structure theorems
of similar type for commutative binary modes.

Let (4, Q) be a mode in the class ¥ o &¢. Suppose given a homomorphism of (4,9
onto an Q-semilattice (S, Q) with corresponding fibres (4, Q) in % for s in S. Set
P, =J{4, | t <, s}. Suppose given a subtype o, a mapping ¢: Q2 — N with
wo < ot for each w in Q. Define a relation u = p(s, o) on P by:

(5.2) buc=Nwe Q, Va,,...,0u5—1> Gugt1s -+ o € Ag »
Ay oo Qg1 b Apgig one Qe® = A1 . Qg1 CApgiq - Qi -

Lemma 5.1. For each subtype o, the relation u(s, o) is the largest congruence
on (P, Q) preserving (4, Q).

Proof. It is obvious that u(s, a) is an equivalence relation.

Nowforj=1,...,m,lett; <, sand u; <, 5. Let b; € 4,, and c; € 4,,. Suppose
b;ncj, ie. for each n-ary w in Q, ay,...,a,in A, a; ... g1 b; posy --- 0, 0 =
= ay...045-1CjAue+q --- A,0. Then by the idempotent and entropic laws,

ay ... Ayo-i(by .o by ®) iy - ayo = (ay ... a,0') ...

i (Gpgmg e Aoga1 @) (by o b ®) (Ags g - Aogs1®) ..

c(ay...a,0)o =(a; ... 04p,-1 by Qygiy ... A,0) ...

vy o g 1byelpgiy - A,0) @ =

=(ay ... Gpo—y C1 Qg g e QD) ..

@y o 1€y - Q) @ =

=a; ...y i(Cy . Cor®') Bgiy .. A, .
It follows that x is a congruence on (P, Q). By the cancellativity of (4, Q), it is
immediate that u preserves (A, Q).

Let A be another congruence on (P, Q) preserving (4,, Q). Let b A ¢ for b in A,,
¢ in A, where t, u =<, s. Then for ay,...,a, in A; and n-ary o in Q,
.o Qugo1 by ...a,@Aag...au,-1¢a4,41 ... a,w. But since both these ele-
ments are in A, and A preserves (4, Q), it follows that a; ... dpe—1 b Guesy ...
e Uy ® = Ag ... 0py—1 CAyeysq --- a,00. Consequently b puc, and p is the largest
congruence on (P,. Q) preserving (4,, ). W

By Lemma 5.1, it follows that p = u(s) does not depend on the choice of the sub-
type ¢ in Definition (5.2).

Proposition 5.2. The mode (A, Q) is a coherent Lallement sum of (4, Q) over
(S, Q). For each s in S, (E;, Q) = (P, Q)"® is an envelope of (A, Q). The homo-
morphisms ¢, are given by

¢, A, > E;, ar>ra"®.

Proof. The proof is analogous to the proof of Theorem 3.6. The only difference
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is that for each s in S, one takes as a maximal congruence on (PS, Q) the congruence
defined by (5.2). =

Lemma 5.3. For each s in S, the envelope (E,, Q) of (A, Q) is cancellative.
Proof. Let ay,...,a, be in A, j=1,...,n, and let s;,t,u =, s, be A, and
ce A, Forn-ary win Q,let(ay ... a;—1bajsy ... a,@)" = (ay...a;_jcaj,; ... a,0),
i.e. for each m-ary o’ in Q,d,,...,d, in A;,and 1 < i < m,
dy...di_y(ay...a;_y baj,y...a0)dyy ... d,o =
=dy...di—(ay...a;_y¢cajyy...a0)d;yy...d,® .
By the idempotent and entropic laws,
dy...di_y(ay...a;-yxa;4y...a,0)d; ... d,0 =
=(dy...di—yaydipy ... duo) .. (dy ... di_ya;_ydiyy ... d0)
(dy...dicyxdipy...du)(dy...di_ja;41diyy ... d,o) ...
o(dy .. disyadiyy ... d,0) o,

where x = b or x = c¢. Moreover for kK =1,...,n and a; = x, each element
dy...di_ya,d;y,...d,o" belongs to A, Since (A, Q) is cancellative, it follows
that d, .. d;_ybd;y,...d,0 =d,...d;_ycd;y,...d,», whence b* = ¢*. Con-
sequently, (E,, ) is cancellative. ®

Lemma 5.4. Let s, t,u, v be in S and u,v <, t <. 5. Let e be in A, and f in A,.
If e =fu(t)’ then e"® =fu(s).

Proof. Letay, ..., a, bein 4,, by, ..., b,, in A, Let Q be n-ary and o’ m-ary in Q.

Let
Ay ...Oi1€Q;4q...0,0 =dy...0;—1fQ;4y...0,0.

Then by the idempotent and entropic laws,
by...bj_y(ay...a;-yxa;y...a,0) bjyq ... b0 =
=(by...bj_ya; bjyy...bu0")...(by...b;_ya;_1b;,y ... b,0)
(by...bjoyxbjy...b,@)(by...b;_1a;41b;4y ... b,0") ...

o(by...bj_ya, by ... b0) 0,

where x = e or x = f. Moreover for k = 1,...,n and a; = x, each element b, ...
..bj_ya,b;.y ... b,w belongs to A, Since (A4, Q) is cancellative, it follows that

by...bj_yeb;,y...b,0" =by...b;_yfbjy .. b0,
whence e'® = ¢ m
Now the main theorem of this section can be proved easily.
Theorem 5.5. Let (4, Q) be an Q-mode in the class € o S¢, with a homomorphism
onto an Q-semilattice (S, Q) with corresponding fibres (4, Q) in the class €. Then
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(A, Q) is a subalgebra of a Plonka sum of %-modes over the same Q-semilattice
(S, Q).

Proof. By Proposition 5.2, (4, Q) is a coherent Lallement sum of (A, Q) with
envelopes (E,, Q) = (P, Q) over (S, ) by mappings @, 4, = E,, ar>a". By
Lemma 5.3, these envelopes are cancellative. By Lemma 5.4, the condition (3.10)
is satisfied. Now Theorem 5.5 follows by Proposition 3.8. m

6. STRUCTURE THEOREMS FOR COMMUTATIVE BINARY MODES

In this section we use the previous resulis to describe the structure of commutative
binary modes (called commutative idempotent medial groupoids in [JK1], [JK2]).
algebras (A4, ) with a commutative, idempotent and entropic multiplication. Let €/
be the variety of all such modes. Each mode (4, ) in the variety ¢/ has a decompo-
sition into algebraically open submodes (4, +) over the semilattice (S, ) of principal
walls, its semilattice replica. By Theorem 3.6, (4, Q) is a coherent Lallement sum
of (4, Q) over (S, ). However, the full classification of algebraically open commuta-
tive binary modes is not known. (For some partial results, see [JK2].) By Proposition
2.5, the semilattice of principal walls of (A4, +) is isomorphic to the semilattice of
principal sinks, and the algebraically open fibres do not contain proper non-empty
sinks. By Proposition 1.4 in [JK2], each commutative binary mode not containing
a proper non-empty sink is cancellative. This leads to the followirg structure theorem
for commutative binary modes, an easy consequence of Theorem 5.5.

Theorem 6.1. Each commutative binary mode is a subalgebra of a Plonka sum
of cancellative commutative binary modes. R

Note that the class of cancellaiive binary modes is a quasivariety, but not a varicty.

For modes in non-trivial subvarietics of the variety $/.,, one can give a more
precise structure thecrem. Before formulating it, we recall some facts about the
lattice of subvarieties of 4. The lattice of varieties of commutative binary modes
was described in [JK3], and it was shown there that it decomposes into two disjoint
parts: an ‘“‘irregular’” one consisting of all irregular varieties, and a “‘regular” one
consisting of the variety ¢ of all comm utative binary modes and the regularisations
of all the irregular varietics. The regular part is a principal filter in the lattice of sub-
varieties of /.. generated by the variety of semilattices. If (4, +) is in an irregular
variety, then (4, -) has no epimorphism onto the two-element semilattice. By Propo-
sition 2.5 it follows that (A4, +) is algebraically open. Moreover, (4, *) has the structure
of a commutative quasigroup mode (as defined in [RS2, p. 93]). (Cf. [D], [RI],
[RS1].) The structure of commutative quasigroup medes is well known (see for
instance [JK1], [JK2], [RS2, 4.3]). They are cquivalent to unital Z[1]-mcdules.
By resuits of Jezek, Kepka [JK3], it is kncwn that each irrcgular variety ¥~ of com-
mutative binary modes is strongly irrcgular. This, together with Theorem 3.1, gives
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the following structure theorem for commutative binary modes in non-trivial sub-
varieties of €.

Theorem 6.2. Each commutative binary mode in a non-trivial subvariety ¥~
of €t is a Plonka sum of commutative quasigroup modes in the largest irregular
variety contained in ¥". H

Note that if (4, +) is in the variety %4, but not in any non-trivial subvariety
of @4, then the fibres of the decomposition over the semilattice replica of (4, *)
are not necessarily quasigroups. (Cf. [JK1].) However, as we will show in the final
structure theorem, such groupoids may be embedded into a Plonka sum of com-
mutative qusigroup modes. The proof is based on the followirg Theorem 6.3 due
to JeZek and Kepka [JK2, Thm 5.3.1, p. 54]. At first recall that a ncn-empty subset A
of a groupoid (B, ) is closed if ae A, be B and ab € 4 or ba € A imply that b € A.
Also A is densein (B, +)if (B, -)is the only closed subgroupoid of (B, *) containing A.

Theorem 6.3. Let (A, ) be entropic and cancellative. Then there is a homo-
morphism f: (A, -} = (Q, <) embedding A into an entropic quasigroup (Q, =, /., \).
The quasigroup Q has the following properties: ’

(i) A is dense in (Q, *);

(ii) if g:(4,+)—>(B,*) is a homomorphism into an entropic quasigroup
(B.*, 7, \), then there is a unique homomorphism h:(Q, ) — (B, *)
such that fh = g.

(iii) (4, *) and (Q, +) satisfy the same identities. ®

Theorem 6.4. Each commutative binary mode is a subalgebra of a Plonka sum
of commutative quasigroup modes.

Proof. Let (A, *) be a commutative binary mode, with fibres (4, ) over its
semilattice replica (S, *). By Theorems 5.5 and 6.1, (4. *) is a subalgebra of a Plonka
sum of cancellative commutative binary mcdes (E, ) over (S, *) by the functor
F:(S) - ({*]) defined in Proposition 3.8. Each (E,, *) is an envelope of (A4, *).
Now a new functor G:(S) — ({+}) will be defined. By Theorem 6.3, for each s in S
there is an embedding f: (E,. *) = (Q,, *) into a uniquely determined commutative
quasigreup mode (Q, *, ~, \) satisfying the conditions (i)—(iii). For each s in S.
the object sG is the quasigroup (Qy, ). Now if. for s <, 1, (s > 1) F: (E,. ) -
- (E,, *) £(Q, *), then by the condition (ii), there is a unique homomorpism
By (Qy ) = (O, *) such that fih,, = (s — 1) F. Define (s > 1) G: (Qy. *) = (0, *)
to be hy,. It is clear that (s — s) G is the identity on (Q,, *). Now let s <, 1 < u.
Then by Theorem 6.3, since fihg h, , = (s > u) F = fh,,, it follows that hy h,, =
= h, . completing the verification that G:(S)— ({-}) is a functor. It remains to
cheek that the Lallement sum (4, *) is a subalgebra of the Plonka sum by the
functor G. Consider clements a; = aPs, 5, ---» 4 = A,y 5, of A. Then for an n-ary
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in 2, a, ... a,win the Plonka sum is calculated as

ay(sy = sy ... 5,0) G ... a,s, > 51 ...50) Go =

= a1¢S1,sx...s,.a) cee an¢sn,s1...snww

which by (3.9) is just a, ... a,w in the Lallement sum.
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