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LOCAL SOLVABILITY OF DIAGONAL SEMILINEAR 
PARABOLIC SYSTEMS 

ToMASz DtOTKO, Katowice 

(Received September 1, 1989) 

INTRODUCTION 

In this note we want to present a more direct extension of our results, reported 
recently in [3], concerning the solvability of a single equation onto diagonal semi-
linear parabolic systems ofthe form: 

(1) u] = X (aij(t, x) ul,%, + f% x, u, ul) = : P V + f , 
iJ 

where r,7 = l , . . . , n , v = l , . . . , A T , u = (u\...,uN) and uv
x = (uv

Xi,...,ux) is 
a space gradient of uv. The form (1) is more restrictive than that considered recently 
in [ i ] or [2], however our proofs are more elementary and allow a more precise 
estimate (see the estimate of the life time of solution in [3]) in this special case. 
There are also important examples taken from applications covered by (1) (compare 
with the end ofthis note). We complete (l) by the initial condition 

(2) wv(0, x) = ul(x) , x є Q c Rn , v = 1, ..., N , 

with bounded, smooth domain Q and boundary conditions of one of the two fol
lowing types: 

riuv 

(3) cp4x) uv + фѵ(х) — = 0 on dQ , 
v v * v ; m v 
where 

— : = I аЬ(*>x) —cos (*- xi) » 
dNv ij dxj 

n is the inward normal vector to dQ, and one (and only one for each v) of the ad
ditional requirements on the functions q>v, фѵ is assumed to hold: 

(3a) *Av(x) = 0 a n d <PV(X) = <Po > 0 on dQ (the Dirichlet condition for wv), 

(3b) <PV(X) = 0 anc* Ýv(x) = *Ao > 0 (the third boundary condition for uv). 
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1. ASSUMPTIONS 

The following conditions concerning the data in ( l ) - ( 3 ) are assumed to hold 
throughout this note; for a fixed a e (0, 1) 

(Al) The equation is parabolic: 

v э v v 2>r/i,xK,.i,.^o|i|2. 
r > O a o > 0 .xeQ ÇeRn i,j 

гє[О.т] 1 ^ v ^ i V 

(A2) a]j, (aVij)Xi are Holder continuous in x (exponent a), (аѵ
и)х. аге locally Holder 

continuous in t (exponent | a ) and a\} are locally Lipschitz continuous in t, all this 
in the set [0, oo) x Q. 

(A3) P are locally Lipschitz continuous with respect to t, uß and uXi are Holder 
continuous (exponent a) in x, the Lipschitz, Holder constants are valid in sets 
[0, т] x Q x [~r1? rxY x [~r2, r2]n (ru r2 > 0 arbitrary). 

(A4) f , f e C 1 + t 4 dQeC2+\ 

(A5) uleC2+x(Q) and necessary compatibility conditions are satisfied; 

tt; =o = PX + /*(o>*.*o.K)*) 
on dQ if (3a) holds, 

<p%x)ul + r(x)^ =0 
dNv 

on dQ under the condition (3b). 
The conditions (Al ) - (A5) mentioned above are sufficient for local solvability 

ofthe problem ( l ) - ( 3 ) as shown below. 
By a C 1 2 solution u ofour problem we mean its classical solution with derivatives 

appearing in (!) continuous on compact subsets of [0, Tex) x Q, where Tex ^ +oo 
is the life time of such a solution. We set \v\p for the U{Q) norm of v, \v\2,p for the 
W2»(Q)norm ofy. 

Analogously as in [3] we introduce a set 

(4) X:={(t,x,u,p)eR+xQxRNxRn; ř e [ 0 , T 0 ] , xeQ, 

\u\ й М, , \p\ й М2) , 

where T0 > 0 is fixed, М1 and M2 are two positive numbers and \u\ = £ |wv|* 
v 

Inside X the Lipschitz constants for ay
u,f

y are fixed and denoted as follows; A is 
a Lipschitz constant for all a]j with respect to t, Lt for a l l / v with respect to t, Lu for 
a l l / v with respect to uß, ß = 1, ..., N, Lv for a l l / v with respect to uXi, ì = 1, ..., л, 
v = l , . . . , N . 
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2. RESULTS 

We are ready to formulate the introductory lemma of our note. 

Lemma 1. As long as a C1,2 solution u o / ( l ) - ( 3 ) remains in X, thefollowing 
estimatesfor sufficiently small ô (0 < ö ^ ô0) hold: 

(5) 3 I I K ( i , -)||co Û Ш І № -)||, + NM\Q\»>) + 
C ó > 0 v i v 

+ c,K'.-)l,. 
where p > n, M ^ |f(t, - , 0 , 0 ) | , for te[0, To], and \\u(t, - ) | ^ : = £ B""(<, -)||r 

as usMaZ, C, = const. <Г ( р + л ) / ( р - я ) . 
Outline ofthe proof. The proofis based on the following three estimates: 
(i) Since the equation (l) is fulfiled and inside X global Lipschitz constants are 

valid, then: 
z \r»% ofl, * і ікс, -)«Р + z z м«;.('. -)i, + 

V V V І 

+ Lu\\u(t,-)l + NM\Q\^. 
(ii) As a consequence of the Calderon-Zygmund estimates (compare e.g. [8], 

Chapt. III, § 11) for solutions oflinear elliptic equations, we have: 

£ \\u*(t, -) | |2 ,P è cons t .X([ |PV(t , . ) | , + И ' > • ) ! , ) , 
v v 

the const. above being valid while w remains in X. 
(iii) As a consequence ofthe Nirenberg-Gagliardo estimates, for arbitrary òx > 0 

and every fixed v є {1, ..., N} : 

Z|-;X'.-)l-ai,H'.-)h* + c,,Hi,-)I,. 
i 

whenever p > и. 
The three estimates together give as the result (5), provided a sufficiently small ôi 

in (iii) is taken. 
An estimate analogous to (5) for the (smooth) C1 '2 solution u remains still valid 

for t — 0 and u(t, •) replaced by u0 with the only evident change of u]{t, •) for 
PxUo + / v (0 , x, u0, (wo)*)- The proof is completed. 

We are now able to formulate the a priori estimates fundamental in the proof of 
local solvability o f ( l ) - ( 3 ) . 

Theorem 1. For two arbitrary pairs ofpositive numbers (mu m2) and (M t , M2) , 
such that m1 < M1 and m2 < M 2 , there exists a time T e ( 0 , T0], that every C1 , 2 

solution u o / ( l ) - ( 3 ) corresponding to the initialfunction u0 with 

(6) W U á « i and i E ( l F b S + r ( 0 , - , « o , ( « S ) , ) f l , + 
V 

+ NM\Q\l»>) + C, | | -oi , g m2 
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(with S, Cô the same as in Lemma l), satisfies, at leastfor t ^ T: 

(7) \\u(t, •)!„ Û M , and L E | < ( i , -)|U ^ M 2 • 

We present here only a part of the proof devotedto the a priori estimates of the 
time derivatives u](t, •) in Lp(£>), p being an even number grater than max {n; 2}, 
differing in details from its one-dimensional analogon. The above mentioned estimates 
together with an L°°(i2) a priori estimate of u(t, •) (which is omitted in the present 
note) leads, in the presence of Lemma 1, to the second conclusion in (7). We have: 

Lemma 2. Under the assumptions of Theorem 1, whenever u remains in X, then: 

(8) ||«,(/, -)||,2 Ï [ b ( 0 , Ж + * ( l - e x p ( - 2j f ) ) J exp ( ^ r) , 

w/řA c independent ofp (here p is an even number greater than max {n; 2}). 
Proof. As a consequence of (!) we get an equation for difference quotients (for 

fixed h > 0 we set 

gh(t, x) := h~x(g(t + A, x) - g(t, x))): 

(9) ul = X (a]j(u x) ul)Xih + fl(t, x, «, иЭ . 
iJ 

Multiplying (9) by (uiy*1, integrating over Q and by parts and summing with respect 
to v, we obtain: 

(10) -^fEW)'dx = 
P àtJa v 

= I {f - ^ 1 («ir ' ds - f I [<a<, x) «;/i + h, x) + ai(t, x) u;xj(t, x)]. 
v Urn L ČN Jh Ja'<i 

. ЫУ-^Х1 dx + f Шиї)'-1 dx\ = : £ {*i - [R2 + *з] + *Л . 

Due to (За) or (3b) the boundary integral is non-positive (Яг ^ 0), the remaining 
right side components are estimated as follows: 

(11) |л2| è %L^> л z [[w*b.U \\WYp-2)/2\UP-v x 
p 

*(IIK(< + MI|,), 
j 

where the Holder inequality was used, 

«ofzftOTî.' 
Jfl ' 

Лз á - 4 ^ ~ -

637 



further 

+ 

т 2 + L v -
P 

Ä4| й Lt f X К Г 1 dx + Lu f X І^КГЧ d* 
J ß ' J ß л 

f ш»тл<)рі2\ахй 
j ß ' 

í, í С«Г 2 + K)P] dx + Lu [ £ Г^^і K)p + - «)P1 dx 
Jo Jn <• L p p J 

í m<y%a* + Lv-[ K ) ' d x , 
J n '1 £ J ß 

r e 
+ L v -

P. 

where the Cauchy and Young inequalities and an estimate \a\p l ^ ap 2 + ap 

were used. The final, following from (10) estimate has thus the form: 

1 _d_ 

P d ' , 
f lW** Í I ff-^4^*o + ? & ^ Ц 4- Lvi] x 

J ß »' > (L P P 2 PJ 

f I [КГ2],2, dx + (p-l)An |K)cp-2)/2l2
P/(P-2) (Z \K(t + л, -)||,)2 + 

J.Q i P8 J 
/Г \(р-2)/рЛ 

+ Lt\Q\^(\ K)*dxJ U 

+ lb^ + Lt + b J ^ N + -"YK IW)'d* . 

f ZK)Mx <; с Г SK)'dx + c, ff I«)pdxY 
'Jß v J« v VJß v / 

Estimating the second right side component with the use of (5), choosing e, є small 
enough, so that the first square bracket at the right hand side becomes non-positive, 
letting h ~> 0 + , we arrive at the estimate: 

d f ^ / ѵЧ f ^ , v4« / Ґ v^/ v4 . yp-*Vp 

d i , 

generating (8) directly. The proof is completed. 
The remaining part of the proof of Theorem 1 is left to the reader, as it is analogous 

to that presented in [3], Theorem 1. Note, that in the same way as in [3], the esti
mation ofthe life time Tex ofthe solution u to ( l ) - ( 3 ) is possible. 

We now have the fundamental: 

Theorem 2. Under the assumptions (A l ) - (A5) there exists unique local solution 
ве(Сі+(у/2).2+Ууѵ ofthe proMem ( l ) - ( 3 ) . 

Idea of the proof. From now on any particular equation in (1) will be treated 
separately (just as in [3], Theorem 2) and we can find the a priori estimates of the 
Holder norms of u in the following spaces: 

(12) V » v e C 1 / 2 - 1 / 2 ( [ 0 j ] x Й) , 
І^ѵ^Л' 
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and 
(13) V ul, є Cil2's([0, T] x ö ) 

1 ^ v < ,V 
1 ^ i ^ л 

with ô = \ s|(s + 1) and arbitrary s є (0, 1 — (и/р)). Later, it is a familiar con
sequence of the classical Schauder type estimates in Holder norms (compare [4] 
for the Dirichlet boundary condition and [5] for the third boundary condition) and 
the Leray-Schauder Principle (see e.g. [8]), that the solution of ( l ) - ( 3 ) exists; 
ux e C1 +<y/2).2+y([o, Г] x Ü) with y = min {a; Ô}. Uniqueness ofthis solution follows 
easily from the Lipschitz continuity of/v with respect to the functional arguments. 

3. EXAMPLES 

We will close our considerations with some examples ofsystems ofthe form covered 
by (1). 

Example 1. Consider first a problem studied by A. A. Kiselev and O. A. 
Ladyzenskaja in [6]: 

з 
(14) vt - vAv + Y.vkvXk = f(t,x), 

k= 1 

v = 0 on cQ , v(0, x) = a(x) , x = (xj, x2, x3) e Q cz R3 , 

similar in nature to the famous Navier-Stokes system in dimension three. All our 
assumptions are satisfied, hence local existence of the solution v is justified. 

Example 2. The system considered in [10] by F. Rothe: 

(15) ut = DAu + F(t,x, u)9 

u = (u\ ..., uN), subjected to boundary conditions ofthe type (3a) or (3b) is given 
as a special case in (1). Compare also the monograph [9] by the same author, for 
other special examples taken from various applications. 
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