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SPANNING TREES OF INFINITE GRAPHS 

NoRBERT PoLAT, Lyon 

(Received October 31, 1989) 

INTRODUCTION 

In [13] Zelinka conjectured that if G is a connected infinite locallyfinite graph, 
and T an end of G then: 

Conjecture 1. If m(r) is the maximum number of pairwise disjoint rays in x, 
then,for any cardinal k with 1 ^ k ^ га(т), there is a spanning tree of G having 
exactly k ends included in т0. 

Con]ecture2.Anyspanning tree Tof G contains a ray which belongs to the endx. 

He proved Conjecture 2 in the case where т isafree end,i.e.Tcan beseparated from 
any other end by a finite set of vertices; and Conjecture 1 in the case where т is also 
free with m(i) finite. Actually Zelinka used the concept of degree of an end т rather 
than that of га(т), but it turns out that these two notions coincide when the graph 
is locally finite. 

In this paper we prove these conjectures, and even improve the first by replacing the 
local finiteness of G by the assumption that G has a coterminal spanning tree, i.e. 
a spanning tree having exactly one end included in each end of G; this condition is 
always satisfied by locally finite graphs. We recall different partial results about the 
existence of coterminal spanning trees, a problem which is still far to be entirely 
solved, and we give a new one by showing that: a connected graph having exactly 
one end has a coterminal spanning tree if the set of vertices, which cannot be 
separatedfrom this end by a countable set of vertices, is countable. For infinitely 
connected graphs, this condition turns out to be equivalent to a recent one given 
by Seymour and Thomas [12]. Finally we characterize some classes of connected 
infinite graphs such that if G is one of them and if, for every end т of G, fc(t) is a fixed 
cardinal ^ m(t), then there is a spanning tree of G having, for any end т, exactly fc(i) 
disjoint rays belonging to т. 

To prove these results we almost essentially use the concepts and results of [11]. 
So the terminology and notation will be for the most part that used in that paper. 
Besides, since most ofthe results of the different papers [6] to [10] are recapitulated 
in [11], we will, for simplicity, only refer to [11] when possible. 
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1. PRELIMINARIES 

1.1. Each ordinal a is defined as the set of ordinals less than a. If X is а set we 
denote by \X\ its cardinality and, for a cardinal n, by [X]" (resp. [X] < w , [X]-")the 
set ofits subsets ofcardinality n (resp. <n, ^n). 

1.2. A graph G is a set V(G) (vertex set) together with a set E(G) c [F(G)]2 

(edge sei). For x є V(G) the set V(x; G) : = {j; є V(G): {x, у} є E(G)} is the neřofA-
borhood of x, and its cardinality is the degree of x. A graph is locallyfinite if all its 
vertices have finite degrees. Я is a subgraph of G if F (# ) and E(H) are subsets of 
F(G) and £(G), respectively. Я is an induced subgraph if Я is a subgraph suchthat 
£ ( # ) = [V(H)]2 n E(G). For A Я V(G) we denote by G - Л the subgtaph of G 
induced by V(G) — A; and if Я is a subgraph of G, then we set G — Я := G — 
- V(H). For Б ç E(G) we denote by G \ B the smallest subgraph of G with 
E(G\B) = E(G) — J5. The ишои of a family (G t) /e / of graphsis the graph (J i6/ Gf 

given by V(UiejGi) = UieiV^i) a o d 4Ui6 /G, ) = Ute/^(G,). The intersection 
is defined similarly. If Я is a subgraph of G, and X a subgraph of G — Я, the bound
ary of Я with X is the set ЦН, X) := {x є 7(Я): F(x; G) n 7(X) + 0}. The set 
of components of G is denoted by £G , and if x is a vertex, then £G(x) is the com
ponent of G containing x. A par/î W:= <x0, . . . ,xn> is a graph with V(W) = 
= {x0, . . . ,x ,J , Xi ф Xj if i 4=j, and £(Ж) = {{xhxi+1}: 0 ^ / < n). A гяу or 
one-way infinite path R := <x 0 ,x 1 ? . . .> is defined similarly. A path <x0 , . . . ,xn> 
is called an x0xn-path. For A, B ç V(G), an AB-path of G is an xy-path of G whose 
only vertices in A u B are x et y, with x є Л and у є Б. 

1.3. The ends of a graph G (this concept was introduced by Freudenthal [ l ] and 
independently by Halin [2]) are the classes of the equivalence relation ~ G defined 
on the set of all rays of G by: R ~ G R' if and only if there is a ray R'' whose inter
sections with R and R' are infinite; or equivalently ifand only if£G_s(jR) = £G_S(K') 
for any S e [^(G)]<C0 (where 0tG_s(#) denotes the component of G — S containing 
a subray of jR). We will denote by [ # ] G the class of a ray R of G modulo ~ G , by 
&G_s([jR]G) the component £G_S(.R), and by X(G) the set of all ends of G. Notice 
that if G is a tree, then two rays of G are equivalent modulo ~ G if and only ifthey 
have a common subray; hence two disjoint rays of a tree correspond to different 
ends of this tree. 

A subgraph Я of G is terminallyfaithful (resp. terminallyfull, cotermina1) ifthe 
map sHG: £(Я) ^ £(G) given by eHG([£]H) = [Ř]G for every ray R of Я, is injective 
(resp. surjective, bijective). We denote by *Xn(G) the image of eHG, i.e. the set of 
ends of G having rays of Я as elements. 

1.4. An infinite subset S of V(G) is concentrated in G if it has the following equi
valent properties [11, Theorem 1.4]: 
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(i) there is an end т such that S - V(&G„F(r)) is finite for any Fe [7 (G) ] < f t ) 

(S is said to be "concentrated in т"); 
(ii) for all infinite subsets T and U of S there is an infinite family of pairwise 

disjoint TL^-paths in G. 

1.5. A set 5 ofvertices of G is dispersed ifit has the following equivalent properties 
[11, 2.5]: 

(i) for every T є X(G) there is an F є [V(G)]<C0 such that S n V(&G„F(x)) = 0; 
(ii) S has no concentrated subset. 

1.6. For Q £ 2(G) let m(i2) := sup {|SR|: 9t is a set of pairwise disjoin ele
ments of U^} - If & — {T}> w e write т(т) for m({r)), and we call itthe multiplicity 
of т. By [10, 11.5] the supremum is attained, i.e. there is a set of pairwise disjoint 
rays in U ^ of cardinality m(i2). This was already proved by Halin [3, Satz 1] and 
[4, Satz 1] when Q = X(G) and | 0 | = 1, respectively. 

For a subgraph H and an end т of G, we will set т я ( т ) := т(є я с- і (т)) . By the 
remark in 1.3 about ends of trees, notice that if H is a tree, then ган(т) ^ |%G-i(T)|> 
with the equality in particular if mH(t) is finite. 

In [13] Zelinka defined the degree of an end т of a locally finite graph G as follows. 
For a non-empty finite subset A of 7(G), let c(A, т) := min {|S|: S є [V(G) - A]<(0 

a n d ^ n 7 ( £ G _ s ( t ) ) = 9].ThenthQdegreeofTisd(x):= sup{c(^,T):^e[7(G)]< C 0}. 

A particular case of the Mengerian theorem [11, Theorem 1.9] states that: For 
any non-empty subset A of V(G) and any end x of G, c(A, т) is equal to the maximum 
number ofraysin x originating in A and having at most their endpoints in common. 
With this result we easily see tha t , /o r a locallyfinite graph, the multiplicity and 
the degree of an end coincide. 

1.7. A vertex x is a neighbor of an end т if x e 7(^G_ s(t)) for any S є ^V(G) — 
— {*}]<û>. We denote by 7T the neighborhood of т. The cardinal u(r) := |7T| is 
called the valency of x. 

1.8. A multi-ending of a graph G is an inducted subgraph M of G satisfying: 

M l . M is connected; 

M2. the boundary of M with every component of G — M is finite; 

M3. any infinite subset of V{M) which is concentrated in G is also concentrated 

in M; 

M4. M contains a ray; 

M5. ViRlM = ViRlG for any ray R of M; 

M6. for any family (RÌ)ieI ofpairwise disjoint rays of G such that {[KjG : '' є ^} ^ 
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£ 2jwr(G), there is a family (R\)iel of pairwise disjoint rays of M such that Rt n R-
is infinite for every i e I. 

A multi-ending M is an endm# if |2(M)| = 1; it is a discrete multi-ending if each 
end г ofMisfree, i.e. there is a finite subset S of 7(M) such that £ с_5(т) Ф £ G _ s (ť) 
for any end ť ф T of M. By M3 a multi-ending is terminally faithful; and by M6 
m([fi]M) = m([#]G) fro any ray R of M. 

By [11, Theorem 2.1] for every end т o/ G č/геге is аи ending M of G such that 
%>M(G) = {т}. By [8, 1.4.2] for every discrete multi-ending M of G, there is a dis
persed set S of G such that ŒG_s(t) Ф Q,G-s(T')for distinct т, т' є XM(G). 

1.9. Let G be a connected graph having no subdivision of the dyadic tree (3-
regular infinite tree) as a terminally faithful subgraph. By [11, Theorem 2.6] there 
is a sequence (Gn)n^0 of multi-endings of G, called a terminal expansion of G, 
satisfying the following conditions: for every n ^ 0, 

E l . G„ is an induced subgraph of Gn+i', 

E2. any component of Gn — Gn„t (with the convention G_ t := 0) is a discrete 
multi-ending of G — Gn^x; 

E3. G = U,^o G„ and 2(G) = U ^ o 2Gn(G). 

2. SPANNING TREES 

2.1 Theorem. Any spanning tree of a connected infinite locallyfinite graph is 
terminallyfull. 

Proof. Let G be a connected infinite locally finite graph and T a spanning tree 
of G. Let T be an end of G. We have to prove that Te2 r(G), i.e. that T contains a ray 
R є т. By 1.8 there is an ending M of G such that XM(G) = {r]. Let T' be the smallest 
subtree ofTcontaining Tn M. Since M is infinite, T' is then an infinite locally finite 
tree. Thus it contains a ray R. For any component X of G — M, R n X is finite 
by the definition of T'\ hence &G-B(R) + X where B := 93(M,X); notice that Б 
is finite by 1.7.M2. Therefore [R]G є 2M(G) - {r}. D 

This result generalizes Lemma 1 of [13], and thus proves Conjecture 2 of this 
same paper. 

2.2 Lemma. [8, 3.1]. Let G be a connected graph, Ta spanning tree of G, T0 any 
tree of G, and a a vertex of T0. Then 

TL : = T0 u ( 7 4 {{x, у} є E(T): y e V(T0) and x g e y)) 

where Sa '5 tne natural partial order on V(G) induced by T in which a is the 
least element, is a spanning tree of G. 

2.3. Lemma. Let T be a spanning tree of a connected infinite graph G. Let r0 
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be an end of G, and k a cardinal such that гаг(т0) <̂  k S fw(r0). Then G has a span
ning tree T0 such that тТо(т0) = k and mTJr) = mT{x)for every end т ф т0. 

Proof. We can suppose that k > т г ( т 0 ) , otherwise Twould have the required 
properties. For simplication we will still denote by k the function which maps every 
end to a cardinal such that к(т0) = k and к(т) = т г ( т ) if т ф т0. 

Let ЦЛ be a set of pairwise disjoint rays in т0 such that шТ и и^(т0) = к(т0). This is 
possible since к(т0) S иі(т0) and since, by 1.6, the supremum m(x0) is attained. 
And let 9ť be a set ofcardinality к(т0) ofpairwise disjoint rays of T u U$H belonging 
to the end т0. Denote by T' a tree of G containing LW> and which is minimal with 
respect to inclusion. By the minimality of T', any ray of T0 belongs to т0 since all 
element of 9l' belong to т0, and furthermore T' - U*R' is finite if S 0 i s 4To)- Hence, 
in both cases, т г . (т 0 ) = к(т0). Besides т Г и 2 - (т 0 ) = к(т0). Indeed, this is obvious 
if к(т0) is infinite, and when it is finite this is a consequence of the fact that 
mTuuiR'(To) = fe(To) a n d t n a t T ' " UW i s finite. On the other hand, for any end 
T ф т0 of G, шГиТ.(т) = k(t) = 1 since, for any ray Я of T u T' which belongs 
to і, there is a finite set S ofvertices such that £G_s(9ť) = £G-s(T) Ф &G-s(To)> hence 
&G-s(9*)n T' is finite by the minimality of T'; this proves that R has a subray 
in T — T', hence that тГиТ<(т) = шг(т). 

Then, by Lemma 2, for a є F(T') the tree 

T0:=T'v(T\{{x,y}eE(T):yeV(T') and x ^ a y } ) 

is a spanning tree of G such that тГо(т) = к(т) for any end т of G, since k(r) = 
= mT.{x) S тто(т) = т Г и Г ( т ) = к(т). ConsequentlyT0hastherequiredproperties. 

D 
We get immediately: 

2.4. Theorem. Let G be a connected infinite graph having a coterminal spanning 
tree. Let т0 be an end of G, and k a cardinal such that 1 ^ k ^ w(r0). Then G 
has a spanning tree Tsuch that шг(т0) = k and mT{x) = 1 /o r e^ery e«d т ф т0. 

2.5. Remarks. The problem of determing which infinite connected graphs have 
a coterminal spanning tree is still unsolved. Recently Seymour and Thomas [12] 
proved that there is a one-ended connected graph without coterminal spanning tree; 
morepreciselytheyshowedthat: There is an infinitely connected graph G of car
dinality œ1 such that every spanning tree contains a subdivision of the co^regular 
tree as a subtree. We recall the following partial results: 

A connected infinite graph G has a coterminal spanning tree if: (i) G is countable 
(Halin [2, Satz 3]); (ii) G contains no subdivided infinite complete graph as a sub
graph (Halin [5, Theorem 10.l]); (iii) G is infinitely connected and contains no 
subdivision ofthe œ^regular tree as a subgraph (Seymour and Thomas[ l2 , (1.7)]); 
(iv) G is one-ended and its end has countable multiplicity or valency (Polat [11, 
Theorem 2.11]). 

See [11, Section 2.10] for some extensions ofthis last result. Any connected infinite 

56 



locally finite graph has a fortiori a coterminal spanning tree. Hence 2.4 proves and 
even improves Conjecture 1 of [13]. We will give another condition for the existence 
of a coterminal spanning tree in a one-ended graph which will generalize the above 
mentioned two. First we recall three results. 

2.6. [11, Theorem 2A0]Let G be a one-ended connected graph, and let т be its 
only end. Then G has a rayless spanning tree if and only if ѵ(т) Ф 0 and G has 
a coterminal spanning tree. 

2.7 [11, Corollaries 2.1 and 2.2] / / rn(X(G)) is countable, and if the neighborhood 
ofevery end is not empty, then G has a rayless spanning tree. 

2.8 [10, Theoreme 12.3] Let G be a connected graph, and let Q Ç %(G) be such 
that 777(O) g; xfor some regular uncountable cardinal x. Then the set 

Ѵ£> := {x e F(G): GG_s(x) contains a ray belonging to ^)Q 

forany Se[V(G-x)]<K} 

is non-empty. Besides, on the one hand either \V£\ ^ x or the set Г of components 
ofG — Fß containing an elementof ^)Q is of cardinality ^ x; and on the other 
hand w({[Ä]x: Я is a ray ofX belonging to ^JQ]) < xfor every X є Г. 

2.9. Theorem. Let G be a one-ended connected graph with £(G) = {т}. / / Fr
Wl is 

countable, then G has a coterminal spanning tree. 
Proof . This is a consequence of 2.6 if m(r) ^ 00. Suppose m(r) > co. V?1 is 

countably infinite. Indeed, suppose that V™1 is finite, then, since G is one-ended, 
there is just one component of G — V?1 containing a ray, but this is a contradiction 
with 2.8. 

(a) First we show that V?1 is contained in a ray of G. Let V™1 = {xn: n < co}. 
We define by induction a sequence (Wn)n<(0 of finite paths of G such that xn e V(W„) 
and Wn Ç Wn+1. Let W0 := <x0>, and n ^ 0. Suppose that Wn = (y0, ...,y*> 
is defined such that y0 = x0, yk = xt for some i g n, and xn = yj for some 
j S k. If xn + l e V(W„), then Wn + 1 := W„. Assume xn+1 ф V(W„). The verticesjfc and 
xn+1 belong to the same component of G — (Wn — yk), since Wn is finite and 
yk, xn + l є V™1. Thus there is a (yk, x„+1)-path P having only yk in common with Wn. 
Then define Wn + 1 : = Wn u P. Finally, Un<o, Wn is a ray which contains Ft

Wl. 
(b) Let X be a component of G - W. By 2.8, m(%(X)) ^ co. Let a ф V(G), and let 

X+ : = X u U {<tf, v, x): (v, x) e V{W) x V(X) and {v, x} i= E(G)} . 

If X(X) = 0, then denote by Tx any spanning tree o fX + . Suppose %(X) Ф 0. Then 
m(%(X*)) is countable, and a is a neighbor of every end of X + . Hence, by 2.7, 
X+ has a rayless tree Tx. 

Thus clearly T:= Wu (J {Tx — a : I e ^ _ ^ j is a spanning tree of G which is 
also coterminal since any ray ofThas a subray in W. • 
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This condition of existence of a coterminal spanning tree is stictly weaker than 
condition 2.5 (iv), since if m(t) or v{x) are countable then so is V*1, but the converse 
is false in general. Furthermore, Theorem 2.9 with next result show that condition 
2.5 (iii) given by Seymour and Thomas for infinitely connected graphs only, also 
holds if this restriction is replaced by the weaker one of one-ended graphs. 

2.10. Proposition. Let G be a one-ended graph, with 2(G) = {т}. Then V™1 is 
countable if and only if G has no subdivision of the m^regular tree Tœi as a sub
graph. 

We need the following lemma. 

2.11. Lemma. Let G be a one-ended graph, with X(G) = {т}, and V™1 Ф 0. 
Then (V&G_s(x)) n ( C 1 - {x}) Ф 0 for any x e V?\ and any S є [V(G - x)]=w. 

Proof. Let X := ÇLG_s(x). Suppose that m(%(X)) is countable. Let A be a set of 
pairwise disjoint rays of X, which is maximal with respect to inclusion, and such 
that x ф A := V^J A). Then &G-(suA)(x) *s rayless, with S u A countable; a contra
diction with x e V?\ Hence m{%(X)) is uncountable, thus V%(X) * 0 by 2.8, and 
this proves the result since V%[X) £ V?\ П 

2.12. Proof of Proposition 2.10. 

(a) If G has a subdivision T of TCOl as a subgraph, then every vertex of T whose 
degree in Tis > 2, hence equal to col, clearly belongs to V™1. Therefore V?1 is un
countable. 

(b) Assume now that V?1 is uncountable.We define by induction the sequence 
(Ta)0L<(Ol of countable trees of G, such that Ta is a subtree of Tß if a < ß, and the 
sequence (xa)a<COl of pairwise distinct elements of V™1 such that xß є V(Ta) if and only 
if ß < 2а (ordinal exponentiation). Let x0 be any element of V?\ and T0 := <x0>, 
and let oe < œt. Assume that Tß and xY are defined for every ß < a and y < 2ß. 

If a is а limit ordinal, then Ta : = U^<a Tß. Suppose that a = ß + 1. We define by 
induction on y, with —1 ^ y < a, the countable tree Ay and the vertex xa+ye 
є V(Ay)r\ V™\ Let Л-1 := Tß and ха_х = xß. Let y be an ordinal <a . Suppose 
that Aa and xa+5 are defined for all S, — 1 ^ ô < y. By the hypothesis xY is a vertex 
ofA<y := U$<y4$- Since Л < у is countable, there is, by Lemma 2.11, an element y 
of V™1 distinct from xy and belonging to the component of G — (A<y — xy) containing 
xr Denote by Wan Хуу-paXh of this component, and define xa+y := y and Ay : = 
:=A<yu W. Finally let Tx:= Ѵ-1йу<лАу. 

Then, by the construction, the tree T : = Ue<o>i Ta is а subdivision ofthe a^-regular 
tree; the vertices xa being the vertices ofTof degree coi. П 

We conclude this paper with a result which partially extends Theorem 2.4. 

2.13. Theorem. Let G be a connected infinite graph having no subdivision of the 
dyadic tree as a terminally faithful subgraph, and such that each of its endings 
has a coterminal spanning tree.Let k be afunction which maps every end т of G 
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to a cardinal к(т) ^ т(т) with к(т) > 0 if и(т) = 0. Then G has a spanning tree T 
such that т г ( т ) = k(x)for every end % ofG. 

Proof, (a) Suppose that all ends of G are free. By 1.8 there is a dispersed set S of G 
such that Є0_5(т) Ф Є0__5(т') if т ф ť . Since S is dispersed, for every end т, there 
is a finite set v4T of vertices of G such that 5 n 7(С£е_Лт(т)) = 0. The set S' := S u 
u UrfcX(G) ^т is obviously dispersed. Then, by the connectivity of G, there is a tree Ts 

of G containing S' and every rayless component of G — S', and such that Ts n 
n &G„Afr) is finite for every end т. F(TS) is then dispersed, and the boundary ofT s 

with every component of G — Ts is finite. Let X be such a component, and Bx : = 
: = 33(T<j, X). Then the subgraph Mx of G induced by V(X) u B z is an ending of G. 
Let xx be its only end. By the axioms M5 and M6 of multi-endings, тх and the corre
sponding end of G have the same multiplicity and the same valency. Thus, for 
simplicity, we will still denote by тх this end of G. By the hypothesis Mx has a coter-
minal spanning tree. Thus, by 2.6 if к(тх) = 0, and by 2.4 if к(тх) > 0? Mx has 
a spanning tree Tx such that тТх(тх) = KTx)- Now denote by Ex a subset of the 
set of of edges of Tx which are incident with both Bx and V(X), so that, for each 
component C of Tx — Bx, there is exactly one edge in Ex which is incident with C. 
And let Fx be the spanning forest of Mx whose set of edges is E(TX — Bx) u Ex, 
Then clearly 

Г : = Г 5 и и { ^ : І е Ѵ г 5 } 
is a spanning tree of G such that m r(i) = fc(r) for every end т of G. 

(b) Suppose now that some end of G is not free, and let (Gn)n^0 be a terminal 
expansion of G (see 1.9). By 1.9 E2, each component X of Gn — G„_1 (G_! := 0) 
is a discrete multi-ending of G — G,,_!. As in (a) denote by Bx the boundary of G,,_j 
with X. This is a finite set, thus the subgraph Mx of G induced by F(X) u Bx is 
a discrete multi-ending of G. Then all ends of Mx are free and have, by the axioms 
of multi-endigs, the same valencies and the same multiplicities as the corresponding 
end of G. Thus, by (a), Mx has a spanning tree Tx such that wT x(t) = fe(r) for every 
end і є £Mx(G). Finally denote by Ex a subset of the set of edges of Tx which are 
incident with both Bx and V^X), so that, for each component C of Tx — Bx, there is 
exactly one edge in Ex which is incident with C. And let Fx be the spanning forest 
of Mx whose set of edges is E(TX — Bx) u Ex. Then clearly 

T : = ^ u U { F , : l 6 ^ . J 

is a spanning tree of G such that т г (т ) = fc(r) for every end т of G. • 
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