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KAziMiERZ NiKODEM, Bielsko-Biaia 

(Received March 23, 1987) 

1. In this note we consider e-invariant measures and apply the technique of 
functional equations to determine the densities of such measures for the diadic 
transformation. 

Let (X, 9M, m) be a measure space with a nonnegative or-finite measure m and 
assume that T: X ^ X is a measurable and nonsingular transformation (i.e. Tsatisfies 
conditions T~\Ä) e Ш for all A є Ш and т ( Т _ 1 ( Л ) ) = 0 whenever m(A) = 0). For 
an arbittary function/є L1 (L1 = ІЇ(Х, SDl, m)) the set-function vf: Ш -+ R defined by 

vf{A):=$T-HA)fdm, АєШ, 

is absolutely continuous with respect to m; denote by PTf its Radon-Nikodym 
derivative. The operator PT: L1 ^ Ll obtained in this way is called the Frobenius-
Perron operator corresponding to T(cf. [2]). Immediately by this definition we have 

U Prfàrn = Jr- i(A)/dm 

f o r a l l / e L 1 and АєШ. 
Let fi be a finite measure defined on 9Л and assume that e ^ 0. We say that ^ is 

є-invariant under T if 

ln(T-'(A))-fi(A)]uem(A) 

for all A € Ш. In the case where є = 0 this definition coincides with the known defi
nition of measures invariant under T. 

The following theorem is an useful tool for finding s-invariant measures absolutely 
continuous with respect to the given measure m. 

Theorem 1. Assume that ^i is afinite measure absolutely continuous with respect 
to m. Then fi is s-invariant under T if and only if its Radon-Nikodym derivative 
f = ap|am satisfies the condition 

(1) \PTf - f\ й s 

m-almost everyhwere on X. 
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Proof. Assume that the condition (l) is fulfilled and take a set A є Ш. Then 

lfi(T-'(A)) - ц(А)\ = \ir-HA)fdm - iAfdm\ = 

= | k Prfdm - k / d m | ^ \A \PTf - / | dm Í є ш(Л). 

Conversely, ifjU is e-invariant under T, then 

\U {Prf - f) H - H r - * 0 4 ) ) - ^ ) | ^ e m(A) 

for every A e Ш. Hence \PTf — / | ^ e (m-a.e.) : : 

R e m a r k 1. In the case where s — 0 the above result reduces to the well known 
theorem saying that a measure jn (absolutely continuous with respect to m) is in
variant under T if and only if its Radon-Nikodym derivative is a fixed point of the 
Frobenius-Perron operator PT. 

2. In this section we shall apply the above theorem to determine measures e-
invariant under the diadic transformation, i.e. the transformation т: [0, 1] ^ [0, 1] 
defined by r(x) : = 2x(mod 1). One can easily compute that in this case the Frobenius-
Perron operator Px corresponding to т is given by 

PJ(x) = if(ix) + Ш + i * ) . * є [0, 1] , 

for a l l / e L1 (now L1 = L*([0, 1])). Therefore the inequality (1) assumes the form 

(2) | i / ( i * ) + l / ( i + i * ) - / ( * ) | s e , * e [ 0 , l ] . 

It follows by theorem 1 that each integrabIe and positive solution of this inequality 
is the density of a measure e-invariant under т. One can easily check that inequality 
(2) is satisfied, for example, by functions of the form f(x) = c + h(x), x є [0, 1], 
where c is a real constant and \h(x)\ ^ ^e, x є [0,1]. These functions are not, however, 
unique solutions of(2). 

Putting#(x) : = f(x) — if(ix) — if(i + ix), x є [0, 1], we can rewrite inequality 
(2) as a system of two conditions 

(3) / ( * ) - i / ( i x ) + i / ( i + i*) + 0(x) , * e [ 0 , l ] 
and 
(4) Ш\йе, x e [ 0 , l ] . 

Now, every solution of the functional equation (3) with a given function g satisfying 
(4) is a solution of (2). The following theorem gives some condition under which 
equation (3) possesses an integrabIe solution. By P\ we denote the fc-th iteration 
of the operator PT; PT° := id. 

Theorem 2. Assume that geÜ. Equation (3) has a solution f belonging to Ü 
if and only if the series ££°=0 Pk

xg is convergent in L1. Every integrabIe solution of 
(3) is of theformf = c + Хл = о P\g, where c is a real constant. 

Proof. Assume that the series Yjk = o ^хЯ *s convergent in U and c is a real constant. 
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Then, using the continuity of the operator Pt and the fact that Pxc = c, we obtain 
00 00 00 

Pr(c + X Pfflf) + 9 = c + X Pk
t
+lg + 9 = c + X Pj<7 . 

fc=0 k=0 k=0 

which means that the function / = c 4- X*°=o ^ 0 satisfies (3). 
Conversely, assume that a funct ion/є L1 is a solution of(3). Then, by the linearity 

of PT, we have 

Pk
Tf=Pk

x
 + 'f+pkg forall fc = 0 , l , 2 , . . . , 

whence „ 
ZPr9=f-P"r + ,f, neN. 

k = 0 

Since the sequence (P?f)neN tends in L1 to j"J/(x)dx, the series ^ % P ^ i s con
vergent in L1. Moreover, putting c := J i / ( x ) dx, we obtain 

f=c + f,F>g. 
k = 0 

This finishes the proof : : 

E x a m p l e 1. Fix a nonnegative constant є and consider the function g(x) = 
= (2x - 1) e, x є [0, 1]. It is easy to show by induction that Pk

z g{x) = 2"*(2x - 1) є, 
k e N, and so £f= 0 ^ î ^'^) = (4x - 2) e. Therefore functions of the form / (x ) = 
= 4ex + c, where c є R, are solutions of(3) with g given above. If c ^ 0, then these 
functions are the densities of measures e-invariant under the diadic transformation т. 
In particular, the function f(x) = 4ex + 1 — 2e (where є ^ \) is the density of 
a normalized measure e-invariant under т. 

R e m a r k 2. It follows by theorem 2 that constant functions are unique integrable 
solutions of equation (3) with g = 0. Hence we obtain the well known theorem of 
Rényi saying that the Lebesgue measure is the unique normalized (and absolutely 
continuous with respect to the Lebesgue measure) measure invariant under the diadic 
transformation (cf. [3]). 

3. In this section we shall give some further information concerning the set of 
these functions g for which equation (3) possesses an integrable solution. 

Consider the sets 

X \= {g є L1 : £ P\g is convergent in L1} 
fc = 0 

Y:={geU : f a0 (x )dx = O}. 

It is clear that X and 7are subspaces of the space L1. In view of theorem 2 the space X 
consists of these and only these functions g є L1 for which equation (3) has an in
tegrable solution. 

If g eX, then there exists an fe Ü such that / = Ptf + g. Hence g є У, because 
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J J P T / ( x ) d x = { i / ( x ) d x . This proves that X c 7. The following example, due 
to A. Iwanik from Wroclaw, shows that the inclusion is strict. 

We will write (/, g) instead of jof(x) g(x) dx. 

Example 2. Consider the functions /„: [0, 1] ^ { — 1, 1}, n є N, defined by 

' - 1 , if xn = 0, 
X " W : " 1 , if xn = 1 

where (xj, x2, ...) is the diadic expansion of x. These functions form an ortonormal 
system in the space L2 and (/„, 1) = 0 for every n є N. Since the series ^ ° = i ljn2 is 
convergent, we infer, by the Riesz-Fischer theorem, that there exists a function 
g є L2 cz L1 such that (#, xn) = l /n> n є ^> a n d the series £* = ! (1/«) Xn *s c o n ~ 
vergent to g in L2. Then, by the continuity ofthe scalar product, we obtain 

(ff,l) = lim X - ( z „ , l ) = 0 , 
N^oo л = 1 n 

which means that # є 7. 
Now, notice that %n ° T = %n+i f° r а ^ и e Л/. Using these equalities and the fact 

thatthe operator P* conjugate to PT is given by P*h = h о i, h є L00, we obtain 

(Pk,Zx) = ( ^ . * ' x . ) - ( 0 . A + i ) = 7 ^ 
/С + 1 

for every A' є АУ. Hence 

(I^,zi)-i гЧ. ^e/v> 
fc = i k = i A: + 1 

which implies that the series Yj?=i P)g is not weakly convergent. Consequently, 
it is not convergent in L1, and so g фХ. 

Now we can prove the following 

Theorem 3. The space X is dense and of thefirst category in 7. 
Proof. Consider the operator F:U ^ Y defined by F(f) :=f- Ptf, feÜ. 

Evidently, F is linear and continuous. Moreover, F(L1) — X. Since X Ф 7, we obtain 
by the open mapping theorem (cf. [4], 2.11) that X is ofthe first category in 7. 

Now we shall show that every polynomial whose integral on [0, 1] is equal to 
zero belongs to X. Let fn(x) : = xn and gn : = fn — Pxfn, n є N. Of course gn є X for 
all n e N. Moreover, it is easy to notice that gn is a polynomial of degree n (the 
coefficient at xn is equal to 1 — 2n). Let w(x) = anxn + . . . + avx 4- a0, x є [0, 1], 
be an arbitrary polynomial (with real coefficients) such that j ^ w(x) dx = 0- We can 
choose numbers bl9 ..., bn є R in such a way that the polynomial bngn + .. . + blg1 

has the same coefficients at x\ i = 1, ..., n, as the polynomial w. Then also the coef
ficients at x0 must be the same, because 

Ji w(x) dx = ß (b„ g,(x) + ... + b , g,(x)) dx ( = 0) . 
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Therefore w = bngn + ... 4- bìgl, and so w є X as a linear combination ifelements 
oïX. Since the set ofall polynomials is dense in L1, we infer that the set ofall poly
nomials whose integrals on [0, 1] are equal to zero is dense in Y. Thus X is dense 
in Y : : 

R e m a r k 3. Using a measure-theoretical version ofthe open mapping theorem due 
to K. Baron (cf. [1], Lemma), we can prove that X is a Borel subset ofYand there 
exists a probability measure v on the family of all Borel subsets of Y such that 
v(X + v) = 0 for every у є 7( i .e . X is a Haar zero set). S o , X is small in Falso 
from measure-theoretical point ofview. 
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