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MEDIAL IDEMPOTENT GROUPOIDS I 

JozEF DuDEK, Wroclaw 

(Received December 27, 1988) 

1. INTRODUCTION 

In the class of the simplest algebras, groupoids, a special attention have received 
groupoids which are medial and idempotent, i.e. satisfying the conditions 

(M) (xy) (uu) = (xu) (yv) 

(I) x2 = x 

This is so, becouse these appear as a matter of fact in almost all branches of mathe
matics. For example, the arithemitical mean or the square root >/(xy) define such 
groupoids. Also, affine spaces over prime fields are equivalent to these groupoids. 
Accordingly, medial idempotent groupoids were studied by many authors and are 
known under various names like groupoid modes, binary modes instead of "medial" 
also the adjectives "entropie" or "abelian" are used (see [14] and cf. also [22]). 

A remarkable result in this area is the description of all varieties of commutative 
medial idempotent groupoids (CIA-groupoids) given in Ježek and Kepka [14]. 
The noncommutative case turn out much more complicated, however. 

In this paper we propose a new approach to the problem of description of medial 
idempotent groupoids. Namely, we propose to describe them (and clasify) by means 
of the number p2(G, •) of essentially polynomial in (G, •). As a first step in this 
direction we have 

Theorem. Let (G, •) be a proper medial idempotent groupoid, i.e., xy is essentially 
binary. Then we have 

(i) p2(G, •) = 1 // and only if (G, •) is either a semilattice or an affine space 
over GF(3). 

(ii) p2(G, •) = 2 if and only if (G, •) is either a diagonal semigroup or an n-
polynomial groupoid or an affine space over GF(4). 

(iii) p2(G, •) = 3 if and only if (G, •) is either an affine space over GF(5) or 
a nontrivial Plonka sum of affine spaces over GF(3) which are not all singletons. 

All the groupoids appearing in the above theorem are well-known and the de
finitions and basic characterizations of them are recalled to the reader in § 2. 

Here, as in [12], polynomially equivalent algebras (i.e., having the same sets of 
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polynomials) are t reatedas identical. The proof of the part (i) is explicitely con
tained in [6] (It follows from Lemma 1 of [8], Theorem 1 and Theorem 8 of [6]). 
The proof of (ii) is analogous to the proof of the characterization theorem for dis
tributive and idempotent groupoids (for details see [7]) and we also use the results 
of [10]. In this paper we prove the part (iii). First (§ 3) we characterize all medial 
commutative idempotent groupoids with p3(G, •) = 3. And then we prove (§4) 
that any noncommutative medial idempotent groupoid (G, •) with p2(G, •) = 3 is 
polynomially equivalent to some commutative medial idempotent groupoid. 

Our terminology is standard (cf [l2]). 
Throughout, by xyn we denote as usually the polynomial (... (xy) . . . y) y with y 

appearing /i-times. Instead of medial idempotent we write briefly MIG. 

2. CHARACTERIZATIONS 

Wc recall the definitions and basic characterizations of the groupoids appearing 
in Theorem. 

1. Semilattices. A groupid (S, •) satisfying 
1. x2 = x 
2. xy = yx 
3. {xy)z = x(yz) 

is called a semilattice. The variety of all semilattice will be denoted by &. 
It is well-known that with any semilattice (S, •) one can associate a partial ordered 

set (S, S) s u c r i that for every a, b e S there exists the least upper bound i.e., l.u.b. 
(a, b) and conversely (see e.g., [l2]). 

It is also known that an algebra 2t is a nontrivial semilattice ifand only ifpo(9t) = 0 
and pJ^li) = 1 for all n ^ 1. For the definitions of jvsequences and other used in 
this paper we refer to [12]. 

2. Diagonal semigroups. Following [16] a diagonal semigroup is a groupoid 
(G, •) satisfying 

1. x2 = x 
2. (xy) z = x(yz) 
3. (xy) z = xz 
By Л we denote the variety of all diagonal semigroups. 
Using the characterization theorem for diagonal algebras from [16] we see that 

a groupoid (G, •) is a diagonal semigroup if and only if there exist two sets Gt and G2 

such that G = G t x G2 and the operation • is defined as follows 

^ i J i > • <x2,y2> = <*иУі> 
where Xi, x2 є Gx and yt, y2 e G2. 

]t is clear that for a proper diagonal semigroup (G, •) we have p0(G, •) = 
= Pl(G, •) = 0, p2(G, •) = 2 and pn(G, •) = 0 for all n ^ 3. We also have 
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an algebra $1 is a proper diagonal semigroup if and only if 31 represents the se
quence <0, 0, 2, 0, . ,.> (for details see [l6]). 

3. n-polynomial groupoids. By It (i = 1, 2, 3) we denote the varieties ofgroupoids 
(G, •) defined by the following identities: 

I1: x2 = x , 
(xy) z = x(yz) , 
x(yz) = x(zy) ; 

Z^2 • X """ ^ ? 

(xy) z = (xz) y , 
x(yz) = xy , 
(xy) y = xy ; 

Г3 : x1 = x , 
(xy) z = (xz) y , 
x(yz) = xy , 
(X};) j ; = x . 

(For details see [12], pp 394-395 and [19]). 
In [19] a characterization theorem for grcupoids from the above varieties is given 

(see also [3], [20] and [21]). 
Recall that in [19] it is shown that if a groupoid (G, •) satisfies pn(G, •) = n for 

all n, then (G, •) belongs to the variety It or its dual for some i = 1, 2, 3. 
It is also easy to see that a proper groupoid (G, •) being not a semilattice belonging 

to Ii (i = 1, 2, 3 or its dual) satisfies pn(G, •) = n for all n. Thus we shall call 
a groupoid (G, •) an n-polynomial groupoid (cf [7]) if 

pn(G, •) = n for all n . 

4. Affine spaces (modules). By an affine module G over the ring Z j o f integers 
modulo d, for odd d, we mean the grcupoid © = (G, •) associated with an abelian 
group (G, + ) ofexponent d where • is defined by the formula 

d + 1 , ч 
xy = ^ — (x + y) 

for all x, y є G. The polynomials of @> are in fact the idempotent polynomials of the 
grcup (G, + ) and therefore fö is also called the (full) idempotent reduct of (G, + ) 
(cf [18]). On the other hand, © is equivalent tothe algebra generated bythepoly-
nomials 

alx1 + ... + a„xn 
n 

of the module (G, + ) over Zd satisfying £ at = 1. Algebras of this type introduced 
í = i 

in [15] and called affine modules, in accordance with the notion of an affine space 
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(the case when Zd is a field) (see [1] and [2]). In general, the ring Zd can be replaced 
by any ring in the above definition. 

4.1. Affine spaces over GF(3). Using the main result of [13] we have 
a groupoid (G, •) is an affine space over GF(3) if and only if (G, •) belongs to the 

following variety defined by the identities 

x1 — x , xy = yx , (xy) y = x and (xy) (uv) — (xu) (yv). 

We also see (cf. [13]) that for such nontrivial affine spaces we have 

2« - ( - 1 ) " p = v L. for all n # 

3 

In general, for any affine space over GF(p) we have 
(P- l ) " - ( - l ) " , n 

pn = L - for all n 
P 

(cf. [1]). 
4.2. Affine spaces over GF(5). Analogously as in [13] one can prove the following: 

Fact. An algebra (G, F) is an affine space over GF(5) if and only if there exists 
a binary polynomial • over (G, F) such that (G, •) satisfies the following identities 

x2 = x , xy = yx , ((xy) y) x = y and (xy) (uv) = (xu) (yv). 

Let us add that for any nontrivial affine space over GF(5) we have 

4" - (-1)" Pn = H ^ 
for all n. 

4.3. Affine spaces over GF(4). Let G be an affine space over a four-element field 
K = {a, b, 0, 1}. Take into account the following groupoid (G, o) where x o y = 
= ax + by. Then it is easy to check that the groupoid (G, o) satisfies 

x o x = x , (x o y) o x = y and (x o y) o z = (z о у) о л:. 

The groupoid (G, o) is called an affine space over GF(4). It is clear that such groupoids 
are medial and also quasigroups. 

Following [10] we have 
A groupoid (G, •) is an affine space over GF(4) if and only if (G, •) satisfies 

xx = x , (xy) x = y and (xy) z = (zy) x . 

3. THE COMMUTATIVE CASE 

In this section we prove (iii) of the theorem for medial commutative idempotent 
groupoids. We start with (all groupoids in this section are commutative) 
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Lemma 3.1. If(G, •) is MIG such that p2(G, •) > 1, then p2(G, •) ^ 3. Moreover, 
ifp2(G, •) = 3, гйеи (G, •) satisfies either 

xy = лгу3 or xy3 = yx2 . 

Proof. Consider the standard polynomial x 0 y = xy2. It is easy to see that 
Pi(G> ' ) > 1 proves that x 0 _y is essentially binary. If x 0 y is commutative, then 
applying Theorem 8 of [6] we deduce that (G, •) is a semilattice which contradicts 
p2(G, •) > 1. Since p2(G, •) = 3 we infer that xy, x 0 y and y 0 x are the only es
sentially binary polynomials over (G, •). Take now the polynomial x * y = xy3. 
Applying Theorem 1 of [5] we conclude that x * y 4= y. If x * y = x (it is clear that 
xy2 is essentially binary), then applying Theorem 3 of [5] we get p2(G, •) ^ 5, 
a contradiction. Thus we have proved that (G, •) satisfies either 

xy = xy3 or xy3 = yx2 or xy2 = xy3 . 

The last identity according to Theorem 8 of [6] cannot happen which completes 
the proof. 

Using a characterization theorem of [6] we get 

Lemma 3.2. Let (G, •) be MIG. Then (G, •) is a Plonka sum of affine spaces 
over GF(3) ifand only if(G, •) satisfies thefollowing identity xy = xy3. 

Lemma 3.3. Let (G, •) be MIG with xy3 = yx2. Then the following are equi
valent: 

(i) (G, •) is a semilattice, 
(ii) (G, •) satisfies xy2x = xy2, 

(iii) (G, •) satisfies xy2x = yx2, 
(iv) (G, •) satisfies xy2x = yx2y. 
Proof. It is clear that the condition (i) implies each ofthe remaining ones. Assume 

that (ii) holds. Then we have 

xy2 = (xy2) ((xy2) x) = ((xy2) x) ((xy) y) = 

= ((xy2) (xy)) (xy) = y(xy)3 = (xy) y2 = xy3 = yx2 . 

Thus (G, •) satisfies xy2 = yx2. Applying Theorem 8 of [6] we see that (G, •) is 
a semilattice. 

Let now (G, •) satisfy xy2x = yx2 (iii). Then we have 

y(y*Y = ((ху) y2) (xy) = (хУ3) (ху) = (у*2) (ху) = х(ху)2 • 
Thus we have 

xy2 = yx3 = (xy) x2 = x(xy)3 = (x(xy)2) (xy) = 

= (Ay*)2) (ХУ) = У(УХУ = У%1 ' 
which again proves that (G, •) is a semilattice. 

If xy2x = yx2y holds in (G, •), then using the medial law we get xy2x = xy and 

253 



hence 
xy2 = ((xy) y2) (xy) = xy3xy = (yx2) (xy) = ((yx) y) x = xy2x . 

Thus xy2 = xy2x and therefore xy2 = yx2 which proves (as above) that (G, •) is 
a semilattice. The proof of the lemma is completed. 

Lemma 3.4. Let (G, •) be MIG. Then 
(i) (G, •) is an affine space over GF(3) ifand only if(G, •) satisfies xy2x = x. 

(ii) (G, •) isan affine space over GF(5) ifand only if(G, •) satisfies xy2x = y. 
Proof. If (G, •) is an affine space over GF(3), then clearly xy2x = x holds in 

(G, •). One can also check that the identity xy2x = y holds in any affine space over 
GF(5). We give here only the proof of the condition (ii) (The proof of (i) is similar). 
Assume that xy2x = y holds in (G, •). Using Theorem 10 of [6] we infer that (G, •) 
satisfies xy4 = x. Applying now Theorem 1 of [6] we infer that (G, •) is an affine 
module over Zd where a | l5 . Ifcard G = 1, thenclearly(G, ')isanaffine space over 
GF(5). If card G > 1, then using the identity xy2x = y and the fact that d|l5 one 
gets that d — 5 and therefore (G, •) is an affine space over GF(5). The proof of the 
lemma is completed. 

Proposition 3.5. Let (G, •) be MIG. Then p2(G, •) = 3 if and only if (G, •) is 
either a nontrivial sum of affine spaces being not all singletons or a nontrivial 
affine space over thefield GF(5). 

Proof. Assume that p2(G, •) = 3 (The converse is obvious). Applying Lemma 3.1 
we infer that (G, •) satisfies either 

xy = xy3 or xy3 = yx2 . 

If (G, •) satisfies the first identity, then applying Lemma 3.2 we prove that (G, •) 
is a nontrivial Plonka sum of some affine spaces over GF(3) which are not all one-
element (we use here also the fact that a partition function x о y = xy2 is essentially 
binary and noncommutative, for details see [6] and [17]). 

Assume now that xy3 = yx2 holds in (G, •). Take into account the polynomial 
x • y = xy2x. By Lemmas 3.1 and 3.4 and the assumption p2(G, •) = 3 we obtain 
xy2x = y. Applying again Lemma 1.4 we deduce that (G, •) is a nontrivial affine 
space over GF(5) which completes the proof of the proposition. 

4. NONCOMMUTATIVE CASE 

Recall that a groupoid (G, •) is distributive if (G, •) satisfies both right and left-
sided distributive laws 

(xy) z = (xz) (yz) and z(xy) = (zx) (zy) . 

It is clear that if (G, •) is medial and idempotent, then (G, •) is distributive. In this 
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section as was previous ammounced we prove (iii) of the Theorem from § 2 for medial 
noncommutative idempotent groupoids. 

First we prove 

Lemma 4.1. Let (G, •) be an idempotent groupoid. Then thefollowing are equi
valent 

(i) (G, •) is a diagonal semigroup, 
(ii) (G, •) is medial and (G, •) satisfies (xy) x = x, 

(iii) (G, •) is distributive and (G, •) satisfies (xy) x = x. 

Proof. The implication (i) => (ii) => (iii) is obvious. Assume (iii). Then we have 

(xy) z = (xz) (yz) = (x(yz)) {z(yz)) = (x(yz)) z . 

Thus we get (xy) z = (x(yz)) z. Putting in this identity yz for x we get yz = (yz) z. 
Using this identity we obtain 

(xy) z = (xz) (yz) = ((xz) y) ((xz) z) = ((xz) y) (xz) = xz . 

Hence we get (xy) z = xz. Analogously one proves that (G, •) satisfies x(yz) = xz 
and hence (G, •) is a diagonal semigroup. 

Lemma 4.2. If(G, •) is M/G, satisfying (xy) x = y, then p2(G, •) Ф 3. 
Proof. If(G, •) is commutative, then (G, •) is a Steiner quasigroup and therefore 

p2(G, •) ^ 1. Suppose that (G, •) is noncommutative and p2(G, •) = 3. Take into 
account the standard polynomial (xy) y. First observe that (xy) у ф y. Indeed, if 
(xy) y = У, then x = y(xy) - ((xy) y) (xy) = y, a contradiction. 

If (xy) y = x, then yx = ({yx) у) У — *У which gives xy = yx, a contradiction. 
The identity (xy) y = xy yields xy = x. (In fact, the groupoid (G, •) is a quasi

group.) 
If (xy) y = yx, then y(yx) = y((xy) y) = xy and hence (yx) (xy) = y. For such 

groupoids one can check that p2 й 2. 
It remains to consider the case 

(xy) y = (yx) x . 

In this case we consider the polynomial x(xy) and keep in mind the assumption 
Pi(G, •) = 3 and (xy) x = y. 

We prove that x(xy) is none of the polynomials: 

x, y, xy, yx and (xy) y . 
We have 

x(xy) = x implies x = xx = (x(xy))x = xy, 
x(xy) = y implies yx = (x(xy)) x = xy, 
x(xy) = xy implies y = (xy) x = (x(xy)) x = xy, 

x(xy) = yx implies(yx)x = (x(xy))x = xy which proves that (G, •) is com
mutative, a contradiction. 
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If again x(xy) is commutative, then clearly x(xy) = (xy) y and hence 

xy = (x(xy)) x = ((xy) y) x = ((xy) x) (yx) = y(yx). 

Thus xy = yx, a contradiction which completes the proof of the lemma 

Lemma 4.3. If(G, •) is MIG satisfying 

(xy) x = xy , 

then p2(G, •) Ф 3. 
Proof. If(G, •) is commutative, then (G, •) is a near-semilattice, i.e.,commutative 

idempotent and satisfying xy2 = xy and hence p2(G, •) ^ 1 (According to Theorem 
8 of [6] the groupoid (G, •) is even a semilattice). 

If(G, •) is improper, then clearly p2(G, •) Ф 3 since p2(G, •) = 0. Further, assume 
that (G, •) is a (proper) medial idempotent noncommutative groupoid with 
Pz(G, •) = 3. 

First observe that 

x(yz) = (xy) (xz) = ((xy) x) ((xy) z) = (xy) ((xy) z) . 

Thus we get 
x(yz) = (xy) ((xy) z). 

Take now into account the polynomial x(xy). 
If x(xy) = y, then x(yz) = z, a contradiction. 
If x(xy) = x, then x(yz) = xy and hence 

(xy) z = (xz) (yz) = (xz) j ; . 

Such groupoids there exist (see e.g. [2l]) and it is not difficult to prove that p2 for 
these groupoids is either even or infinite. 

If x(xy) = xy holds in (G, •), then (G, •) satisfies (xy) z = x(yz). Thus (G, •) 
is a noncommutative idempotent semigroup. One can easily check that for such semi
groups we have p2 Ф 3. 

If x(xy) = vx, then we get 

x(yz) = (xy) ((xy) z) = z(xy) 
and hence 

xy = y(xy) = (yx) >' = yx 

which proves that (G, •) is commutative, a contradiction. 
It remains to consider the case 

x(xy) = y(yx) . 

Then we have 
x(yz) = (xy) ((xy) z) = z(z(xy)) . 

This gives xy = y(y(xy)) = y((yx)y) = y(yx) and therefore (G, •) is commutative 
which is impossible. The proof of the lemma is completed. 
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Lemma 4.4. If (G, •) is MIG satisfying 
(xy) x = ух , 

then p2(G, •) =|= 3. 
Proof. As above we have 

(xy) z = (x(yz)) (yz) . 

Consider the polynomial (xy) y. Further the proof of this lemma runs similarly as 
the proof of the preceding lemma. For instance, if (G, •) satisfies 

(xy) У = (У*) x 
then we have 

(xy) z = {x{yz)) {yz) = ((yz) x) x . 
This gives 

yz = ((yz) y) y = (zy) y 

which proves that (G, •) is commutative, a contradiction. 

Lemma 4.5. If (G, •) is MIG, then the groupoid (G, o) where x o y = (xy) x is 
also MIG. Moreover there exist medial noncommutative idempotentgroupoids 
(G, •) such that p2(G, •) = 3 and x o y = y o x. 

Proof. The first statement is a direct consequence of the medial law for the opera
tion. To prove the second assertion it suffices to consider an affine space over GF(5) 
treated as a groupoid (G, •) with xy = 2x + Ay. 

Lemma 4.6. / / (G, •) /5 a medial noncommutative idempotent groupoid satisfying 
(xy) x = (yx) y and p2(G, •) = 3, then the groupoids (G, •) and (G, 0) where 
x 0 y = (xy) x are po1ynomially equivalent. 

Proof. We prove this lemma in several steps considering the polynomial (xy) y. 
Some of the proofs of some steps will be omitted. First we have 

(i) Let (G, •) be an idempotent groupoid satisfying (xy) y = y. Then (G, #) is 
medial if and only if (G, •) satisfies 

(xy) z = yz and x(yz) = y(xz). 

Thus one can easily see that if (G, •) is a medial idempotent groupoid satisfying 
(xy) y = y, then p2(G, •) Ф 3. 

(ii) If (G, •) satisfies (xy) y = x, then xy = (x 0 y) 0 y where x 0 y = (xy) x and 
hence the groupoids (G, •) and (G, о) are polynomially equivalent. 

Indeed, putting xy for x in the identity (xy) x = (yx) y we get 
x(xy) = ((ху) у) (ху) = (y(*y)) y = у((ху) у) = Ух 

(we use also the ditributive laws) and hence (ух) (xy) = x. 
Further we have 

(x о у) о y = (((xy) x) y) ((xy) x) = (((xy) x) (xy)) (yx) = 

= ((x(xy)) x) (yx) = ((yx) x) (yx) = y(yx) = xy . 
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Thus (x о у) о у = ХУ anc^ therefore (G, •) and (G, o) are polynomially equivalent. 
(iii) (xy) у Ф x j • 
If(xv) y = x>> holds, then as above putting xy for x in (xy) x = (yx) y one proves 

that xy = jx . 
(iv) If (xy) y = У*> then ул: = (x о j ) o y. 
(v) I f (x j ) j> = (yx) x, then (G, •) is a semilattice (Thus in our groupoid (xy) у ф 

Ф (yx) x). 
Indeed, first we have 

(xy) x = (yx) y = (xy) y = (yx) x . 
This gives 

xy = (xy) (xy) = ((xy) x) ((xy) y) = (xy) y = xy2 . 

Thus (G, •) is a commutative idempotent groupoid satisfying xy = xy2. According 
to Theorem 8 of [6] the groupoid (G, •) is a semilattice. This completes the proof of 
the lemma. 

Lemma 4.7. If(G, •) is a medial noncommutative idempotent groupoid satisfying 
P2(G5 *) = 3, then the binary polynomial (xy) x is commutative. 

Proof. The prooffollows from Lemmas 4.1 —4.4 and the assumption p2(G, •) = 3. 

Proposition 4.8. If (G, •) is a medial noncommutative idempotent groupoid 
satisfying p2(G, •) = 3, then (G, •) is polynomially equivalent to a medial com
mutative idempotent groupoid. 

Proof. It follows from Lemmas 2.5, 2.6 and 2.7. 

Remark. Now the proof of (iii) of the Theorem is an immidiate consequence of 
Propositions 3.5 and 4.8. 
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