Czechoslovak Mathematical Journal

Gary Chartrand; Song Lin Tin

Oriented graphs with prescribed m-center and m-median

Czechoslovak Mathematical Journal, Vol. 41 (1991), No. 4, 716-723

Persistent URL: http://dml.cz/dmlcz/102502

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ORIENTED GRAPHS WITH PRESCRIBED m-CENTER AND m-MEDIAN

Gary Chartrand ${ }^{1}$), Kalamazoo, Songlin Tian, Warrensburg
(Received September 10, 1990)

Let D be a strong digraph. For vertices u and v of D, the directed distance $\vec{d}(u, v)$ is the length of a shortest (directed) $u-v$ path in D. The m-distance $m d(u, v)$ between u and v is max $\{\vec{d}(u, v), \vec{d}(v, u)\}$. For subdigraphs F_{1} and F_{2} of a strong digraph D, the m-distance $m d\left(F_{1}, F_{2}\right)$ between F_{1} and F_{2} is $\min \{m d(u, v) \mid u \in$ $\left.\in V\left(F_{1}\right), v \in V\left(F_{2}\right)\right\}$. The m-eccentricity $m e(v)$ of a vertex v is $\max \{\operatorname{md}(v, u) \mid u \in$ $\in V(G)\}$. The m-center $m C(D)$ of D is the subdigraph induced by those vertices of minimum m-eccentricity. The m-distance $m d(v)$ of v is $\sum_{u \in V(\boldsymbol{D})} m d(v, u)$. The m-median $m M(D)$ is the subdigraph induced by those vertices of minimum m-distance. It is proved that for any two oriented graphs D_{1} and D_{2} and positive integer k, there exists a strong oriented graph H such that $m C(H) \cong D_{1}, m M(H) \cong D_{2}$ and $m d_{H}(m C(H), m M(H))=k$. Also, it is proved that for any three oriented graphs D_{1}, D_{2} and K such that K is isomorphic to an induced subdigraph of both D_{1} and D_{2}, then there exists a strong oriented graph H such that $m C(H) \cong D_{1}, m M(H) \cong D_{2}$ and $m C(H) \cap m M(H) \cong K$.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The distance between two subgraphs F_{1} and F_{2} of G is defined by $d\left(F_{1}, F_{2}\right)=\min \left\{d(u, v) \mid u \in V\left(F_{1}\right), v \in V\left(F_{2}\right)\right\}$. The eccentricity $e(u)$ of a vertex u is $\max \{d(u, v) \mid v \in V(G)\}$. The center $C(G)$ of G is the subgraph induced by those vertices of maximum eccentricity. The eccentricities of the vertices of the graph G of Figure 1 are shown together with the center of G.

[^0]The distance of a vertex u in a connected graph G is defined by $d(u)=\sum_{v \in V_{(}(\boldsymbol{D})} d(u, v)$. The subgraph of G induced by those vertices of minimum distance is called the median of G and is denoted by $M(G)$. The vertices of the graph G of Figure 2 are labeled by their distances and the median of G is shown.

Hendry [1], Holbert [2] and Novotny and Tian [3] studied the relative location of the center and median of a connected graph. Hendry proved that for every two graphs F and G, there exists a connected graph H such that $C(H) \cong F$ and $M(H) \cong G$ where $C(H)$ and $M(H)$ are disjoint. Holbert extended this result by showing that for every two graphs F and G and positive integer k, there exists a connected graph H such that $C(H) \cong F, M(H) \cong G$, and $d(C(H), M(H))=k$. Thus, the center and median can be arbitrarily far apart. On the other hand, these subgraphs can be arbitrarily close as Novotny and Tian showed when they proved for any three graphs F, G and K, where K is isomorphic to an induced subgraph of both F and G, there exists a connected graph H such that $C(H) \cong F, M(H) \cong G$ and $C(H) \cap M(H) \cong K$. It is the goal of this paper to present directed analogues of the theorems of Holbert and of Novotny and Tian.

For vertices u and v in a strong digraph D, the directed distance $\vec{d}(u, v)$ is the length of a shortest (directed) $u-v$ path in D. The maximum distance or m-distance $m d(u, v)$ between u and v is $\max \{\vec{d}(u, v), \vec{d}(v, u)\}$. It is not difficult to show that the m-distance is a metric on the vertex set of a strong digraph. For the digraph D of Figure $3, \vec{d}(u, v)=3$ and $\vec{d}(v, u)=4$, so $m d(u, v)=4$.

Figure 3
For subdigraphs F_{1} and F_{2} of a strong digraph D, the m-distance between F_{1} and F_{2} is defined by

$$
m d_{D}\left(F_{1}, F_{2}\right)=\min \left\{m d_{D}(u, v) \mid u \in V\left(F_{1}\right), v \in V\left(F_{2}\right)\right\} .
$$

For the subdigraphs F_{1} and F_{2} of the digraph D of Figure 4,

$$
\begin{gathered}
m d_{D}\left(F_{1}, F_{2}\right)=m d(u, v)=3 . \\
D:
\end{gathered}
$$

Figure 4
For a given oriented graph D, our first result shows that any subdigraph F of D, whose vertices have the same m-distance in D, can be the m-median of some oriented graph that contains D as an induced subdigraph.

Lemma 1. Let D be a strong oriented graph and let F be a subdigraph of D with $m d_{D}(u)=m d_{D}(v)$ for all $u, v \in V(F)$. Then there exists an oriented graph H having D as an induced subdigraph such that $m M(H) \cong F$.

Proof. Suppose $m d_{D}(v)=k$ for all $v \in V(F)$. Let

$$
n=\left\lceil\frac{p(F)+k}{2}\right\rceil-p(D)+1
$$

We construct an oriented graph H by adding $2 n$ new vertices $u_{i}, v_{i}(1 \leqq i \leqq n)$ to D and the arcs joining all vertices of F to u_{i} and from v_{i} for $1 \leqq i \leqq n$ (see Figure 5).

Figure 5

Then,

$$
\begin{aligned}
& m d_{H}(v)=\sum_{i=1}^{n}\left(m d\left(v, u_{i}\right)+m d\left(v, v_{i}\right)\right)+\sum_{x \in V(D)} m d_{H}(v, x) \leqq \\
& \leqq 4 n+\sum_{x \in V(D)} m d_{D}(v, x)=4 n+m d(v)=4 n+k, \text { for } \quad v \in V(F) .
\end{aligned}
$$

For $1 \leqq i \leqq n$, it follows that

$$
\begin{aligned}
& m d\left(u_{i}\right)=\sum_{1 \leqq j \neq i \leqq n}\left(m d\left(u_{i}, u_{j}\right)+m d\left(u_{i}, v_{j}\right)\right)+m d\left(u_{i}, v_{i}\right)+ \\
& +\sum_{x \in V(F)} m d_{H}\left(u_{i}, x\right)+\sum_{x \in V(D)-V(F)} m d_{H}\left(u_{i}, x\right) \geqq \\
& \geqq 7(n-1)+2+2 p(F)+3(p(D)-p(F))= \\
& =7 n+3 p(D)-p(F)-5 .
\end{aligned}
$$

Similarly, $m d\left(v_{i}\right) \geqq 7 n+3 p(D)-p(F)-5$ for $1 \leqq i \leqq n$. If $v \in V(D)-V(F)$, then

$$
\begin{aligned}
& m d_{H}(v)=\sum_{1 \leqq i \leqq n}\left(m d\left(v, u_{i}\right)+m d\left(v, v_{i}\right)\right)+\sum_{x \in V(\mathbf{D})} m d_{\boldsymbol{H}}(v, x) \geqq \\
& \geqq 6 n+2(p(D)-1) .
\end{aligned}
$$

Since

$$
n=\left\lceil\frac{p(F)+k}{2}\right\rceil-P(D)+1
$$

it follows that

$$
7 n+3 p(D)-p(F)-5>4 n+k \quad \text { and } \quad 6 n+2 p(D)-2>4 n+k
$$

Therefore, $m M(H) \cong F$.
In order to apply Lemma 1 to any subdigraph F of D, we prove that under certain conditions the oriented graph D can be imbeded into an oriented graph H such that all vertices of F have the same m-distance in H.

Lemma 2. Let D be a strong oriented graph and let F be a subdigraph of D with $\max \left\{\operatorname{md}_{D}(u, v) \mid u, v \in V(F)\right\} \leqq 3$. Then there exists an oriented graph H containing D as an induced subdigraph such that
(i) if $V(H) \neq V(D)$ then $\max \left\{m d_{H}(u, v) \mid u \in V(F), v \in V(H)-V(D)\right\}=3$, and
(ii) $m d_{H}(u)=m d_{H}(v)$ for all $u, v \in V(F)$.

Proof. Let $m_{\Delta}(D)=\max \left\{m d_{D}(x) \mid x \in V(F)\right\}, m_{\delta}(D)=\min \left\{m d_{D}(x) \mid x \in V(F)\right\}$ and $n=m_{\Delta}(D)-m_{\delta}(D)$. If $n=0$, then $m d_{D}(u)=m d_{D}(v)$ for all $u, v \in V(F)$. Let $H=D$. Then the oriented graph H has the desired property. If $n \geqq 1$, then we denote $S_{\Delta}(D)=\left\{x \in V(F) \mid m d_{D}(x)=m_{\Delta}(D)\right\}$. Define an oriented graph H_{1} by

$$
V\left(H_{1}\right)=V(D) \cup\left\{w_{1}, x_{1}, y_{1}\right\}
$$

and

$$
\begin{aligned}
& E\left(H_{1}\right)=E(D) \cup\left\{\left(w_{1}, x_{1}\right),\left(x_{1}, y_{1}\right),\left(y_{1}, w_{1}\right)\right\} \cup \\
& \cup\left\{\left(w_{1}, z\right),\left(z, y_{1}\right) \mid z \in S_{\Delta}(D)\right\} \cup \\
& \cup\left\{\left(x_{1}, z\right),\left(z, y_{1}\right) \mid z \in V(F)-S_{\Delta}(D)\right\}
\end{aligned}
$$

(see Figure 6).

Figure 6
Clearly, D is an induced subdigraph of H_{1} and $\max \left\{m d_{H},(u, v) \mid u \in V(F)\right.$, $\left.v \in V\left(H_{1}\right)-V(D)\right\}=3$. Since $m d_{D}\left(z_{1}, z_{2}\right) \leqq 3$ for all $z_{1}, z_{2} \in V(F)$, it follows that $m d_{H_{1}}(z, t)=m d_{D}(z, t)$ for all $z \in V(F)$ and $t \in V(D)$. In particular, $m d_{H_{1}}\left(z_{1}, z_{2}\right)=$ $=m d_{D}\left(z_{1}, z_{2}\right) \leqq 3$ for all $z_{1}, z_{2} \in V(F)$. Therefore, for $z \in S_{\Delta}(D)$,

$$
\begin{aligned}
& m d_{H_{1}}(z)=m d_{D}(z)+m d_{H_{1}}\left(z, w_{1}\right)+m d_{H_{1}}\left(z, x_{1}\right)+m d_{H_{1}}\left(z, y_{1}\right)= \\
& =m d_{D}(z)+2+3+2=m d_{H_{1}}(z)+7
\end{aligned}
$$

Similarly, $\quad m d_{H_{1}}(z)=m d_{D}(z)+8$ for $z \in V(F)-S_{\Delta}(D)$. Define $m_{\Delta}\left(H_{1}\right)=$ $=\max \left\{m d_{H_{1}}(x) \mid x \in V(F)\right\} \quad$ and $\quad m_{\delta}\left(H_{1}\right)=\min \left\{m d_{H_{1}}(x) \mid x \in V(F)\right\}$. Then $m_{\Delta}\left(H_{1}\right)=m_{\Delta}(D)+7$ and $m_{\delta}\left(H_{1}\right)=m_{\delta}(D)+8$. Therefore, $m_{\Delta}\left(H_{1}\right)-m_{\delta}\left(H_{1}\right)=$ $=\left(m_{\Delta}(D)+7\right)-\left(m_{\delta}(D)+8\right)=m_{\Delta}(D)-m_{\delta}(D)-1$. Let $S_{\Delta}\left(H_{1}\right)=$ $=\left\{x \in V(F) \mid m d_{H_{1}}(x)=m_{\Delta}\left(H_{1}\right)\right\}$. We define an oriented graph H_{2} by

$$
V\left(H_{2}\right)=V\left(H_{1}\right) \cup\left\{w_{2}, x_{2}, y_{2}\right\}
$$

and

$$
\begin{aligned}
& E\left(H_{2}\right)=E\left(H_{1}\right) \cup\left\{\left(w_{2}, x_{2}\right),\left(x_{2}, y_{2}\right),\left(y_{2}, w_{2}\right)\right\} \cup \\
& \cup\left\{\left(w_{2}, z\right),\left(z, y_{2}\right) \mid z \in S_{\Delta}\left(H_{1}\right)\right\} \cup \\
& \cup\left\{\left(x_{2}, z\right),\left(z, y_{2}\right) \mid z \in V(F)-S_{\Delta}\left(H_{1}\right)\right\} .
\end{aligned}
$$

By a similar argument, it follows that $m_{\Delta}\left(H_{2}\right)-m_{\delta}\left(H_{2}\right)=m_{\Delta}(D)-m_{\delta}(D)-2$. We repeat this process $n-1$ times. Let $H=H_{n}$. Then $m_{\Delta}(H)=m_{\delta}(H)$, namely, $m d_{H}(u)=m d_{H}(v)$ for all $u, v \in V(F)$. In addition, by the construction of H_{n}, it follows that D is an induced subdigraph of H and $\max \left\{m d_{H}(u, v) \mid u \in V(F), v \in V(H)-\right.$ $-V(D)\}=3$.
With the aid of Lemmas 1 and 2, we now are ready to prove that for every pair of oriented graphs D_{1} and D_{2} there exists an oriented graph H such the m-center and m-median are isomorphic to D_{1} and D_{2}, respectively. Furthermore, the m-distance between D_{1} and D_{2} in H can be arbitrarily prescribed.

Theorem 3. Let D_{1} and D_{2} be oriented graphs. For all integers $k \geqq 2$, there
exists a strong oriented graph H such that $m C(H) \cong D_{1}, m M(H) \cong D_{2}$ and $m d_{H}(m C(H), m M(H))=k$.

Proof. We first define an oriented graph H_{0} by adding two new vertices u and v to D_{2} and the arc (u, v) together with the arcs joining all the vertices of D_{2} to u and from v. Clearly, H_{0} is strong and $m d_{H_{0}}(x, y) \leqq 3$ for all $x, y \in V\left(D_{2}\right)$. By Lemma 2, there exists an oriented graph H_{1} containing H_{0} as an induced subdigraph such that (i) if $V\left(H_{1}\right) \neq V\left(H_{0}\right)$, then $\max \left\{m d_{H_{1}}(x, y) \mid x \in V\left(D_{2}\right), y \in V\left(H_{1}\right)-V\left(H_{0}\right)\right\}=3$, and (ii) $m d_{H_{1}}(x)=m d_{H_{1}}(y)$ for all $x, y \in V\left(D_{2}\right)$. Let $n_{1}=\max \left\{\vec{d}_{H_{1}}(x, y) \mid x \in V\left(D_{2}\right)\right.$, $\left.y \in V\left(H_{1}\right)-V\left(D_{2}\right)\right\}$ and $n_{2}=\max \left\{\vec{d}_{H_{1}}(y, x) \mid x \in V\left(D_{2}\right), \quad y \in V\left(H_{1}\right)-V\left(D_{2}\right)\right\}$. Since H_{1} is strong, it follows that $n_{1}, n_{2} \geqq 2$. By the construction of H_{1}, if $H_{1} \neq H_{0}$, then $n_{1}=n_{2}=3$. Further, if $H_{1}=H_{0}$, then $n_{1}=n_{2}=2$. Therefore, $n_{1}=n_{2}$. Let $t=\max \left\{3, n_{1}\right\}$. We define the oriented graph H_{2} by

$$
\begin{aligned}
& V\left(H_{2}\right)=V\left(H_{1}\right) \cup V\left(D_{1}\right) \cup\left\{u_{i} \mid 0 \leqq i \leqq k-1\right\} \cup \\
& \cup\left\{v_{i} \mid 0 \leqq i \leqq k+t\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(H_{2}\right)=E\left(H_{1}\right) \cup E\left(D_{1}\right) \cup\left\{\left(u_{0}, v_{0}\right)\right\} \cup\left\{\left(x, u_{0}\right),\left(v_{0}, x\right) \mid x \in V\left(D_{1}\right)\right\} \cup \\
& \cup\left\{\left(u_{i}, u_{i+1}\right) \mid 1 \leqq i \leqq k-2\right\} \cup\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leqq i \leqq k+t-1\right\} \cup \\
& \cup\left\{\left(x, u_{1}\right),\left(x, v_{1}\right),\left(v_{k+t}, x\right) \mid x \in V\left(D_{1}\right)\right\} \cup\left\{\left(u_{k-1}, x\right) \mid x \in V\left(D_{2}\right)\right\} \cup \\
& \cup\left\{(x, y) \mid x \in V\left(D_{1}\right), y \in V\left(D_{2}\right)\right\}
\end{aligned}
$$

(see Figure 7).

Figure 7
We now show that $m C\left(H_{2}\right) \cong D_{1}$. Let $x \in V\left(D_{1}\right)$. First observe that
(i) $m d_{H_{2}}(x, y) \leqq 3$ for all $y \in V\left(D_{1}\right)$;
(ii) $m d_{H_{2}}\left(x, u_{0}\right)=m d_{H_{2}}\left(x, v_{0}\right)=2$;
(iii) $m d_{H_{2}}\left(x, u_{i}\right) \leqq k$ for $1 \leqq i \leqq k-1$;
(iv) $m d_{H_{2}}\left(x, v_{i}\right) \leqq k+t$ for $1 \leqq i \leqq k+t$; and
(v) $m d_{H_{2}}\left(x, v_{1}\right)=k+t$.

For $y \in V\left(H_{1}\right)$, it follows that

$$
\begin{aligned}
& \operatorname{md}_{H_{2}}(x, y)=\max \left\{\vec{d}_{H_{2}}(x, y), \vec{d}_{H_{2}}(y, x)\right\} \leqq \\
& \leqq \max \left\{\vec{d}_{H_{2}}(x, z)+\vec{d}_{H_{2}}(z, y), \vec{d}_{H_{2}}(y, z)+\vec{d}_{H_{2}}(z, x)\right\} \leqq \\
& \leqq \max \left\{k+\vec{d}_{H_{2}}(z, y), \vec{d}_{H_{2}}(y, z)+1\right\} \leqq \\
& \leqq \max \left\{k+\vec{d}_{H_{1}}(z, y), 1+\vec{d}_{H_{1}}(y, z)\right\}, \text { where } z \in V\left(D_{2}\right) .
\end{aligned}
$$

Observe that $\vec{d}_{H_{1}}(z, y) \leqq \max \left\{\vec{d}_{H_{1}}\left(z, y^{\prime}\right) \mid y^{\prime} \in V\left(H_{1}\right)\right\}=\max \left\{\max \left\{\vec{d}_{H_{1}}\left(z, y^{\prime}\right) \mid y^{\prime} \in\right.\right.$ $\left.\left.\in V\left(D_{2}\right)\right\}, \max \left\{\vec{d}_{H_{1}}\left(z, y^{\prime}\right) \mid y^{\prime} \in V\left(H_{1}\right)-V\left(D_{2}\right)\right\}\right\} \leqq \max \left\{3, n_{1}\right\}=t$. Similarly, $\vec{d}_{H_{1}}(y, z) \leqq \max \left\{3, n_{2}\right\}=t$. Therefore,

$$
\operatorname{md}_{H_{2}}(x, y) \leqq \max \{k+t, 1+t\}=k+t \text { for all } y \in V\left(H_{1}\right) .
$$

Hence, $m e_{H_{2}}(x)=k+t$, for all $x \in V\left(D_{1}\right)$. It is obvious that $m e_{H_{2}}(x)>k+t$, for all $x \in V\left(H_{2}\right)-V\left(D_{1}\right)$. Thus $m C\left(H_{2}\right) \cong D_{1}$.

Since $k \geqq 2$, it follows that $m d_{H_{2}}(x, y)=m d_{H_{1}}(x, y)$, for all $x \in V\left(D_{2}\right), y \in V\left(H_{1}\right)$. It follows also that

$$
m d_{H_{2}}(x, z)=m d_{H_{2}}(y, z), \text { for all } x, y \in V\left(D_{2}\right), \quad z \in V\left(H_{2}\right)-V\left(H_{1}\right)
$$

Therefore,

$$
\begin{aligned}
& m d_{H_{2}}(x)=m d_{H_{1}}(x)+\sum_{z \in V\left(H_{2}\right)-V\left(H_{1}\right)} m d_{H_{2}}(x, z)= \\
& =m d_{H_{1}}(y)+\sum_{z \in V\left(H_{2}\right)-V\left(H_{1}\right)} m d_{H_{2}}(y, z)=m d_{H_{2}}(y)
\end{aligned}
$$

for all $x, y \in V\left(D_{2}\right)$. Hence, by Lemma 1, there exists an oriented graph H containing H_{2} as an induced subdigraph such that $m M(H) \cong D_{2}$. Further, by the construction of H in the proof of Lemma 1, it follows that $m d_{H}(x, y)=2$ for all $x \in V\left(D_{2}\right)$, $y \in V(H)-V\left(H_{2}\right)$. Therefore $m C(H)=m C\left(H_{2}\right) \cong D_{1}$. It is obvious that $m d_{H}(m C(H), m M(H))=k$.

We now prove the other extreme case where the m-center and m-median of an oriented graph can be overlap on any common induced subdigraph.

Theorem 4. Let D_{1}, D_{2} be oriented graphs. Let K be a nonempty oriented graph isomorphic to an induced subdigraph of both D_{1} and D_{2}. Then there exists an oriented graph H such that $m C(H) \cong D_{1}, m M(H) \cong D_{2}$ and $m C(H) \cap m M(H) \cong K$.

Proof. Suppose $V\left(D_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p_{1}}\right\}$ and $V\left(D_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p_{2}}\right\}$. Without loss of generality, we assume that $\left.p(K)=k,\left\langle\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}\right\rangle \cong\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}\right\rangle \cong$ $\cong K$, and that $u_{j} \rightarrow v_{i_{j}}(j=1,2, \ldots, k)$ is an isomorphism between $\left\langle\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}\right\rangle$ and $\left\langle\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}\right\rangle$. We first construct an oriented graph H_{0} by identifying u_{j} and $v_{i j}$, and labeling the resulting vertex again by u_{j} for $1 \leqq j \leqq k$. We now define an oriented graph H_{1} by

$$
V\left(H_{1}\right)=V\left(H_{0}\right) \cup\{u, v\} \cup\left\{w_{i}, w_{i}^{\prime} \mid 1 \leqq i \leqq 6\right\}
$$

and

$$
E\left(H_{1}\right)=E\left(H_{0}\right) \cup\{(u, v)\} \cup\left\{\left(w_{i}, w_{i+1}\right),\left(w_{i}^{\prime}, w_{i+1}^{\prime}\right) \mid 1 \leqq i \leqq 5\right\} \cup
$$

$$
\begin{aligned}
& \cup\left\{(x, u),(v, x) \mid x \in V\left(H_{0}\right)\right\} \cup \\
& \cup\left\{\left(u_{i}, w_{1}\right),\left(w_{6}, u_{i}\right),\left(u_{i}, w_{1}^{\prime}\right),\left(w_{6}, u_{i}\right) \mid 1 \leqq i \leqq p_{1}\right\}
\end{aligned}
$$

(see Figure 8).

Figure 8
it is clear that $m-\mathrm{rad} H_{1}=6$ and $m C\left(H_{1}\right) \cong D_{1}$. By Lemma 2, there exists an oriented graph H_{2} containing H_{1} as an subdigraph such that (i) if $V\left(H_{2}\right) \neq V\left(H_{1}\right)$, then $\max \left\{m d_{H_{2}}(x, y) \mid x \in V\left(D_{2}\right), y \in V\left(H_{2}\right)-V\left(H_{1}\right)\right\}=3$ and (ii) $m d_{H_{2}}(x)=$ $=m d_{H_{2}}(y)$ for all $x, y \in V\left(D_{2}\right)$. Thus $m d_{H_{2}}(x, y) \leqq 6$ for $x \in V\left(D_{1}\right), y \in V\left(H_{2}\right)-$ - $V\left(H_{1}\right)$, from which it is easy to see that $m-\operatorname{rad} H_{2}=m-\operatorname{rad} H_{1}=6$ and $m C\left(H_{2}\right)=$ $=m C\left(H_{1}\right) \cong D_{1}$. By Lemma 1, there exists an oriented graph H containing H_{2} as an induced subdigraph such that $m M(H) \cong D_{2}$. The construction of H in the proof of Lemma 1 implies that $m d_{H}(x, y)=2$ for $x \in V\left(D_{2}\right), y \in V(H)-V\left(H_{2}\right)$. Therefore $m C(H)=m C\left(H_{2}\right) \cong D_{1}$.

References

[1] G. R. T. Hendry: On graphs with prescribed median I. J. Graph Theory 9 (1985) 477-481.
[2] K. S. Holbert: A note on graphs with distant center and median. Recent Studies in Graph Theory (V. R. Kulli, ed.), Vishwa International Publications, Gulbarga (1989).
[3] K. Novotny and S. Tian: On graphs with intersecting center and median. Submitted for publication.

Authors' addresses: G. Chartrand, Western Michigan University, Department of Mathematics and Statistics, Kalamazoo, Michigan 49008-5152, U.S.A.; S. Tian, Central, Missouri State University, Department of Mathematics and Computer Science, Warrensburg, Missouri 64093, U.S.A.

[^0]: ${ }^{1}$) Research supported in part by Office of Naval Research Contract N00014-88-K-0018.

