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1. INTRODUCTION

The problem of finding a solution of system of linear differential equations which
satisfies given boundary conditions often occurs in many physical and technical

fields.
The factorization method is one of very effective methods for the solution of this

problem. The main advantages of factorization method are as follows:
1. The errors made in numerical realization of an algorithm can be represented
as the errors of coefficients of the original problem.
2. The initial value problems are solved instead of boundary value problems.
An example of the factorization method:
Consider the following problem
(1.1) (1) = (1) (1) = (1),
y'(a) = oo y(a) + ay ,
Y'(b) = Bo y(b) + By -
By factorization method we get the solution in the following manner: first we solve
the equations
(1.2) ay(i) + 330 = (o).
(1.3) 2 (t) + oo(r) 2y (t) = q(2),
with initial conditions
(1.4) Cag(a) =y, ay(a) =ay .

Il

Then we obtain the solution of problem (1.1) by solving equation (from the right
to the left)
(1.5) V(1) = ao(t) (1) + (1),

with initial condition

(16) () = B ld)

ao(b) - Bo .
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As it will be shown, if Riccati equation (1.2) has a solution in the whole interval
<a, by and the problem (1.1) has a unique solution, then ay(b) #+ B,. The cases
in which the problem (1.1) has a unique solution and the equation (1.2) has not
a solution in the whole interval {a, b) are not excluded.

Remark. The factorization method originated in this way: The differential
operator of the n-th order is decomposed into differential operators of the first
order — so called factors (hence the name). The technique mentioned above can
be explained in the following manner: the solution of operator equation Ly = ¢
is to be found (it corresponds to the problem (1.1)); we find the operators L, and L,
(in our case by means of the equation (1.2)) so that L,(L,y) = Ly is valid. We solve
equation Lja; = ¢ (it corresponds to the equation (1.3)) and then equation L,y = «,
(it corresponds to the equation (1.5)). The term “‘factorization method” has been
transferred to some difference methods as well.

The aim of this paper is:

1. To generalize this method for the boundary value problem of system of dif-
ferential equations

(1.7) x'(1) + A(r) x(t) = f(1)
(where x and f are vectors and A is a matrix).

2. To achieve that the factorization method should lead to the result providing
that the problem itself has a unique solution (applied to the problem (1.1) it means
to remove the difficulty caused by the fact that Riccati equation (1.2) need not have
a solution in the whole interval {a, b).

3. To develop this method so that it might be applied to the problems in which
the elements of the matrix A and the components of the vector f are generalized
functions of the first order.

2. FORMULATION OF THE PROBLEM

In this paragraph, the boundary value problem for the system of linear differential
equations with the linear interface conditions is formulated.

Let there be given:

1. a sequence of numbers M = {y,-}',-i(l) such that a =y, <y, < ... <7y, <
< Y4y = b3

2. a constant matrix U, of type (nl,N) and of rank n, (where 1 < n;, < N);

3. a constant matrix U, of type (n,, N) and of rank n, (where n, = N — n,);
4. a constant vector u; with n; components;
5

. a constant vector u, with n, components;
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6. constant non-singular matrices W, of type (N, N) for i = 1,2, ..., r;
7. constant vectors w; with N components for i = 1,2, ..., r;

8. a matrix A(1) = {4,/(1)} of type (N, N) such that 4,(t)e £{a, b) for i =
=1,2,..,Nand j=1,2,...,N;

(.?(a, b)> denotes the class of functions integrable in Lebesgue sense in the
interval <a, b));

9. a vector f(t) = (f,(t), f2(t). ..., fu(1))" such that f(t) € L<a, by fori = 1,2, ...
., N.
Further, we shall deal with the problem which is introduced in the following

definition.

.

Definition 2.1. The following problem is called “‘problem :

an x(t) is to be found for which it holds:

a) x'(t) + A(t) x(t) = f(t) almost everywhere on <a, b);

b) U, x*(a) = uy, U, x7(b) = uy;

¢) x(1) has discontinuities at most of the first type;

d) x™(y) = Wix¥(y) + w; for i = 1,2, ..., r;

e) xi(1) are absolutely continuous in the interval {y; yi+1; for i = 0,1,2, ..., r.

x7(t) (or x*(1)) means the limit of vector x(t) when approaches t from the left
(or from the right) and x(t) are defined as follows:

x(t) for te (Vi’ Viet) -
xi(t) = - x~(t) for t=y;,
h x*(t) for t=17pi4y.

3. TRANSFORMATION OF THE BOUNDARY VALUE PROBLEM TO THE INITIAL
VALUE PROBLEMS

In this paragraph we shall construct (by solving the initial value problems) such
matrices @(t) and such vectors ¢(1) that the following statement is valid for every
solution x(t) of the problem y:

(1) x'(1) = @(1)

for te <y, y;y,pand fori =0,1,...,r.
We shall prove for these systems that they have a solution (or a unique one) if and
only if the problem  has a solution (or resp. a unique one).
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Lemma 3.1. Let c(t) be an absolutelly continuous solution of the equation
(3.1) (1) + A1) <(t) = (1)
almost everywhere on (&, &,> and let
(32) Vo €(éo) = vo

where &y € &y, ;) holds where ¥ is a constant matrix of type (n, N) and v, is
a constant vector with n components. Let a matrix V(t) and a vector ¥(t) be an
absolutely continuous solution of the equations

(3.3) V(1) = V(1) A(t) almost everywhere on (&, &),
v/(t) = V(1) f(r) almost everywhere on <&y, &) .

with the initial conditions

(3.4) V(&) = Vo and v(&) =v,.
Then
(3-5) V(1) c(t) = v(t) for tedléy, &y
holds.

Proof. We premultiply the equations (3.1) by the matrix V: V' + VAc = Vf
almost everywhere on {(&,, &,>. We substitute VA and Vf by V' and v’ according
to the equation (3.3), and hence we get (Vc)' = v’ almost everywhere on (&, &,).
The components of the vectors Ve and v are absolutely continuous in the interval
(&, &) and thus Ve =v + k (where k is a constant vector) follows from the last
equations. As follows from equation (3.2) k is a zero-vector.

This assertion states in which way it is possible to displace the condition of the
form (3.2) from one to the other point if both the points lie in an interval in which
the vector ¢(f) is continuous.

Definition 3.1. Let {D (1)}, be a sequence of matrices of type (n,,N) and
{d(t)}i=0 be a sequence of vectors with n, components. In the interval {y; y;s>
let the matrices Dy(t) and the vectors dt) be absolutely continuous solutions of
the equations

(3.6) D.= DA,
d;= Df.
with the initial conditions
(3.7) Dy(a) = U,
do(a) = uy,

D7) = D;_y(y;)) W: for i=1,2,..,r,
d(y) =d,_,(y)w, for i=1,2,..,r.

430



Definition 3.2. Let {6,.(t)}’i=0 be a sequence of matrices of type (ny, N) and
{d{(1)}i=¢ be a sequence of vectors with n, components. In the interval {i Vi+1)
let the matrices D(t) and the vectors d(t) be absolutely continuous solutions of
the equations

(3.8) D, = DA,
d: = Df,
with the initial conditions
(3.9) D,(b) = U,,
d(b) = u,,

bi(yi+1) = 6i+1(’r’i+1) wi"+ll
for i=r—1,r—2,..0.
ai(?iﬂ) = ai+1(Vi+1) + bi+1(}’.’+1)wi_+11wi+1
for i=r—1,r—2,...0.
The matrices D(1) and the vectors d(r) are defined recursively, successively for

i=0,1,2,..., rand the matrices ﬁi(t) and the vectors EI,-(t) are defined recursively
too, but successively for i = r, r — 1,..., 1, 0.

Definition 3.3. Let @ (1) be a matrix of the type (N, N) and let ¢{t) be vector
with N components such that

(3.10) (1) = (g 8)

o= (30)

for i=0,1,...,r and for te {y, Vir1-
Let us formulate some properties of the matrices @(1) and the vectors ¢(t) men-
tioned above:

Theorem 3.1. For every solution x(t) of the problem Y the folloving assertion
is valid:
(3'\“) (’b-’(’) xi(’) = (Pi(t) for ey yiir)-

Theorem 3.2. If i exists so that the system (3.11) has a solution (or a unique one)

in at least one of the points of the interval {y;, v;+1>» then all the systems (3.11)
(for all i) have a solution (or a unique one) for all the t for which they are defined.

Remark. Now the sentences that the systems (3.11) have the solution, or have
no solution, or have the unique solution, are evident.
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Theorem 3.3. The systems (3.11) have a solution (or a unique solution) if and
only if the problem \ has a solution (or a unique one).

Remark. From the theorem 3.3 and from the fact that ®(7) are square matrices
the following statement follows: @(¢) are non-singular if and only if the problem
has a unique solution.

Proof of theorem 3.1. Let x(r) be a solution of the problem . At the point a
(3.12) U, x(a) = u,

is valid.
In the interval <a,y,)> Dy(t) Xo(1) = dy(t) holds (it follows from the equation
(3.12) and the lemma (3.1)).

At the point y,
Do(y1) x(v1) = do(71) -
x“(y1) = Wy x*(y,) + w,
is true.

We readily get
Do('}’l) W, x+(V1) = do(}’l) - Do()’x) w,.

The last equation can be rewritten

(3.13) Dy(y1) x*(r1) = di(21)-

From the equality (3.13) and the lemma (3.1) the validity of the bellow given equation
follows

D,(1) x'(t) = dy(1) for ted{yy,v,).

We could prove by induction that for i = 0,1, ..., r

(3.14) D, x(t) = dt) for 1€y, yirs)
is valid.

Analogously it is possible to prove that for i = 0,1, ..., r
(3.15) bi(t) x(1) = ai(l) for 1e<y;7iv17 -
holds.

The validity of the equations (3.11) follows from the equations (3.14) and (3.15).
We need the following lemma for the proof of the theorem 3.2:

Lemma 3.2. In the interval (&,, &) let the matrix V(t) (generally rectangular)
be an absolutely continuous solution of the equation V' = VYH almost everywhere
on (&, &), where H is a square matrix and H; € <&, &,). Thus if the rank
of the matrix V(1) equals h in at least one point of the interval {¢, &;> then the
rank of the matrix V(t) is equal to h in the whole interval {&,, &,).
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Proof of the lemma 3.2. Let C be a square absolutely continuous matrix such
that €' = CH almost everywhere on (&, &,>; €(¢,) = E (where E is an identity
matrix). As known, € is non-singular in the whole interval (£, &,> (see [13]).

The matrix V(1) can be represented as a product
V(1) = V(&) €(r) .

In view of C(r) being a non-singular matrix the ranks of the matrices V() and V(¢&,)
are equal.

Proofofthe theorem 3.2. The matrix @, satisfies the equation ®}(1) = @ () A(r)
almost everywhere on <y, 7;+» and thus according to the lemma 3.2 it has a constant
rank in the interval {y;, y;4+,>. The augmented matrix (@), (1)) of the system
(3.11) satisfies the equation

@@x%my=@ﬂ%%@WQm£m>

almost everywhere on <{y;, 7;+,1» and so it has also constant rank in the interval
i Viw 12
From the conditions (3.7) and (3.9) it follows:
d)i(yi) = ¢i—1()’i) W,,

(@00 2i0) = (®i1(73): @1-1(3)) (:)Ni’ —WE> .

1

The ranks of all the matrices @(t) are equal and the ranks of all the augmented
matrices (@,», (pi) are equal too, as follows from the equations mentioned above.
The theorem 3.2 follows from these statements and Frobenius theorem.

Proof of the theorem 3.3. Let the systems (3.11) have solutions. Let v be a
constant vector that is a solution of the system (3.1]) at the point b, i.e.

B (0)v = o).
Let x(t) (i = r,r — 1,...,0) be absolutely continuous solutions of the equations
(x(1)y + A1) x'(1) = (1)
almost everywhere on {y;, ;.1>, with the initial conditions
x'(b) = v,
X(yiv1) = Wi X (yiw) +w, for i=r—1,r—-2..,10.
Define |
x(t) = x{(t) for te(ysnyist)-
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We shall show that thus defined vector x(t) is a solution of the problem y. It is
sufficient to show that x() satisfies the condition
U, x*(a) = u, .
From the lemma 3.1 and the definition of the matrices @, and the vectors ¢, it follows
(1) x'(t) = ot) for telypyisi)-
Then particularly U, x(*a) = u, is valid.

Hence the following statement has been proved: For each solution v of the system
(3.11) at the point b there exists the solution x(f) of the problem such that x(b) = v.

Theorem 3.3 follows readily from this statement ans theorems 3.1 and 3.2.

The above explained procedure by which the matrices @; have been obtained,
transforms the boundary value problem ¥ to initial value problems. If this procedure
were used as an algorithm to solve the problem ¥ we should have to solve the equ-
ations (3.6) with the conditions (3.7) for i = 0, I, ..., r from the left to the right,
then the equations (3.8) with the conditions (3.9) for i = r,r — 1,..., 0, from the
right to the left and eventually to solve the systems (3.1]). It is possible to show that
this algorithm possesses several properties which are not adequate for numerical
computations. It is in fact the method of combination of solutions, the disadvantage
of which is described in [14].

To define this procedure has only an auxiliary character.

4. FACTORIZATION EQUATIONS

In this paragraph we shall construct systems of equations which will be equivalent
to the systems (3.1 1) and which will be constructed by solving initial value problems.
Tt will be shown as well that the new procedure, contrary to that described in sec.
3, has a certain property suitable for numerical realization.

From here on let us suppose that the problem ¥ has exactly one solution. From
this assumption it follows, as already discussed above, that the matrices @ (1) are
non-singular and the matrices Di(t) and f),-(t) have the rank equal to the number
of rows.

Further on we shall deal with selected submatrices of the matrices D(t), D(r)
and A(t). To make the writing easier we shall introduce certain notations.

Definition 4.1. Let ¢ = (04, 05, ..., 6y) be some order of numbers 1,2,....N.
Let P? = {p‘,-’j} be a square permutation matrix of order N defined as follows:
po; =0, ij=1,2.,N,
where & is Kronecker delta, i.e.
/0 for i %],
N for i=j.

J =
i
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Definition 4.2. Let n < N, let L, = {I};} be a rectangular matrix of type (N, n)
defined as

W =80 =12 N j=1,2,..,n.

Definition 4.3. Let n < N, let R, = {r;} be a rectangular matrix of type
(N, N — n) defined in this way:

i = 5 i=1,2,..,N;j=12.,N—n.

i—=n>

If we postmultiply some matrix by the matrix P” (or premultiply by the transpose
matrix) we re-arrange the columns (or the rows) of the original matrix according
to the ordering o.

If we postmultiply a matrix by the matrix L, (or premultiply by R,) we obtain
a matrix selected from the original matrix such that it consists of the n first left
(or N — n last right) columns of the original matrix.

Lemma 4.1. Let E, be an identity matrix of type (n, n). Then the following
statements are valid:

1. LTL, = E,,

. RIRn = EN—ns

. (Pa)T P’ = Pa(Pa)T — ENs
N (Lm Rn) = EN'
5.L,.LT+R,.R" = E,

A W

(the last relation will often be used in the proofs).

This statement can readily be verified by direct computation.
Theorem 4.1. There exists a partition a = 35 < 3, <...< 3,y =b of the
interval {a, b) such that the following assertions are valid:

1. For each interval {9, ;> there exists j(i) so that

86 81D = iy Vi + 10 (i =0,1,.., V) .

2. For each interval {9, 3;,) there exists an ordering o; such that the matrix
D, . P’. L, is non-singular in the whole interval {3 9;+,> (i =0,1,...,v).

Proof. According to the assumptions of the theorem the rank of the matrix
D, (t) is equal to n, and so at each point ¢ there exists a selected non-singular
matrix of order n, and the existence of such ordering follows from the continuity
of the matrix D;;(¢) and from Borel covering theorem.

Analogously, this theorem holds even for matrices D (1).
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Theorem 4.2. There exists a partition a = iy < iy < ... < g1 =b of the
interval <{a, b) such that: .

1. For each interval {Ay Aiy1y there exists J(i) such that

(A jLi+1> < <)’j(f>’ )’j(i)+1> .

2. For each interval {A; A;y 1) there exists an ordering x; such that the matrix
D;;)P*'L,, is non-singular in the whole interval {J. 2,1,y (i = 0,1,...,0).
Now let us define the operators G, G* and g:

Definition 4.4. Let D be a matrix of type (n, N) and d be a vector with n compo-
nents. Let o be a certain ordering of numbers 1,2,...,N, let the matrix DP’L,
be non-singular. Then let us introduce operators:

I. G(D, o, n) = (DP"L,)~! DP"R,,
. G¥D,o,n) = (DP°L,)"' D,
3. g(D,d, 0, n)=(DP°L,) " d.

[§e}

The matrix DP?L,, is a selected non-singular matrix of the matrix D, the matrix
DP’R, consists of those columns of the matrix D which do not occur in the matrix
DP’L,. The matrix G(D, o, n) is of type (n, n), the matrix G*(D, o, n) is of the same
type as the matrix D, i.e. of type (n, N). The vector g(D, d, o, n) has n components.
The matrix G arises evidently from the matrix G* if we delete the columns which
lie at the places oy, 0,, ..., g, from the matrix G* (these columns are evidently
identity vectors) and rearrange the remaining columns in a certain manner. Conver-
sely, the matrix G* arises from the matrix G according to the simple prescription
G* = [E, G](P°)" = [E,, G](L,LT + R,RT)(P)T = LI(P) + G RI(P")".

Lemma 4.2. Let T be a non-singular matrix of order n. Let o be a certain ordering
of numbers 1,2, ...,n. Let D be a matrix of type (n, N) such that the symbol
G(D, o, n) is meaningful and let d be a vector with n components. Then the fol-
lowing relations are valid:

1. G(TD, 6, n) = G(D, g, n),
2. G*(TD, o, n) = G*(D, o, n),
3. g(TD, Td, 0, n) = ¢g(D, d, 0, n).

Definition 4.5. Let a = 3, < 9, < ... < 9,41 = b be such a partition of the
interval {a, b) and let o; be such orderings that the assertions of the theorem 4.1.
are true. For each interval {3, 9,,,> (i = 0,1, ..., v) let us define:

1. matrices
Gi(t) = G(Dj(i)a G ”1)
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and
GT(‘t) = G*(Dj(i)? a; "1) for tedl8;,9:.>;
2. vectors
gx‘(t) = Q(Dj(i)» d;y, 05 ny) for tel%, 91>

3. submatrices of the matrix A for t € {93, 3;,,) thus:

Ai(t) = Lfl(P’”)T AP’L, ,

A:(r) = L,TI(P"‘)T AP’R, ,

Aé(t) = RnTx(P”‘)T AP’'L, ,

A;(t) = R,Tl(P‘”)T AP’R, ;

4. vectors
F(1) = L (PT)" f.
F;(t) = Rzi(.Pai)Tf for ted8,8:,1>;
5. vectors
1) = LL(P7 x0,
and

zi(1) = RL(P)" XD for 1e{3;, %ivy) s
where j(i) is such an index that
i Sy < <7j(i)a 7j(i)+1> .

Definition 4.6. Let a = 1o < Ay < ... < A,y = b be such a partition of the
interval {a, b) and let »; be such orderings that the assertion of the theorem 4.2
are true. For each interval {2;, 4;+,> (i = 0,1, ..., @) let us define:

1. matrices
G(1) = G (Djiy %1 m2)
and
G¥(t) = G*(Djy i ny) for telhphicr);
2. vectors

éi(t) = g(ﬁj(i)a aj(i)’ %, na) for 1€y Aiv);

3. submatrices of the matrix A for t € {A;, A;y,) in this way:

N\

Al = LI(P)T APYL,

AL = LL(P*)T AP*R, ,
AL = RL(P)T AP*L, ,
AAi = RIZ(PxI)T AP%'-R’IZ ;
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4. vectors
Fi(0) = LI(P*)"f.
,i'-i(t) = RnTz(Pm)T f for tediyiviys
5. vectors
7 = L(P)T .
and
Z'(t) = RL(P*)" X/ for 1eddy i),
wherej(i) is such an index, that
i hiz1) < <?j(i)~ Vj(i)+1> .

Theorem 4.3. For i = 0, 1, ..., v the following relations are valid:
(_4~1) Yi(t) + Gi(t) zi(t) = gi(t) Sfor ted8, 911>,
(4.2) G, = GA, - AlG, - GAG, + A}
almost everywhere on {9;, 9;,,>
(4.3) gi= —(Al + GA) g + F| + GF;
almost everywhere on (3, 31>
(4.4) z;= —(A, — ASG)z' + F, — Ay,
almost everywhere on {9;, 3,, ).

Proof. For te (9, 3;4+1>
(4.5) D x/) = dj;,
is valid, where j(i) is such an index that

{p vy < <7j(i)= Vj(i)+1>

is true.

Let us premultiply (4.5) by the matrix
(Dj(i)Pan[)_ :
Thus we obtain
G*x/) = g,
and hence
(L:“‘(Pa.v)T -+ Gi RL(P”')’) xj(i) =g .
The last equation will be arranged according to the definition

y(1) + G{1) z'(1) = gi(1).
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The validity of equations (4.2) and (4.3) will be verified by differentiating the equations
(4.6) G(1) = (D;»P"'L,,) "' Dy, PR,

(4.7) g(t) = (D;,P7L,) " dj -

The following identities are valid:

(4.8) D, AP”L, = D;,P’(L, L, + R, R;)(P")" AP’L, =

ny Ry nyttng -

Il

= D, P"'L, LT(P") AP"L, + D,,P"R, RI(P*)T AP"'L,,

iy "y
=D, P’ L, A} + D, P"R, A;

n""n

(49) D;,AP’ R, = D;;P7(L L] + RR])(P")" AP'R, =

i

= Dj(i)P“"LmLfl(P‘”)T AP’ R, + Dj(,-)P""RnIRZ“(P“") AP’R

= D,;,,P°L, A} + D,,P"R, A} .
Let us differentiate the equation (4.6):
(4.10) G{(1) = —(D,,P"L, )" D,,AP"L, (D;,P"L,)"" D,,P"R, +

+ (D.I'(l')Pu‘iLm)_1 Dj(i)APUiRm .
Let us substitute into the equation (4.10) according to the identities (4.8) and (4.9):

Gj(t) = —A{G, - GAG, + A, + GA,.
Let us differentiate (4.7):
(4.11) g((t) = —(D;P7'L,,) " D, APT'L, (D), Pl )"  dj;) +
+ (B P'L,,) 7! Dyof -

The following identity is valid:

(412) Dj(i)f = Dj(i)Pd‘(Lnle + RIHR:l) (Pai)T f =
= D;,P"L,, Ly (P7)" f + D;,P7R, R (P™)T f =
= D,,P"L,F, + D,,P"R,F,.

We put into the equations (4.11) according to the identities (4.8) and (4.12) and
hence we obtain

g1 = — (A} + GiAg) g+ F +GF;.
Let us differentiate the equation

z' = RT(P*YT xit0 |
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Hence we obtain
() = RE(P7)T (x/9) .

We substitute f — Ax/® for (x/?)" and hence we obtain

(zy

Il

RE(P7)7 f — RE(P)T Axi®) =
~ By _ RI(P7)TAPT(L, LT + R, RT) (P77 /) =

= —ASY’. — A4zi + F; .

We substitute for y from equation (4.1) and hence we get the equation (4. 4)

Similarly the following theorem is valid for the matrices G; and vectors g:

Theorem 4.4. For i = 0, 1, ..., ¢ the following relations are valid:

(4.13) yi + Gizi =g for tell, i),

(4.14) G;= GA., - AG, — G:ALG; + Al almost everywhere on (. 211>,
(4.15) g = —(A, + G:AY) g + Fi + G.F. almost everywhere on (s, Ais1) »
(416) (') = —(AL - ALG) z' + Fi — Alg; almost everywhere on {lylseyy .

The equations (4.1), (4.2), (4.3), (4.4), (4.13), (4.14), (4.15) and (4.16) will be used
for numerical solution of the problem  and will be called factorization equations.
Now we introduce the initial conditions for factorization equations.

Theorem 4.5. (The initial conditions for the equations (4.2) and (4.3).)
(417) 1. Gy(a) = G(Y,, g, ny),
go(a) = g(Uu uy, ao, 1y) ;
2. for i =1,2,...,v the following statements are valid:

if 9;¢ M then
G (%) = G(G}. _1(8), 0, 1y),

g(%:) = 9(Gi-1(8), gi-1(%). 01 1),

if 9;=1y(e M) then

G,-(S,-) = G(G?—l(‘gi) W, 0, ’ll) )

gi(‘gi) = g(G:.“_l(S,») W, g,-_1(9,<) - GT—l(‘gi) W, 0 ”1) .

Theorem 4.6. (The initial conditions for the equations (4.14) and (4.15).)

(4.18) 1. Gy(b) = G(Uy, %, n,),
gdb) = 9(Uy, uy 5, n5) 5
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2. fori=0,1,...,0 — 1 the following statements are valid:

if 2iz1¢M then

GAi(AiH) = G(é:‘k+ 1(/1i+1), Kis ”2) >

éi(’l“wl) = g(é?‘+1(/’».-+ 1), §i+1(}'i+1)’ iy 1) s

if is1 =y (eM) then

GAi(Ai+1) = G(é:k+1()”i+l) W, ”z) >

gi(iiﬂ) = g(aT+ 1()“i+1) wz‘l’ §i+1(}~i+1) + éi'k+l(;“i+l) Wf’w,, ny) .

Now we can find all the matrices G; and the vectors g; by solving the equations

(4.2) and (4.3) with the initial conditions (4.17) successively for i = 0, 1,..., v from
the left to the right and the matrices G; and vectors g; by solving the equations
(4.14) and (4.15) with initial conditions (4.18) successively for i = g,0 — 1,...,0

from the right to the left. Let us derive the initial conditions for the equations (4.4)
and (4.16) furthermore.

Theorem 4.7. (The initial conditions for the equation (4.4).)

(4.19) 1. U, x7(b) = u,,

GI(b) x™(b) = 8,(b) ;
2. for i=v —1,v—2,...,0 the following statements are valid:

if 3;41¢ M then
xv(9i+1) = x+(9i+1)»
if 9i+1 = y(e M) then
X7(3i41) = Wi x¥ (9,1, + w,.

Theorem 4.8. (The initial conditions for the equation (4.16).)
(4.20) 1. é’ok(u) x+(a) = éo(a) )
U, x*(a) = u, ;
2. fori=1,2,..., 0 the following statements are valid:
if ;¢ M then
x*(2) = x(4)
and if 2; = y,(e M) then
xt(A) = Wit x7(4) — W[ lw,.
Remark. The systems of equations which occur in the theorems 4.7 and 4.8

have under our assumptions a unique solution, i.e. we can calculate the components
of the vector x (9, ) or x*(4;) from them.
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Now let us describe the method of simple direct factorization, the method of
simple inverse factorization, and the method of composite factorization.

The method of the direct factorization.

We solve the equations (4.2) and (4.3) with the initial conditions (4.17) successively
fori =0,1,...,vfrom the left to the right. Thus we obtain all the matrices G; and
vectors g;. Then we solve the equations (4.4) with the initial conditions (4.19) suc-
cesively for i = v,v — 1,...,0 from the right to the left. (Solving the equations
(4.4) we obtain the vector z' and the remaining components of the vector x are
calculated from the equation (4.1)). The partition 94, 94, ..., %,, of the interval
{a, b) and the corresponding orderings o; (i =0,1,..., v) are determinated in the
course of solving equations (4.2). This will be described more accurately further on.

The method of the simple inverse factorization.

We solve the equations (4.14) and (4.15) with the initial conditions (4.18) succes-
sively for i = 9,0 — 1, ...,0 from the right to the left. We find, therefore, all the
matrices G; and the vectors g~ Then we solve the equations (4.16) with the initial
conditions (4.20) successively for i = 0,1, ..., 0 from the left to the right. The
partition Aq, Ay, ..., 4,4, of the interval <{a, b) and the corresponding orderings
% (i =0,1,..., 0) are similarly determined solving the equations (4.14).

The method of the composite factorization.

Let {t,}¥75 = {9,725 U {4,}9%) and let 7; be ordered so that 1o < 7; < ... < Tpqy.
Let us define:

¢f<r)=<§}j‘,§§3), o1(1) = (g“”(’)) for 1T,

gio(t)

where i, and i; are such indices that

T Teg) © <9i(l)a 9.‘(1)+1> N <'1j(l)a '1,'(1)+1> .

Evidently the systems of the equations @(t) x'() = ¢,(t) and the systems of the
equations @7(1) x'(t) = () are equivalent for i€ <{t), 7,4, and for i such that
(T Tip1y < (Vi Pis1y- The method of composed factorization consists in the
following procedure: we solve equations (4.2) and (4.3) with initial conditions (4.17)
successively for i = 0, 1, ..., v from the left to the right, then equations (4.14) and
(4.18) with initial conditions (4.18) successively for i = @,0 — 1,...,0 from the
right to the left. Thus we find the matrices @} and the vectors ¢} (t). We get the
solution of the problem by solving the equations

(4.21) o7 (1) x(1) = @f(t) for te(t, ti41),
¢T(Tl) x+("-'l) = @ (Tt) s

‘pT(T) x—(TH-I) = (PT(‘HH) .
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There remains now to show how to construct the partition 9, 3, ..., 3,4+, and the
orderings o; (i = 0,1,...,v) or the partition A, 4;,..., 4,4, and the orderings
), (i=0,1,...,0).

Let Dj(r) be a matrix defined by the equation (3.6) with conditions (3.7). Let o,
be such an ordering that Dj; (1) P°L,, is non-singular for te (&, &>, where j(i)
is such that (9; 9;41)> = {j0iy Vjcy+12- Let det (D (1)P7L, ) — 0 when t — &5
Then there exist [ and k so that |Gj(t)] — oo when t — &;. From this fact it follows
that the solution of equation (4.2) for fixed i has a pole at the point &, if and only
if the corresponding matrix Dj;(&,) P°L,, is singular. Thus we must be careful
integrating the equations (4.2) not to pass the point, where the solution of the equ-
ation (4.2) has a pole. The following statement will be useful for this purpose:

Lemma 4.3. Let [A,-j(r)[ < K for all the i and j. Let h and p satisfy the inequality

4
h < .
NK(N;( + 2)
Let
@) G40 <

be valid for all I and k. Then the matrix (B;q(t) P7'L,)) is non-singular for all
telt — ht+ h).

Proof. Let g be a solution of the equation

NZ 2
q’=K<Nq+7q2+l>=K<»N’Tq+l>,

with the initial condition ¢(0) = x; g(r) is defined for

a2
NK(Nu + 2)
Evidently
|Gt + 9| £ a(v)
1s valid for
4
< —
NK(Nu + 2)

[

and for every [ and k.
If 1 = 1 then, by a suitable choice of a;, we can achieve for each fixed ¢t the fol-
lowing unequality |G{()| < u for all  and k, as the following is valid:

Lemma 4.4. Let D be a matrix of type (n, N) and rank n. Then there exists an
ordering o = (64, 64, ..., ay) of the numbers 1,2,..., N such that the matrix
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DP°L, is non-singular and the absolute values of the elements of the matrix
(DP°L,)™" D are not greater than 1.

Proof. Let ¢ be such an ordering that

|det (DP7L,)

> |det (DP*L,)|

is valid for all the orderings ». We shall prove that ¢ is the sought ordering. This will
be proved indirectly. Thus let there exists a column f of the matrix D such that the
absolute value of at least one component of the vector (D P"L,,)“’ B is greater than 1.
Let (ay, o, ..., %,) be the columns of the matrix DP?L,. In view of the fact that the
vectors ay, o5, ..., o, are independent, the vector § may be represented as a linear
combination of the vectors o, oy, ..., %,:

B=7% &
k=1
Then
(DP”Ln)_1 ﬁ = (51» 62’ LR én)’r

is valid.
Let [ be such an index that Ié,l > 1 is valid (we suppose that such an index exists).

Let us consider the absolute value of the determinant of the matrix

det (o, oy ooy 0y gs o Ay gy ooes 4,)| =

(111 0oy veey Ky, [))’ Apggsoees an)

n
= ,det (otgs Oy vy 2y Y Es O oy O0y)
K=1

= |¢] |det (DPL,)

= |det (cty, 0ty o oos 0= gy Epy Oy Ly s ooy %)

> |det (DP°L,)

= [é,| |det (Otgs Ogy ooy gy O Oy ooy )

which is a contradiction.

Remark. The ordering ¢ as well as the resulting matrix (DP’L,)™" D simult-
aneously may be found by a modified Gauss algorithm.

Suppose that we know the numbers 9, 3, ..., 9;, the orderings gy, 0y, ..., 0},
the systems (Gg, g), (G}, g;), ... (G} 1. gi—1). Then the matrix G(9;) and the
vector gy(9;) 3;+,; will be determined as follows: we solve the equation (4.2) with
the integration step h so far till either |Gj(9; + iih)| > u at least for one pair I,
k or (3,9 + (A+ 1)h) "M # 0 (where # means the number of integration
steps performed). In the former case we put 9;,, = 3; + 7ih in the latter case 9;,,
will be the least number of the set <3, 9; + (# + 1) h) " M and in the case that
941 * 9; + #ih we finish solving the equation (4.2) up to the point 9, ;. We construct
the matrix (according to the initial conditions (4.17)):

U,. or Gf(9;4,) or Gi(y)W,,
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and we find the o;,, for this matrix so that:
IG;EI(S.'H)' S

is valid for all I and k. We choose the number p and the integration step h so that
=1 and
h < —— 4 -
NK(Ng + 2)

Similarly we proceed solving the equations (4.14).

Memory requirements and number of the operations of factoriz-
ation method.

For the sake of simplicity let us compare the number of operations of the simple
and the composed factorization in the case 2n = N and n; = n, = n. Let us choose,

as a unit of effort, the effort which must be expended on solving one equation in the
interval {a, b).

1. The simple direct factorization.

la. The solution is sought at one point ¢, only.

We must solve the equations (4.2) and (4.3) in the interval (a, b) which is equivalent
to the effort of solving n(n + 1) equations in the interval <a, b). Then we solve
the equations (4.4) in the interval <t,, I> backwards which is equivalent to the effort
of solving h equation in the interval <{t,, I>. Thus the total effort is equivalent to the
effort of solving n(l — t,)/(I — a) + n(n + 1) equations in interval (a, b).

1b. The solution is sought at every point.

From the point la. it follows that the total effort is equivalent to the effort of
solving n + (n + 1) n equations in the interval {a, b). In both cases we must store
the matrix G; and the vector g;, i.e. we must store n(n + 1) functions in the inter-
val <a, b). In addition, we must store the partition (3. %,...., 3,.,) and the cor-
responding ordering a; (i = 0, 1, ..., v).

2. The composite factorization.

2a. The solution is sought at one point ¢, only. We must solve the equations (4.2)
and (4.3) in the interval (a, 1, and then the equations (4.14) and (4.15) in the

interval {t,, [>. This is equivalent to the effort of solving n(n + 1) equations in the
interval (a, b).

* 2b. The solution is sought at all the points. We must solve the equations (4.2)
and (4.3) in the interval (a, b) and the equations (4.14) and (4.15) in the interval
{a, b). This is equivalent to the effort of solving 2n(n + 1) equations in the interval

{a, b>.

In both cases we need not store any function, but only the system (GY, g;) at the
points at which the solution is sought.
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Remark. If the problem  follows from the problem

A:Zno(_ 1)1' (P,-y“))(‘) =f

with n conditions at the point a and with n conditions at the point b which guarantee
self-adjointness of the corresponding operator, then it is possible, in some cases,
to reduce the number of the factorization equations (4.2) and (4.3) or (4.14) and
(4.15) by (n* — n)/2. If, in addition, the conditions are such that the corresponding
operator is positive definite then it is guaranteed that the factorization equations
(4.2) and (4.3) have the solutions in the whole interval {a, b) and so the effort
connected with testing condition (4.22) or seeking new ordering ¢; and new matrix G;
disappears.

Remark. The matrix and the vectors defined by the definition (4‘5) can be inter-
preted as follows:

Al(1) = (4,0} where 1 £j<n1=<k=Zn,,
Ai(1) = {A, iz} where 1 <j=<n,n <k=N,
Ai(1) = (A, 5} where 1 <j<N,1=Zk=n,,
Ai(1) = {4,,,,} where n, <j<N,n  <k=N,
FIO) = (oo fono o foy

O = e f )

PO = A2 50 e

I

T
{“](')ﬂ, :r(l)+2""’xjd(p;)‘ P

z(1)
where j(i) is such an index that (3, 9,4 1> <= {; Vjciy+1»- We introduce notations:
1. Aj N+1 ':fj >
2. (G, g) =B, ={B?} where k=12 _...njandl=n; + 1L ... N+1,
3.(6u. N+ 1) = (6}, 05 ....0841) -
4. 2= {z{"} where k=n, +1,..,N+ landz{,, = —1.

The equations (4.2) and (4.3) can be written as a single equation

ny N+1
(BY) = Z B, ui— Y (Appioi+ Y, BWPA, ) B + Ay
s=ny+1 r=n;+1 s=n;+1
The equation (_4.4) can be written
. N+1 ny
G == Y (Aaies = X Ago, Br) 20
s=ny+1 r=1
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5. ON THE STABILITY OF FACTORIZATION METHOD

When numerically solving the factorization equations we make certain errors.
Let us investigate how the errors affect the solution obtained by the algorithm describ-
ed above. The fact that the factorization equations are solved inaccurately can be
represented so that the following equations

(5.1) G, = GAl - AiG, — GAIG, + A} + 4.
g = — (Al + GAY) g + F| + GF, + 4},
(5.2) G = G,A, — AiG, — GAIG, + A} + 4%,
g = — (Al + GAY) g + Fi + GFs + 4.
(5.3) (z') = —(A] — AiG,))z' + F, — Alg, + Af,
(5.4) (z) = —(AL = A3G) z' + F; — Algi + 4.

are solved accurately instead of solving the equations (4.2), ) (4 4), (4.14), (4.15),
(4.16) inaccurately. In the equations written above 4 (__/ 1,2,..., 6) there are
certain discurbances. The disturbance 4} can be interpreted as the disturbance
of the matrix A}, the disturbance 4} as the disturbance of the vector Fi, the disturb-
ance AL as the disturbance of the vector F etc. Thus the disturbances of the equations
(5.1), (5.2), (5.3), (5.4) can be represented as the disturbances of the matrix A and
the vector f.

This conception indicates how the obtained solution satisfies the equation (1.7).

It now remains to resolve how the solution of the problem y is affected by errors
which appear in calculating the initial conditions for the factorization equations
or in solving the equations (4.21). In all these cases it is a matter of solving systems
of equations. Suppose that the calculation of the initial conditions for the factorization
equations and solving the equations (4.21) are performed by such a method that the
numerical realization of this method leads to the same result as the exact solution
of systems disturbed in a certain manner. This assumption is satisfied e.g. in Gauss
algorithm (in [12] an estimation of the disturbance of the system is shown which
resulted from an inaccurate solution of the system by Gauss algorithm).

From these assumptions it follows that an inaccurate calculation of the initial
condition for equation (4.2) and (4.3) at the point a can be interpreted so that instead
of the condition U, x(a) = u, there is the condition (U, + 4,) x(a) = u, + J,.

Let us suppose that all the 3; for i = 1,2, ..., v are at M. This assumption can
be easily reacted: we add the conditions x7(9;) = E x*(9,) at the points §; which
do not lie at M.

The calculation of the initial condition for the equations (4.2) and (4.3) at the
point &; which is performed inaccurately can be similarly represented so that we
perform the calculation accurately but we start with the disturbed system

(GT—I(‘gi) W, + 4,_,, giﬂ(‘gi) - GT—1(9.') w; + 5:’—1) s
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where 4,y = {4j; '} and 6, = (8{7", 857", ..., 6]7") are certain disturbances. Let

us define the matrix Q,_; = {w,ﬂ, '} and the vector &;_, = (e{"", "', ..., &7 ") in
the subsequent way:

Aift for 1£1n,1<kZEN,

k<N

w(,‘i—x.=
N0 for n,<I<N. 1<

. ottt for 1£1<n,
l

RO for n, <l <N.

We can verify calculating directly that

Gl ()W, + 4, =G (%) (W: + 2,_,),
GT«)(‘():‘) W, — 0 = Gi—l('gi) (wi - 8i~1)
is valid.

Thus the disturbances 4;_; and J,_, can be imagined as disturbances of the matrix
W, and the vector w;.

Now let us investigate the influence of errors arising from numerical calculation
of the conditions (4.19) and (4.20). In part 2 of conditions (4.19) or (4.20) the
errors made in multiplication and addition or in inversion of the matrix W;, can
be represented as the disturbances of the matrix W, and the vector w; (see [12]).
Thus let us investigate part 1 of the conditions (4.19). Calculating x(b) we solve the
equations

(5.5) y'(b) + G,(b) z'(b) = g,(b) .
U, x7(b) =u,.

Let us define the matrices V; and V, as

vV, =

f
1
V, = {Ui,} where 1<

lIA

UZ .} where 1 <i

lIA

Ny iy < j < N.

IIA

ny, hy <js<N.

The solution of the equation (5.5) will be obtained in the following way: we solve
the equation

(5'6) (vz -V, Gv(b)) zv(b) =u, -V, gv(b)
and the vector y"(_b) will be determined from the equation
y'(b) = g.(b) — G\(b) 2'(b).

An inaccurate solution of the equation (5.6) will be again imagined so that the
disturbed system (5.6) is accurately solved. It is evident that these disturbances
may be represented as the disturbances of the matrix V, and the vector u,.
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In composite factorization we must solve the systems (4.21) at the points at which
the solution is sought. Let us suppose that the point where the system is solved lies
at M and that the solution at this point is sought from the right. For instance at
the point 3, the following equations are solved

(5~7) G?il(‘gi) W; x+(9i) = gi—l(‘gi) - GT—I(‘Qi) Wi,
y(9) + Gi(9) 2(9) = g(9) .

Let us define the matrices V, and V, in this way:

= {(GT_ (%) W)y i-1} where 1 <[/=<n,1=<k<n,,

= {(GI (%) W)y, i-1} where 1 <I=<n,n<k=<N.

The solution of the equations (5.7) will be obtained as follows:
We solve the equations

(5'8) (vz - V16i(9i)) 2'.('91') = gv—l(‘gi) - G?‘~1(95) w, — vl éi(‘gi)

and the vector yi(Si) will be obtained from the equation

;’i(gi) = §i(9,~) —- G{(%) z(%;).

The inaccurate solution of the equations (5.8) can be again imagined so that the
disturbed system (5.8) is accurately solved. These disturbances can be represented
as the disturbances of the matrix V, and the vector g;_,(9;) G7_(9;) w;. The disturb-
ances of the matrix G}_ (%) W, and the disturbances of the vector g;_,(9;) —
— G}_,(9;) w, may be represented, as it was shown, as the disturbances of the
matrix W, and the vector w

Thus the errors made in numerical realization of the method may be represented
as the disturbances of the original problem (i.. the disturbances of the matrix A(t),
the vector f(1), of the boundary conditions b and eventually of the interface conditions
d). These disturbances are of such a character that they may be estimated a priori
in dependence on the methods used for solving the factorization equations and for
calculation of initial conditions.

The question what influence these disturbances have upon a solution in the original
problem will not be treated here. In order to answer this question special knowledge
of our differential operator is required, e.g. the knowledge of the magnitude of the
norm of corresponding Green function or that of the eigenvalues of the operator.

If the elements of the matrix A and the components of the vector f are given
inaccurately (or cannot be realized with the required accuracy) and if the problem
is solved by the algorithm described above then it is of no value to solve the factoriz-
ation equations and to calculate the initial conditions much more precisely than the
elements of the matrix A and the components of the vector f are given.
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Vytah
O METODE FAKTORISACE

Jiki TAUFER

V tomto ¢ldnku je zobecnéna metoda faktorisace pro okrajovy problém soustavy
diferencidlnich rovnic s pfechodovymi podminkami. Popsand metoda vede k cili
za predpokladu, Ze uloha m4d jediné feseni.

Nejprve se okrajova tloha pfevede na ulohy poédtecni. Toto prevedeni se uskutec-
fiuje pomoci matic D(t) a D{(1) a vektort dy(t) a di(t) zavedenych definicemi 3.1
a 3.2. Pomoci matic D(t) a D(f) a vektori d(r) a d,(t) jsou pak definovdny matice
G,(1)a G(1) a vektory g,(t) a g,(t). Pro tyto matice a vektory jsou uvedeny diferencidini
rovnice (tzv. faktorisacni) a pfislusné pocdte¢ni podminky, takZe je moZno tyto matice
a vektory ziskdvat feSenim Cauchyovych tloh. Zndme-li jiz matice G(r) a G(1)
a vektory gi(t) a gi(f) (pfip. jen matice G(r) a vektory g{t)), miZeme jiz snadno
nalézt feseni ptivodni okrajové ulohy.
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Ddle je v ¢ldnku FeSena otdzka vlivu nepfesnosti na feseni, vyplyvajicich z numerické
realisace metody. UkdzZe se, Ze nepfesnosti, kterych se dopoustime béhem numerické
realisace metody si miZeme predstavit jako poruchy v koeficientech pivodni tlohy.

PeswomMme
O METOAE ®AKTOPU3ZALIULA

NPXWU TAY®EP (Jiki TAUFER)

B 270if cTathe 0600uIeH MeTO (paKTOPU3ALMH [Tl KPACBOM 3a/1aYi CUCTEMBL Jud-
(pepeHLMATBLHBIX YPABHEHUH € TIEPEXOAHBIMUI YCJIOBUSAMU. OMUCAHHBIA METOJ JaeT
pe3yJbTaT B TOM Cilyyae, eciiu 3a/1a4a MMeeT CAMHCTBSHHOE PELICHUE.

CHavayia Kpaesas 3a/a4a CBOAUTCS HA 3aJa4i HAYAJIbHbIE. DTO HENAeTCsl MPHU T10-
o matpur, D(f) u D(f) u Bextopos d(t) u di(f) onpenenennbix B 3.1 u 3.3. Tlo-
ToMm npu nomoum matpur, Dy(¢) u D (t) u Bextopos d(f) 1 d(f) onpeaensiorcs MaT-
uenbl G (1) 1 G(1) v BekTopsl g{(1) m g(t). I MATPHL K 3THX BEKTOPOB MOJIydeHb
nvbdepeHIMATbEbIE YpaBHeHNS (T. H. ypaBHEHUs (PAKTOPU3ALMK) C COOTBETCTBYIO-
LMMH HAYATIbHBIMH YCJIOBUSIMH, TAK YTO 3T MATPUIBI M BEKTOPBI MOXKHO TOJIYYUTD
peirenueM 3aaau Koum. Ecm Mbr 3naem Matpuiibl Gi(t) u Gi(t) u Bektopbl g(t)
1 g(t) (W Toabko MaTpuupt G (1) 1 BekTOPBI g()), MOXKEM yiKe JIETKO HANTH peLeHIe
UCXOJIHOM 3a1a4H.

aJiblie B CTATHE PeleH BOMPOC BIUAHUS HA PEILEHKE HETOUYHOCTEM, KOTOPBIE BbI-
TEKAIOT M3 BHIYUCIMTENLHON pean3auui MeToa. BEIXOAUT, YTO HETOYHOCTH, KOTO-
pbie JeJaeM B TCUCHHM BLIYUCIUTEIBHOM paboThl MOXKHO MPEACTABUTL KaK BO3MY-
wieHust B ko3GPUuMeHTaX MCXOMHOM 3a1a4H.

Author’s address: Prom. mat. Jiri Taufer, Matematicky ustav CSAV, Opletalova 45, Praha 1.
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