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SEQUENTIAL CHARACTERIZATIONS OF METRIZABILITY 

JAN PocHciAL, Katowice 

(Received June 15, 1988) 

0. Many classical theorems concerning metrizability of topological spaces are 
well known (see e.g. [7], [12]). Different generalizations of metric spaces have been 
considered (see e.g. [8]). Presently, some general approaches to the problem of 
metrizability have been studied (cf. [9], [5]). 

In this paper, a new approach to this subject is presented (cf. [18], [17]). This 
approach is based on the theory of sequential convergence understood as a subset 
of XN x X, where X is an arbitrary set. Apart from natural conditions F, U, 5, H 
that are usually assumed, and an operation G ^ G* which assigns to any convergence 
G the smallest convergence containing G and satisfying the Urysohn condition, a few 
conditions ofdiagonal type are introduced. Using these simple notions and conditions 
it is possible to give characterizations of convergences generated by real functions 
(Proposition 1) and functions having some additional properties like triangle con
dition (Proposition 2) and symmetry (Proposition 4). This leads to a characterization 
of metrizable convergences (Theorem 1) and topologies (Theorem 2) as well as to 
a characterization of metrizable topologies for paracompact spaces (Theorem 3). 
In this way characterizations of some generalized metric spaces like quasi-metrizable 
(Proposition 3), symmetrizable and semimetrizable (Proposition 5), and y-spaces 
(Proposition 6) are also obtained. 

Proofs of sufficiency of a few metrization theorems like those of Alexandroff-
Urysohn, Nagata-Smirnov and Moore are shown as examples of applications. 

The paper develops some ideas of [18]; Propositions 1,2 and Theorem 1 are 
generalizations of Theorems 1 —3 presented there. The proofs presented in the paper 
are elementary; they are based only on sequential methods. 

1. Let X be an arbitrary set and G a convergence on X, i.e. G <z XN x X, where N 
is the set of all positive integers. If <(x„), x> є G, then we say that the sequence (x„) 
is convergent to x in G and write xn ^ x(G) or simply xn -^ x. In the case of two 
or more indices, we write e.g. xmn ^" x to emphasize which ofthem tends to infinity. 

The following conditions are considered in literature (see e.g. [10] and [16]; 
in [16] these conditions appear as (Lj), where i = 0, 1, 2, 3). 
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F. Tf xn -^ x, then xPn ~> x for each subsequence (xPn) of (x„). 
U. If each subsequence of (x„) contains a subsequence (xin) such that x^ ^ x, 

then x„ ^ x. 
S. If xn = x for n — 1, 2, . . . , then xn ^ x. 
H. If xn ~» x and x„ ^ y, then x = j . 
Given a convergence G, we define a convergence G* «n the following way: 

xn ^> x(G*) if each subsequence of (x„) contains a subsequence (x^) such that 

Xqn ^ x(G). 

This operation is close to the notion ofa base ofconvergence defined by M. Dolcher 
in [6] (see also [14]). Namely, if G* = G and Bx is the family of all sequences con
vergent to x in G0, then Bx is a base of G at x. Conversely, if Bx is a base of G at x 
and G0 is defined as follows: xn ~» x(G0) if (x„) is a subsequence of some sequence 
belonging to Bx, then G* = G. 

Remark 1. If a convergence G satisfies condition F, then G* is the smallest con
vergence containing G and satisfying the Llrysohn condition U. Moreover, G satisfies 
conditions S and H iff G* does. 

We shall say that a convergence G is generated by a real function/: X x X -* R if 

x w ^ x ( G ) iff / ( x , x , , ) ^ 0 , 

where the convergence on the right is the usual convergence of a sequence of real 
numbers. 

Remark 2. For any function/the convergence Gf generated by/satisfies conditions 
F and U. Moreover,/(x, x) = 0 iff Gf satisfies condition S. If Gf satisfies conditions 
S and H, then / (x , y) = 0 iff x = y. 

In the sequel, we shall assume that all convergences satisfy condition S and all 
functions generating convergences are non-negative. 

We shall follow [7] and [8] in using topological notions and notation. 

2. The following diagonal condition has been introduced in [18]: 

Di . If xmn ^n x for m = 1, 2 , . . . , then xnn ^> x. 

Additionally, consider the following weaker condition 

Di . If xmn ^n x for m = 1, 2 , . . . , then there is an increasing sequence (pn) of 
positive integers such that xPntPn ^ x. 

Suppose that X is a first-countable topological space and {Un(x): Un+1(x) cz U„(x) 
for n = 1, 2, . . .} is a base of neighborhoods at x є X. Define the convergence G0: 

xn ^ x(G0) if x„ є Vn(x) for n = 1, 2, . . . . 

Note that G0 fulfils conditions F, Dx (and so Di) , and G* is the convergence 
generated by the topology ofX. 
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On the other hand, one can easily construct an example of a convergence G 
satisfying conditions F, U,S,H, and thus generated by a topology (cf. [13], see 
also [l0]), such that an arbitrary topology that generates G is not first-countable, 
although G = G* for some convergence G0 satisfying conditions F and D ^ 

The following simple example explains the difference between conditions T>[ 
and DA. 

Let X = N u {x0] and let & be a family of (increasing) subsequences of natural 
numbers with the following properties: two elements of & have no common sub
sequence, each sequence of natural numbers has a common subsequence with an 
element of J*. (In the most essential case, when & is infinite, the existence of such 
a family follows from Kuratowski-Zorn Lemma.) 

Define a convergence G0 on X: 

xn ^ x(G0) if xn = x for each n = 1, 2 , . . . and x ф x0 , 

xn ^ x0(G0) if xn = x0 for each n — 1, 2, ... or (xn) 

is a subsequence of an element of & . 

One can easily check that the convergence G0 satisfies Di but does not satisfy D ^ 
Condition Di for a convergence G0 is equivalent to the following one: there is 

a family of subsets {Vn(x); n = 1, 2, ... x є X] such that (for each n e N and x є X) 
x e Vn(x), Vn+1(x) cz Ки(х) and 

xn ^ x(G0) iff л';і є Vn(x) for each n є iV . 

This implies somerelationstotheideas presented in [9] and [5],wherecertainfamilies 
of sets have been considered. In particular, it is easy to show that in the caseof 
a topological space X a family {F,,(x); n = 1, 2, . . . x є X) inducing the convergence 
in X is a network but, in general, it need not be a neighbornet (cf. [8], [9]). 

Proposition 1. A convergence G is generated by afunction iffthere is a convergence 
G0 satisfying conditions F and D't such that G* = G. 

Proof. Let (c„) be a sequence ofreal numbers such that 

(1) cn+1 ^ cn S 1 for n = 1, 2, ... and cn ^> 0 . 

If G is generated by a function/, then the convergence G0 defined by 

(2) xn ^> x(Go) if f(x, xn) ^ cn for n = 1, 2, . . . 

satisfies conditions F and D1? and G* = G for any sequence (cn) satisfying condition 
(i)-

Now, assume that G0 satisfies conditions F and Di , and G* = G. Let {(x*): k є Л} 
be the family of all sequences convergent to x in G0. Let (c„) satisfy condition (l) . 

Define a function/: X x X ^ R in the following way: 
/x w ч _ Jinf {cn: n = 1, 2, . . .} if y = x^ for some A є Л and « є N , 
i ; /H '> 7 ; - | | otherwise . 
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Let xn -+ x(Gf) iff f(x, xn) ^ 0. 
It is easy to check that Gf = G* (cf. [18], Theorem 1). 
A funct ion/ is said to satisfy the triangle inequality if 

(A) f(x,y)uf(x,z)+f(z,y). 

If, moreover, / ( x , y) — 0 if x = y, then the function f is called quasi-metric 
(see e.g. [8] p. 488). 

We introduce the following diagonal condition: 

D 2 . There is an increasing sequence (pn) of positive integers such that if xmn ^ " xm 

for m = 1, 2 , . . . and xm ~* x, then xPn^Pn ~> x. 

Proposition 2. A convergence G is generated by a function satisfying (A) iff 
there is a convergence G0 satisfying conditions F and D 2 such that G* = G. 77ze 
convergence G is quasi-metrizable (generated by a quasi-metric) Zĵ Go additionally 
satisfies condition H. 

Proof. If a convergence G is generated by a function/ satisfying condition (A), 
then putting cn = 1/2" for n = 1,2, . . . in formula (2) we get a convergence G0 

satisfying condition D 2 with pn = и + 1 (n = 1, 2, . . . ) . In fac t / (x„ + 1 , xn+lf„ + 1) S 
^ l/2" + 1 a n d / ( x , x „ + 1 ) й 1/2W+1 imply, by ( Д ) , / ( х , х я + 1 і Я + 1 ) ^ 1/2", which, by 
formula (2), is equivalent to xn+ifn+1 ^ x[G0). 

Now, suppose that a convergence G0 satisfies conditions F and D 2 , and let (p„) 
be a sequence ofpositive integers that appears in D 2 . Then G0 satisfies conditions F 
and Di , whence the convergence G = G* is generated by a function, in view of 
Proposition 1. 

Define the following sequences: 

(4) 4n,i = Pn (n = l , 2 , . . . ) , 

4«,» = JP^,,_! 0 = 2 , 3 , . . . , n = 1,2,...) 
and 
(5) <2„ = q2,n (n = 1 ,2 , . . . ) . 

Obviously, (qn) is an increasing sequence of positive integers. 
Moreover, put 

(f>\ = Í 1 i f n < qi 

W Си {l/2* if Ы ж Ь + 1 (n = l,2,...). 
Assume that the function / that generates G is given by formula (3) with the 

sequence (c„) given by formula (6). 
We shall show that 

(7) / ( x , y) S V2) max [Дх , z) , / (z , y)] for every x, y, z e X . 

Following [18] (Theorem 2), we shall consider three cases. 
First case: max [/(x, z ) , / (z , y)] = 1. 

Inequality (7) is evident. 
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Second case: max [/(*, z) , / (z , yJj = 0. 
By (3), zn -+ x(G0) and yn ^ z(G0) for zn = z and yn = y (n = 1, 2 , . . . ) . By con
dition D 2 , yn ^ x(G0), so / ( x , y) = 0. 

Third case: max [/(x, z) , / (z , j ) ] = l/V2k for some feeiV. 
By conditions F, S and formula (3) it follows that there are a matrix (x„m) and 
a sequence (xm) such that 

*m ^ * ( G o ) » *<Z* = Z 

and 
Xmn ^ " ^m(^o) (™ = 1, 2, . . .) , X ^ = >' . 

Let yn = xPnfPn for n = 1, 2 , . . . . By condition D 2 , yn ^ x(G0). Moreover, by (4) 
and (5), 

У ~~~ ХЧк,Чк ~ *42,k,<l2,k ~ XPq2,k-i>Pq2,k-i ~ Xpqk_l,pqk_1 ~ Уяк-і ' 

Therefore, by (3) and (6), we have/(x, y) ^ l/2 fe_1 which completes the proof of(7). 
From (7) it follows that 

(8) f(x,y)S2max[f(x,t),f(t,z),f(z,y)] forevery x,t,z,yeX. 

Inequality (8) implies by induction (see e.g. similar proofs in [4], [2] p. 300, [7] 
p. 527) that for each positive integer k and tt eX {i = 0, 1, ..., k) such that t0 = x 
and tk = y we have 

(9) f(x, у) й 2(/(ro, h) +f(ti9 t2) + .. . + / ( b - i , tk)). 

Define 

g(x, y) = inf{/(/o, h) +f(tl912) + . . . + / ( ' * - i , tk): t0, tl9...9 tkeX9 

t0 = x9 tk = y9 k e N} . 

Evidently, the function g fulfils condition (A). Moreover, by inequality (9), we have 

if(x,y)u9(x,y)uf(x,y). 
This proves that the functions / and g generate the same convergence. This, by 

Remark 2, completes the proof. 
Since a quasi-metric generating a convergence G induces the finest of all topologies 

that generate G, hence in the case of topological spaces we obtain: 

Proposition 3. A topological space X is quasi-metrizable iffit is sequential and 
there is a convergence G0 satisfying conditions F, H and D 2 such that G* is the 
convergence generated by the topology of X. 

Remark 3. In [8] (p. 489) the following condition equivalent to quasi-metrizability 
of a topological space (X, т) is considered: 

There is a function g: N x X ^- т such that 
(i) {g(n, x); n e N} is a base at x, 

(ii) y e g{n + 1, x) => g(n + 1, y) c g(n, x). 
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Putting xn ^> x(G0) iff xn
 e o{n> x) f ° r a ^ n є ^ , w e 8 e t conditions Dí and D 2 

(with pn = n + 1 for 7í = 1,2, . . . ) . 

A symmetric function g, i.e. such that #(x, y) = g(y, x) is called a symmetric 

if #(x, j ) = 0 implies x = y (see e.g. [8] p. 480). 
There are many ways of describing convergences that are generatedby sym

metric functions (cf. [18]). 
In this paper, we shall use the following condition: 

(*) If xn >̂ x, then there is an increasing sequence (ptl) of positive integers and 
a matrix (x,m) (m, n = 1,2, ...) such that xmn ^>nxPn and xnn = x for each 
positive integer n. 

Proposition 4. A convergence G is generated by a symmetricfunction iffthere is 
a convergence G0 satisfying conditions F, Di and (*) such that G* = G. Moreover, 
if G satisfies condition H, then it is generated by a symmetric. 

Proof. I fa convergence G is generated by a symmetric function/, then evidently 
the convergence G0 given by formula (2) with (c„) given by (1) satisfies conditions 
F, D l 5 (*) and G* = G. 

Conversely, suppose that a convergence G0 satisfies conditions F ,Di , (*)and 
G = G*. L e t / b e given by formula (3) and 

(10) g(x, y) = max [f(x, y),f(y, x)] . 

Denote by Gg the convergence generated by the function g. We shall show that 
Gg = G. Evidently, Gg c G. On the other hand, if xn ^ x(G), then xqn ^ x(G0) for 
an increasing sequence (qn) ofpositive integers. By (*) and (3) we h a v e / ( x ^ , x) -^ 0, 
so, by (10), g(x, xqpn) ~> 0 or, equivalently, xqpn ^ x{Gg). Since Gg satisfies condition U 
we get Gg = G as desired. It is easy to see that under condition H the convergence G 
is generated by a symmetric. 

Recall (see e.g. [8] p. 480) that a topological space X is symmetrizable if there is 
a symmetric g on X satisfying the following condition: U c X is open iff for each 
x є U there exists s > 0 which B(x, c) cz U, where Б(х, e) = {y eX; g(x, y) < e}. 
If {B(x, e); 6 > 0} forms a neighborhood base at x, then X is called semi-metrizable. 

Proposition 5. A topological space X is symmetrizable (semi-metrizable) iffit is 
sequential (Frécheť) and the convergence in X is generated by a symmetric. 

Proof. Since semi-metrizable spaces arejust symmetrizable and Fréchet (cf. [8] 
Theorem 9.6), it remains to prove only the first part. 

Sufficiency. It follows directly from Lemma 9.3 in [8]. 
Necessity. Let g be a symmetric for G, i.e. xn ^ x(G) iff g(x, xn) ~> 0. Let U be 

open in a sequential topology generating G and let x e U. Then xn -^ x(G) implies 
xn є U for almost all n. We shall show that there is e > 0 such that B(x, e) cz JJ. 
Indeed, in the opposite case for each en > 0 there is xn ф U such that #(x, xn) < en, 
i.e. x„ -^ x(G) (if sn ^ 0), a contradiction. 
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If U is not open then there is x є U and a sequence (x„) such that xn ^ x 
(g(x, xn) ^> 0) and xn ф U. It follows that B(x, e) ф U for each e > 0. This completes 
the proof. 

If we combine Propositions 2 and 4, we easily obtain 

Theorem 1. A convergence G is metrizable (i.e. generated by a metric) iffthere 
is a convergence G0 satisfying conditions F, H, D 2 and (*) such that G* = G. 

Using the same arguments as in the case of Proposition 3, we have 

Theorem 2. A topological space X is metrizable iffit is sequential and there is 
a convergence G0 satisfying conditions F, H, D 2 and (*) such that G* is the con
vergence generated by the topology ofX. 

Corollary 1. (The Alexandroff-Urysohn metrization theorem, cf. [ l ] , see also [7] 
p. 413.) A topological space X is metrizable iff it is a T0-space and has a deve
lopment іГІ9 іГ2, . . . such that 

( l l ) / o r every positive integer n and any two sets Wu W2 є iťn+i with non-empty 
intersection there exists a set We Wn such that Wt u W2 <= W. 

P r o o f of sufficiency. Notice that X is first-countable, so it is sequential. Define 
the convergence G0: 

xn ~> x(G0) if xn є St(x, #~„) for each positive integer n . 

Evidently, G* is the convergence generated by the topology of X. By (11), 
St(x, i^i+i) <= St(x, Wi) for each i e N, hence G0 satisfies condition F. Condition (*) 
follows from the fact that x є St(y, тГ„) iff у є St(x, тГп). 

Assume that xn ^ x(G0) and xn ^ y(G0), i.e. xn e St(x, iTn) and xn є St(y, iťn) 
for n = 1,2, . . . or, equivalently, x є St(x„, #~„) and y є St(x,,, тГи) (n = 1, 2, . . . ) . 
Therefore, by (11), x e % ^ _ i ) and y e S t ( x , # V i ) for n = 2 , 3 , . . . which, 
by Г0, implies x = y. 

To prove condition D 2 assume that xmn ^>" x(G0) (ra = 1, 2, ...) and xm -+ x(G0). 
In particular, xkk e St(xk, тГк) and xk e St(x, TTfc) for each k e N. By (11) we have 
xkk є St(x, тГк_ i) f o r fc = 2> 3> • • • • Therefore, putting pn = n + 1 for n = 1, 2, . . . , 
we have xPnfPn ^ x, which proves D 2 . It remains to apply Theorem 2. 

3. Let us introduce the following two conditions: 

E>2- I f *mn ~»" xm f ° r wi = 1, 2 , . . . and xm ^ x, then xPřifPn ^ x for an increasing 
sequence (pn) of positive integers. 

(**) If x„ ^ x and yn -+ x, then there is an increasing sequence (pn) of positive 
integers and a matrix (xm„) (m,n = l , 2 , . . . ) such that x m „ ^ w x P n and 
хпи = j P n for each positive integer n. 

Remark 4. Evidently, D 2 implies D 2 and (**) implies (*). Moreover, i f / i s a metric, 
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then the convergence G0 defined by formula (2) (with (cn) given by (l)) fulfils con
dition (**). 

Lemma 1. / / a convergence G0 satisfies conditions F and D'1? then there is a con-
vergence Gi satisfying conditions F and D t such that G* = Gf. 

Moreover, Gi can be chosen in such a way that 
{i) ifG0 satisfies condition D2, then G^ does; 
(ii) if G0 satisfies condition (**), then Gx does. 
Proof. Let a convergence G0 satisfy conditions F and Di and let a funct ion/be 

given by formula (3) with a sequence (cn) satisfying (1). 
Define a convergence Gx as follows: 

x» ^ x(Gi) if f(x, xn) й cn for n = 1, 2 , . . . . 

Then G0 cz G1 and Gx satisfies condition Dim 

Moreover, we have 

(12) if Xn^x(G^, then there is a matrix (xmn)(m,n = 1,2, . . . ) such that 
хш„ ^ m x(G0) and xm = x„ for each positive integer n. 

By (12) and due to condition Di for G0, it follows that if xn ^ x(G^, then there is 
an increasing sequence (pn) of positive integers such that xPn -+ x(G0). Therefore 
G* = Gf. 

Now, suppose that xmn^nxm{G^ for m = l , 2 , . . . and xm^x(G^). Since 
jcPm ^ x(G0) for an increasing sequence (pm) of positive integers, there exists a matrix 
(>>w„) such that ymn ^n xPm(G0) and ynn = xPniPn (n = 1, 2 , . . . ) , in view of (12) and 
condition F for G0. Therefore, if G0 satisfies condition T>2 then there is an increasing 
sequence (qn) such that xqPnfqPn ^> x(G0). Consequently, G t satisfies condition D2 

because G0 c Gx. 
Similarly we see that if G0 satisfies (**), then G1 does. 

Lemma 2. J / a convergence G0 satisfies conditions F, Dx and D2, then 

(13) / o r every x there is an increasing sequence(pn)of positive integers such that 
if *mn ^" xm(G0) (m = 1, 2 , . . . ) and xm ^ x(G0), then xPntPn ^> x(G0). 

Proof . Let (xmn) be а matrix such that xmn-^nxm(G0) for m = l , 2 , . . . and 
xm ^> x(G0). Notice that xnn ^ x(G0) by F and D^. By F, Dx and D2 it follows that 
for each k e N there is an index ik such that for each i ^ ik there is a sequence (yni) 
such that yni ^nx(G0) and yki = xn. 

Indeed, in the opposite case there would be an increasing sequence (r„) of positive 
integers such that no subsequence of(x r n j r J would be convergent to x in G0. 

Therefore there is an increasing sequence (qn) of positive integers (chosen for the 
matrix (xmn)) such that 

(1 4) *«» ' .* '^*(Go) iff Чп^Чп foreach n = l , 2 , . . . , 

where (qf
n) is an arbitrary increasing sequence of positive integers. 

210 



Now, suppose that (13) does not hold, i.e. there is a sequence of matrices (xk
mn) 

(k = 1, 2, . . . ) such that xk
mn ^n xk

m(G0) (m, k = 1,2,...), xk
m ^m x(G0) (k = 1, 2, . . . ) 

and qk
Q ^>k oo for some index n0, where (qk) are the sequences having property (14) 

and chosen for the matrices (x^„), respectively (k = 1, 2 , . . . ) . 
We may assume that 

(15) qk
0 = k + 1 for k > n0 and qk

0-i < M < oo if n0 ф 1 . 

Consider the matrix (xl„). Since xk
kn ^n xk

k(G0) (k = 1, 2 , . . . ) and, by D l 9 xk
k ^ 

~> x(G0), conditions D2 and F imply the existence of an increasing sequence (pn) 
of positive integers such that 

КІР» ^ x a n d Pn0
 = l > M • 

Put 

-_ \X\nl,4nl f 0 r n * n0 > 
n |x[ z for n = n0 . 

By Di we have z„ ^ x(G0). By (15), ^ 0 — 1 = / > ql„0-i. We have got a contra
diction to the definition of the sequence (ql

n). 
Lemmas 1 and 2 make a characterization of y-spaces in terms of condition D'2 

possible. Recall (see e.g. [8] p. 491) that a topological space (X, т) is said to be a 7-
space if there exists a function g: N x X ~> т such that 

(i) {g(n, x); n є N} is a base at x, 
(ii) for each и є N and x є X there exists m є N such that у є g(m, x) implies 

g(m, y) c #(w, x). 

Proposition 6. Л topological space (X, т) is a y-space iffit is sequential and there 
is a convergence G0 satisfying conditions F and D 2 such that G* is the convergence 
generated by the topology x. 

Proof. Assuming, in a y-space, xn ^ x(G0) iff xn e g(n, x) for each n eN we get 
a convergence with the required properties. 

Conversely, suppose that a convergence G0 satisfies conditions F and D'2. By 
Lemma 1 we may assume that G0 satisfies also condition Dx . For each x eX and 
k = 1, 2, . . . define Vk(x) = {y eX; there is (x„), xn ^> x(G0), y = xk). Then xn ^> 
^> x(G0) iff xn є Vn(x) for all n є iV. By Lemma 2 it follows that for each n є iV there 
is m є JV such that y e Fw(x) implies Vm(y) c F„(x). Then in the topology introduced 
by the family of sets {^„(я)} (see e.g. [11] p. 19) the sets Vn(x) form a base of neigh
borhoods at x and for each open set U and x є U there is k e N such that y e Vk(x) 
implies Vk(y) a JJ. By the result 4.3 in [9] this completes the proof. 

Lemma 3. Let a convergence G0 satisfy conditions F, D1 ? (13) and (**). J / xk ^ 
~* *o(^o)> then there is an increasing sequence (pn) of positive integers such that 
xPn,Pn ~* **(Go) whenever xmn ^n xm(G0) (m = 1, 2 , . . . ) and xm ^ xk(G0) for some 
к = 0 , 1 , . . . . 
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Proof. Suppose that a convergence G0 satisfies conditions T\D1 and (13) With 
a sequence (pn) at a point x. 

Given a matrix (xmn) and a sequence (xm) such that xm„ ^ " xw(G0) for m = 1, 2, . . . 
and xm ~> x(G0), we have xgn^n >̂ x(G0) for an arbitrary increasing sequence (qn) 
such that qn ^ p„ for all n = 1, 2 , . . . . Moreover, given a point x є Z , there are an 
increasing sequence (pn) of positive integers, a sequence (jm) and a matrix (ym„) 
with the following properties: 

1° Утп^пУт{Оо) for m = 1 ,2 , . . . ; 
2° yw ^ x(Go); 
3° JWi* ~* 4 G o ) i f f 4« ^ P« for each n = 1, 2, ... . 
For arbitrary k — 0, 1 , . . . denote by (p*), (yJ,) and (у^п) sequences and a matrix, 

respectively, satisfying l° — 3° for the point xk. 
Now, suppose that the assertion of the lemma does not hold. Then there is an 

index n0 such that sup {pk
no: k eN} = +oo. 

We may assume that 

(16) Pn0 > k and s u p { j ^ _ ! i keN] < M < oo . 

Then, putting 
z* = ( 4 if " * n0 

n {ylk if n = n0 
we get 
(17) zJ+>"x*(Go) for k>M, 

in view of (16) and Dt. 
Since j L ^ " yl(Go) for fc = 1, 2, . . . , ^ ^ « xk(G0) for fc = 1, 2 , . . . and xà ^ 

^ x 0 ( G 0 ) , we have y%,qn^x0(G0)9 where g„ = p°Pno (n = 1,2,.. .), by applying 
condition (13) twice. Since xqn -^ x0(G0), condition (17) yields a contradiction 
to (**). This completes the proof. 

By Lemmas 1, 2, 3, Remarks 1, 4 and Theorem 1 we directly obtain the following 
propositions: 

Proposition 7. Suppose that a convergence G is compact, i.e. every sequence 
contains a convergent subsequence in G. Then G is metrizable iffthere is a con-
vergence G0 satisfying conditions F, D 2 , H and (**) such that G* = G. 

Proposition8. If a convergence G0 satisfies conditions F , D 2 , H and (**), then 
the convergence G* is locally metrizable, i.e. for every x there is a sequential 
neighborhood U(x) of x and a metric that generates the convergence G0 on U(x). 

The converse is not true. It is easy to give an example of locally metrizable space 
with a convergence G such that there is no convergence G0 satisfying condition D 2 

for which G* = G. 

Proposition 9. Ifa topological spaceX is sequential and there is a convergence G0 
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satisfying conditions F , D2,H and (**) such that G* is the convergence generated 
by the topology ofX, then X is locally metrizable. 

Since any paracompact locally metrizable space is metrizable (cf. [19]), we obtain 
the following characterization: 

Theorem3.Le/X be a paracompact space. ThenX is metrizable iffit is sequential 
and there is a convergence G0 satisfying conditions F, D 2 , H and (**) such that G* 
is the convergence generated by the topology ofX. 

Corollary 2. (The Nagata-Smirnov metrization theorem, cf. [15], [19], see also 
[7] p. 351.) A topological space is metrizable iffit is regular and has a a-locally 

finite base. 
P r o o f of sufficiency. Let tflu %2,... be a sequence of locally finite, open covers 

forming a base and such that öUi c Wi + 1 for i = 1, 2, . . . . 
It is easy to see that the space X is paracompact (see e.g. [7] p. 376, Th. 5.1.11). 

Moreover, X is first-countable; the sequence Un = {0^* * E U, U e %n) (n = 1, 2, . . . ) 
is a base of open neighborhoods at x. 

Let ir
i = {Va: A є Лі} for і = 1, 2 , . . . be the sequence of closed covers formed 

by the closures ofsets from °ИЬ respectively. Evidently, ir
i (i = 1, 2, ...) are locally 

finite. 
Define 

<T, = { n Za: Za = Va or Zu = cl(Z - Vu), where Va e Г,) for 
ДєЛ,-

i = \, 2, ... . 

It is easy to check that áff is a locally finite, closed refinement of f\- for each 
i = 1, 2, . . . . 

Now, we introduce a family of convergences Gk (k = 1,2,. . .): 

*n ^ x(Gk) if xn є St*(x, %n) for each n = 1, 2 , . . . , where St^x, &n) = St(x, 3Tn) 
and 

St*(x, arB) = St(St*^(x, аГи), &я) for fc = 2, 3 , . . . . 

Evidently, the convergences Gk satisfy condition F. We shall show that G* is the 
convergence generated by the topology of X for each k = 1, 2, ... . This and the 
regularity ofX imply, in particular, that Gk satisfy condition H. 

Notice that if U є úUn and V c L/, then St(F, ЗГИ) c P. Moreover, since ^ n is 
locally finite, we have x e int St(x, áfw). Hence, by the regularity of X, G* is the 
convergence generated by the topology of X. 

To show that Gk fulfils condition D'2 (k — 1, 2, ...) notice that if y є Stfc(x, ^„ ) 
and z є Stfc(y, <3Trc), then z e St2fc(x, ^f„). In other words, if xmn ^>" xjGk) and 
xm ^> x(Gk), then xnn ^ x(G2k). This, by G* = G*b implies the existence of an 
increasing sequence (pn) of positive integers such that xPntPn ^ x(Gk). 

In a similar way we can show that Gk fulfils condition (**). 
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Hence each of the convergences Gk satisfies all conditions that are required in 
Theorem 3. This completes the proof. 

In particular, we have got 

Corollary 3. (The Urysohn theorem, cf. [21], [22], -see also [7] p. 325 Thms. 
4.2.8, 4.2.9.) A regular (or Hausdorff and compact) second-countable space is 
metrizable. 

Finally, we shall show an application of Theorem 3 to a proof of the Moore 
theorem. 

Corollary 4. (The Moore metrization theorem, cf. [3], [20], see also [7] p. 409.) 
A topological space is metrizable iffit is a T0-space and has a strong development. 

P r o o f of sufficiency. Let <%í9 °U2, . . . be a strong development such that %1+1 is 
a refinement of °Ui for each i = 1, 2, . . . . 

Define xn ^ x(G0) if xn e St(x, %„) for each n = 1, 2, . . . . 
Evidently, G0 satisfies condition F and G* is the convergence generated by the 

topology of X. In a similar way as in Corollary 1 we can show that G0 satisfies 
condition H. Notice that for every x and each positive integer n there is a number pn 

such that St(St(x, <^pJ, %Pn) c St(x. <Шп). This directly implies condition D2. 
Now, suppose that xn ^ x(G0) and yn ^> x(G0), i.e. xn є St(x, Wn) and yn є 

e S t ( x , ^ ) for each n = 1 ,2 , . . . . Hence there are sets Uln,U2ne
ôi/n such that 

*n є Uín9 yn є U2n and x є Uín n U2n = Un. Since xn ^> x(G0) and yn ^ x(G0), 
there is a number pn such that xPn є Un and yPn є Un, so xPn є St(jPn , Wn). 

Consequently, the convergence G0 fulfils condition (**). 
To complete the proof, it remains to apply first-countability and paracompactness 

ofX. 
I wish to thank Professor A. Kaminski for his valuable remarks. 
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