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ORIENTED GRAPHS WITH PRESCRIBED 
m-CENTER AND m-MEDIAN 

GARY CHARTRAND1), Kalamazoo, SoNGLiN TiAN, Warrensburg 

(Received September 10, 1990) 

Let D be a strong digraph. For vertices u and v of D, the directed distance d(u, v) 
is the length of a shortest (directed) u — v path in D. The ш-distance md(u, v) 
between u and v is max {d(u, v), d(v, u)}. For subdigraphs F, and F2 of a strong 
digraph D, the m-distance md(F1, F2) between F 1 and F2 is min {md(u, v) | u e 
є V(FX), ve V(F2)}. The m-eccentricity me(v) of a vertex v is max {md(v, u) \ u e 
e V(G)}. The m-center mC(D) of D is the subdigraph induced by those vertices of 
minimum m-eccentricity. The m-distance md(v) of v is £ md(^, w). The m-median 

ueV{D) 

mM{D) is the subdigraph induced by those vertices of minimum m-distance. It is 
proved that for any two oriented graphs D, and D2 and positive integer k, there 
exists a strong oriented graph H such that mC{H) = Dl9 mM(H) = D2 and 
mdH(mC(H), mM(H)) = k. Also, it is proved that for any three oriented graphs 
£>!, D2 andK suchthatiC is isomorphic to an induced subdigraph ofboth Dx and D2, 
then there exists a strong oriented graph H such that mC(H) ^ Dl9 mM(H) ^ D2 

and тС(Я) n »іМ(Я) s К. 
The distance d(u, v) between two vertices u and v in a connected graph G is the 

length ofa shortest u — v path in G. The distance between two subgraphs Fx and F2 

of G is defined by d(Fu F2) = min {d(u, v) | u e F(F,), t; є F(F2)}. The eccentricity 
e{u) of a vertex w is max {d(u, v) | ^ є V(G)}. The center C(G) of G is the subgraph 
induced by those vertices of maximum eccentricity. The eccentricities of the vertices 
of the graph G of Figure 1 are shown together with the center of G. 

'<4#' 
3 2 2 Figure 1 
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The distance ofa vertex u in a connected graph G is defined by d(u) = £ d(w, y). 
t>eK(D) 

The subgraph ofG induced by those vertices ofminimum distance is called the median 
of G and is denoted by M(G). The vertices ofthe graph G of Figure 2 are labeled by 
their distances and the median of G is shown. 

G: 

Figure 

M(G): 

Hendry [ l ] , Holbert [2] and Novotny and Tian [3] studied the relative location 
of the center and median of a connected graph. Hendry proved that for every two 
graphs F and G, there exists a connected graph H such that C(#) = F and M(#) = G 
where C(H) and M(#) are disjoint. Holbert extended this result by showing that for 
every two graphs F and G and positive integer /c, there exists a connected graph H 
such that C(H) щ F9 M(H) s G, and d(C(H), M(H)) = fc. Thus, the center and 
median can be arbitrarily far apart.On the other hand, these subgraphs can be arbitrar
ily close as Novotny and Tian showed when they proved for any three graphs F, G 
and K, whereX is isomorphic to an induced subgraph of both F and G, there exists 
a connected graph H such that C(#) s і7, М(Я) £ G and C{H) n М(Я) s K. 
It is the goal of this paper to present directed analogues of the theorems of Holbert 
and ofNovotny and Tian. 

For vertices u and v in a strong digraph D, the directed distance d(u, v) is the 
length ofa shortest (directed) u — v path in D. The maximum distance or m-distance 
md{u, v) between u and v is max {d(u,v), d(v, u)}. It is not difficult to show that the 
m-distance is a metric on the vertex set of a strong digraph. For the digraph D of 
Figure 3, d(u, v) = 3 and d(v, u) = 4, so md(u, v) = 4. 

Figure 3 

For subdigraphs Fx and F2 of a strong digraph D, the m-distance between Fx 

and F2 is defined by 

mdD(Fu F2) = min {mdD(u, v) | u є V(FX), v є V(F2)} . 
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For the subdigraphs Ft and F2 ofthe digraph D of Figure 4, 

mdD(Fu F2) = md(u, v) = 3 . 

D: 

Figure 4 

For a given oriented graph D, our first result shows that any subdigraph F of D, 
whose vertices have the same m-distance in D, can be the m-median ofsome oriented 
graph that contains D as an induced subdigraph. 

Lemma 1. Let D be a strong oriented graph and let F be a subdigraph of D 
with mdD(u) = mdD(v) for all u, v e V(F). Then there exists an oriented graph H 
having D as an induced subdigraph such that mM(H) s F. 

Proof. Suppose mdD(v) = k for all ve V(F). Let 

-p(F) + к' 
n = - P(D) + 1 

We construct an oriented graph H by adding 2n new vertices uh v( (1 ^ i ^ n) to D 
and the arcsjoining all vertices o f F to u{ and from t\ for 1 ^ i ^ n (see Figure 5). 

H: u, 

Figure 5 

Then, 

mdH(v) = £ (md(v, u) + md(v, »,)) + £ mdH{v, x) ^ 
/ = 1 xeK(D) 

S 4n + X mdD(v, x) = 4n + md(^) = 4n + fc, for v e V(F) 
xeV(D) 
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For 1 ^ / ^ и, it follows that 

md(ui) = £ (md(uh Uj) + md(uh Vj)) + md(uh v{) 4-
i g у Ф / ^ « 

+ Xw d»(M i 'x)+ Z mdH(uhx)^ 
xeV(F) xeV{D)-V{F) 

^ 7(n - 1) + 2 + 2 p(F) + 3(p(D) - p(F)) = 

= ln + 3 p(D) - p(F) - 5 . 

Similarly, md{v^) ^ ln + 3 p(D) - p(F) - 5 for 1 й i ^ «• If ve V(D) - K(F), 
then 

mdH(v) = Y+ (md(v, ut) + md(v, Vi)) + £ mdH(v, x) ^ 
l ^ i ' ^ r i л є К ( О ) 

Since 
^ 6« + 2(p(D) - 1) . 

i>(0) + 1 , № ) + '̂ 

it follows that 

ln + 3 p(D) - p(F) - 5 > 4/7 + k and 6n 4- 2 p(D) - 2 > 4« + k . 

Therefore, шМ(Я) s F. D 

In order to apply Lemma 1 to any subdigraph F of D, we prove that under certain 
conditions the oriented graph D can be imbeded into an oriented graph H such that 
all vertices of F have the same m-distance in H. 

Lemma 2. Let D be a strong oriented graph and let F be a subdigraph of D with 
max{mdD(u,v)\u, veV(F)) g 3. Then there exists an oriented graph H con
taining D as an induced subdigraph such that 

(i) if V(H) Ф V(D) then max {mdH(u, v) | u e V(F), v e V(H) - V{D)) = 3, 
and 

(ii) mdH(u) = mdH(v) for all u, v є V(F). 
Proof. Let mA(D) = max {mdD(x) \ x є V(F)}, mô(D) = min {mdD(x) | x є V(F)] 

and n = mA(D) — mô(D). If n = 0, then mdD(u) = mdD(v) for all w, y є V(F). 
Let Я = D. Then the oriented graph H has the desired property. If n ^ 1, then we 
denote SÁ(D) = {xe F(F) | mdD(x) = mA(D)}. Define an oriented graph H{ by 

V(H,)= V(D)u{wl9xl9yi} 
and 

E(Ht) = E(D) u ((w,, x,) , (x,, Уі), (yu w,)} u 

u { ( w , , 2 ) , ( z , y , ) | z e S ^ D ) ) u 

u{(Xl,z),(z,yi)\zeV(F)-SA(D)} 
(see Figure 6). 
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Figure 6 

Clearly, D is an induced subdigraph of Я , and max {mdHi(u, v) | u e V(F), 
ve V(HX) - K(D)} = 3. Since mdD(zl9 z2) й 3 for all z,, z2 є K(F), it follows that 
mdHi(z, t) = mdD(z, t) for all z є V(F) and r e V(D). Гп particular, mdHí(zí9 z2) = 
= mdD(zl9 z2) S 3 for all z l 5 z2 є V(F). Therefore, for z є SA(D), 

mdHl(z) = m ^o( z ) + " " W * , w 0 + т ^ я , ( 2 ' *i) + ™dff,(z> J;i) = 
= mdD(z) + 2 + 3 + 2 = mdHl(z) + 7 . 

Similarly, mdH(z) = mdD(z) + 8 for z є K(F) - SÄ(D). Define mA(Hx) = 
= max {mdHi(x) | x є K(F)} and mô(Hx) — min {mdHl(x) | x є V(F)}. Then 
mA{Hx) = mA(D) + 7 and m/ t f j ) = m^(D) + 8. Therefore, шд(Я,) - w,(H t) -
= (mA(D) + 7) - {m,{D) + 8) = mA(D) - m,(D) - 1. Let SA(Ht) = 
= {хє F(F) | mdHi(x) = mA(Hx)}. We define an oriented graph H2 by 

К(Я2) = K(f fOu{w2,X2,^} 
and 

E(H2) = E(HX) u {(w2, x2), (x2, >'2), (>'2, w2)} u 

u {(vv2, z), (z, y2) | z e SA(Hj)} u 

v{(x29z),(z,y2)\zeV(F)-SA(Hx)}. 

By a similar argument, it follows that mA(H2) — mô(H2) = mA(D) — mô(D) — 2. 
We repeat this process n — 1 times. Let Я = Я,г Then тА(Н) = mô(H), namely, 
mdH(u) = mdfj(v) for all w, v є V(F). In addition, by the construction of Я,„ it follows 
that D is an induced subdigraph of Я and max {mdH(u, v) | u e F(F), ^ є V{H) — 
- V{D)) = 3. D 

With the aid of Lemmas 1 and 2, we now are ready to prove that for every pair of 
oriented graphs Dx and D2 there exists an oriented graph Я such the m-center and 
m-median are isomorphic to Dx and D2, respectively. Furthermore, the m-distance 
between Dx and D2 in Я can be arbitrarily prescribed. 

Theorem 3. Let Dx and D2 be oriented graphs. For all integers k ^ 2, there 
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exists a strong oriented graph H such that mC(H) £ D t , mM{H) £ D2 ялс/ 
mdH(mC(H)9 mhf(H)) = fc. 

Proof. We first define an oriented graph Я 0 by adding two new vertices w and *; 
to D2 and the arc (u, v) together with the arcsjoiningall the vertices of D2 to u and 
from v. Clearly, Я 0 is strong and mdHo(x, y) ^ 3 for all x, у є F(D2). By Lemma 2, 
there exists an oriented graph H t containing H0 as an induced subdigraph such that 
(i) if V(HX) Ф V(H0)9 then max {т^Я і (х , У) I * є K(D2), у є K(tfj) - К(Я0)} = 3, 
and (ii) mdHi(x) = mdHx(y) for all x, y e V(D2). Let nl = max {dHi(x, y) | x є ^(#2)> 
^ e K ( H O - F ( D , ) } and n2 = max{dHXy,x)\xeV(D2), yeV(Hj-V(D,)}. 
Since Я х is strong, it follows that nu n2 ^ 2. By the construction ofЯ 1 , i fЯ 1 Ф Я 0 , 
then Mj = »2 = 3. Further, if Ht = Я 0 , then л, = и2 = 2. Therefore, л, = n2. 
Let ř = max {3, nx). We define the oriented graph Я 2 by 

К(Я2) = V(H,) u 7(D,) u {ui | 0 ^ i è к - 1} u 

u {vi | 0 ^ і й к + ř} 
and 

E(H2) = E(H t) u E(D0 u {(и0, *0)} u {(x, и0), (ü0, x) | x e V(Dt)} u 

u {(",-, M|+i) | 1 á / ^ fc - 2} u {(»,., e i + 1) | 1 й i û k + t - 1} u 

u {(x, ux\ (x, vx), (vk+t9 x) | x e F(D,)} u {(uk. l9 x) | x є V(D2)} u 
u { ( x , j ) | x e F ( D , ) , y 6 K ( D , ) } 

(see Figure 7). 

Figure 7 

We now show that mC(H2) š D t . Let x є K(Dj). First observe that 
(i) mdH2(x, y) g 3 for all j ; e F(D t); 

(ii) mdH2(x, u0) = mdHl(x, o0) = 2; 
(iii) mdH2(x, Ui) S к for 1 § ; <; fc _ i ; 

(iv) máW2(x, yř) g fc + t for 1 g i ^ к + ř; and 
(v) mdH2(x, vt) = к + f. 

721 



For y e V(HX), it follows that 

™dH2(x, y) = max {dH2(x, y), dH2(y, x)} ^ 

g max {3Я2(х, 2) + 3„2(z, у), ЛЯ2(у, z) + dHl(z, x)} Ž 

^ max {fc + 4 2 ( z , 3>), dH2(y, z) + 1} á 

й max {fc + 5Hl(z, у), 1 + 3Ді(у, z)}, where z є F(D2) . 

Observe that £?Hl(z, j;) ^ max {dH%(z, y') | / є V(HX)} = max {max {d^,(z, / ) | / є 
є V(D2)}, max { 4 , ( 2 ' З7') I / є К ( Я і ) ~ V{D^}} ^ m a x {3> "i} = '• Similarly, 
dHx{y, z) ^ max {3, w2} = ř- Therefore, 

mdH2(x, у) й max {fc + r, 1 + г} = к + t for all у є V{HX) . 

Hence, теІІ2(х) = к + /, for all x є V(D^. It is obvious that meH^(x) > k + ř, 
for all x є V(H2) - 7 ( 0 , ) . Thus mC(H2) s £ , . 

Since Ä: ̂  2, it follows that mdHl(x, y) = mdHl(x, y), for all x є F(D2), v є ^ ( Я ^ . 
Jt follows also that 

md„2(x, z) = md„2(v> z ) » f o r a l 1 x, у є V(D2) , z є К(Я2) - К(Я,). 
Therefore, 

mdHXx) = mdHí(x) + X *w<M*> z) = 
zeF(tf2)-V(H,) 

= mdHí(y) + X ™dH7(y, z) = mdHl(y), 
zeV(»2)-V(Hi) 

for all x, y e V(D2). Hence, by Lemma 1, there exists an oriented graph Я containing 
H2 as an induced subdigraph such that mM(H) £ D2. Further, by the construction 
of Я in the proof of Lemma 1, it follows that mdH(x, y) = 2 for all x e V(D2), 
ує V(H) - V(H2). Therefore mC(H) = mC(H2) £ D,. It is obvious that 
mdH(mC(H), mM(H)) = fc. D 

We now prove the other extreme case where the m-center and m-median of an 
oriented graph can be overlap on any common induced subdigraph. 

Theorem 4. Let D,, D2 be oriented graphs. Let K be a nonempty oriented graph 
isomorphic to an induced subdigraph of both Dx and D2. Then there exists an 
orientedgraphHsuch that mC{H) = Dl9 mM(H) £ D2 and mC(H) n mM(H) = K. 

Proof. Suppose V(Di) = {w,, u2, ..., uPi} and V(D2) = {#i, tf2, •••» ^ P 2 }- Without 
lossofgenerality,weassumethatp(X) = fc,<{wiiW2,..-,tt*}> = {ütj,t>/2,...,ütic}> = 
^ X, and that w7- ~> Vi{j = 1, 2, ..., A:) is an isomorphism between <{wj, w2, ..., wfc}> 
and <{yfl, У/2, ..., y,-k}). We first construct an oriented graph Я 0 by identifying w7-
and vi9 and labeling the resulting vertex again by Uj for 1 g j g fc. We now define 
an oriented graph Hx by 

К(Яі) = V(H0) u {w, ^} u {wf, w; | 1 g i й 6} 
and 

£ ( Я 0 = E(H0) u {(M, .)} u {(wh W | + 1 ) , (w;, w;+1) | 1 ^ í ^ 5} u 
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u{(x,u\(v,x)\xeV(H0)}v 
u {(",-, Wj), (w6, и£), (м,-, w'i), (w6, Mř) | 1 ^ / ^ px) 

(see Figure 8). 

" , : 

Figure 8 

ìt is clear that ш-rad Я , = 6 and mC(Hx) s Dj. By Lemma 2, there exists an 
oriented graph Я 2 containing Я! as an subdigraph such that (i) if V(H2) + V{H^ 
then max{mdH2(x,y)\xeV(D2), уеѴ(Н2)-Ѵ{Нг)} = Ъ and (ii) mdHz(x) = 
= mdH,O0 for all x , ^ e K ( D 2 ) . Thus rwdff2(x, >') á 6 for x e K(D,), >>є V(H2) -
— V(HX), from which it is easy to see that m-rad H2 = m-rad Hx = 6 and mC(H2) = 
= mC(Hi) = D,. By Lemma 1, there exists an oriented graph Я containing H2 as 
an induced subdigraph such that mM(H) = D2. The construction оГЯ in the proof 
of Lemma 1 implies that mdH(x, y) = 2 for x є V(D2), у є V(H) — V(H2). Therefore 
mC(H) = mC(H2) s Dx. П 
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