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SEMI-INFINITE PROGRAMMING, DIFFERENTIABILITY AND
GEOMETRIC PROGRAMMING: PART II

A. CHARNES*, W. W, Coorer** and K. O. KORTANEK***

(Received March 20. 1967)

We propose to specialize the CCK duality theory'), which associates as dual prob-
lems minimization of an arbitrary convex function over an arbitrary convex set in
n-space with maximization of a linear function in non-negative variables of a general-
ized finite sequence space subject to a finite system of linear equations, to derive
Kuhn-Tucker Theorem?) extensions in situations involving (partial) differentiability
of objzctive and constraint functions. There are several ways to procure such general-
izations as, for example, by means of non-differentiable analogs of quasi-saddle
point conditions or in terms of a saddle point criterion itself. Since we are interested
here in exploring extensions which involve some differentiability conditions, we shall
proceed via the former course especially since these conditions themselves are analogs
of first order conditions of the saddle point criterion.*)

For our purposes then, let f(u), and G(u) = (g,(u), g2(u), ..., g,,(u)) be defined
over an open convex set K in R,. We shall say that f(u) is simple piecewise differen-
tiably convex if f(u) = max {f9(u)}, where f9(u) is continuously differentiable

j=1,2,....N
and convex over K. We shall assume that G(u) is continuously differentiable and
concave, but the extension to simple piecewise concave functions will become ap-

parent during the course of proof for functions of this class.

*) Northwestern University.
*¥) Carnegie-Mellon University.

**%) Cornell University. Part of the research underlying this report was undertaken for the
Pilot Program in Environmental Systems Analysis, NIH, 1 P10 ES 00098-01, at Cornell, and for
the Office of Naval Research projects (Contract Nonr-1228(10), Project NR 047-021 at North-
western University; Contract Nonr-760(24), Project NR 047-48 at Carnegie-Mellon)and for the U. S.
Army Research Office-Durham, Contract No. DA-31-124-AR0-D-322 at Northwestern University.

1y See Charnes-Cooper-Kortanek [4] and [5].

2) See Kuhn-Tucker [7] and Arrow-Hurwicz-Uzawa [1].

3) See Arrow-Hurwicz-Uzawa, ibid., where the authors show that in the case of differentiabil-
ity the quasi-saddle point condition implies the saddle point condition.

15



Theorem. (Generalized Quasi-Saddle Point Theorem for Simple Piecewise Dif-
ferentiably Convex Functions). Let f(u) and G(u) have the properties defined above
and consider the minimization problem

min f(u)
subject to
G(u) 2 0.

Assume the constraint set C = {u | G(u) = O} has an interior point.*) Then u*
in C is an optimal solution to the minimization problem if an only if there exists
positive vectors

n* = 00,0 ) and aF = (50, )

such that the following properties hold:

|
o

(1) —_ él(af(i)
? JZJ nd =1

(3) Gu*)T2* =0, and G(u*)=0°%), where J

u*) ngkj) +2:1 (ag(i)|u") A'Ekl) -
i=

Il

(il P = £(u*)}

Preliminary Lemmas on Canonical Closure for Differential Systems. By intro-
ducing support systems for both objective and constraint functions, we obtain the
following equivalent semi-infinite problem (I) with semi-infinite dual (II), which, for
the moment, we write in general form.

W (11)

min z max Y d,n, + Zc,ii
z—u'Q,2d,,aeA Y, =1
u™P; =z ¢;, i el — 20, + 3 Pi2; =0
noli 20.

4) This type of constraint qualification has strong intuitive appeal especially in the case of
non-differentiability. However, it is known that non-differentiable analogs to the most general
constraint qualification for which differentiable Lagrangian techniques are valid (see [6]) involve
support systems which are themselves Farkas-Minkowski systems. (See [4] and [5]).

5) Notationally speaking, of |u* is the gradient of f evaluated at u*. We use superscripts to
correspond to functions and subscripts to correspond to elements in the index set. Thus, ()fa(,-")
denotes the gradient of f(j) evaluated at the point « € 4. For convenience, “a € A” may be iden-
tified with “u, € 4, when 4 S R,.
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Recall that a system of linear inequalities is canonically closed if it has interior points
and the coefficient set is compact.®) We need the following lemma.

Lemma 1. Suppose that the system is canonically closed and that uy solves (I),
i.e., the minimum z, = f(u), is attained. Then in the dual expression, (I1), for z,
the only supports which arise are those passing through the point (z4, uy), i.e., the
only support planes with i} + 0 and 2} + 0 are those for which z, = uyQ, + d,
and ulP;, = c;.

Proof. By the extended dual theorem, there exist #, A such that

Z* = Zdzq;k + zcl’}';“ .

We must show that if n¥ > 0, then z, = uLQ, + d, and if A} > 0, then uyP; = c;.
First, z,, — u3Q, = d,, for all . Hence

Ydy £ Yzany — Y(ur Qo) ny =z — Y(ux Q) i -

Therefore,

Zgo = 2 d; + 2k = 2y — ) (unQo) M + Y el
ie.,
(4) —Y (I n? + Yeit 2 0.

On the other hand, by dual feasibility,
ux[ =20z + YPAT] = uy(0) = 0.
However, since uLP; = c; for all i, we can rewrite this as follows:

(B) 0= Z — ui Qs + ZUIPiCi 2 “ZU:Q‘M: + Zci'vik .

a

Therefore combining (A) and (B ) we have,
YuxQally = Yt -

Two conclusions follow:

(C)  ze =Y [uiQ, + d,]n7, where Yf =1, 720, and
Ze = urQ, + d,. Hence z, = ukQ, + d, for every a with 7% > 0.
(CZ) Z“:Pil;'k = Zcilf = Z(u:Pi - Ci) /Fik =0

Hence Af > 0 implies uLP; = c,.

6) See [4] and [5]. Note that canonical closure is a sufficient condition but not necessary for
the validity of the extended dual theorem as pointed out in [4].
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Proof of Theorem. With respect to the minimization problem of the Theorem,
consider the particular semi-infinite equivalent

(D)

min z
subject to z — u” ofS = fD(u,) — ul of, j=12..,N

uagl” = —gu,) + up 0g(u,), i=1,2,...m

for all « € A, where A4 is some index set in R, (e.g. the convex constraint set C). Since
C has interior points, it follows that this linear inequality system also does. Form
a canonical normalization”), (i.e., divide each inequality by a positive constant to
make the sum of the absolute values of the coefficients sum to 1), to obtain an equi-
valent system with bounded coefficients and interiority.

@
min z
subject to ¥z — uT U 2 fPu) 1P — ul FORL, fP > 0

ut agiPol” = —g®(u,) ol + uy 09V (u,) v, vl >0

where j = 1,2,...,m, and a € 4.

Now form a canonical closure by possibly enlarging the index set to A 2 A and
adjoining the corresponding limiting inequalities which are of the form:

ygj)z . uTQij) > dij)

uT™PPD > ¢l for aed—A.

Let (T) denote this new canonically closed equivalent (which differs from (T) by only
these possibly adjoined inequalities and also has interior points).

Now if u* is optimal for (I) it is also optimal for the canonically closed equivalent
(T) and lemma 1 applies. However, any of the possibly newly adjoined inequalities
which are actively involved in the dual are positive multiples of differential hyper-
planes already in the system, for suppose one of them has a AY) > 0, say, u’z —
—uTQY¥ = d¥) with «e A — A. Then by lemma 1, the support plane p’z —
— uTQY = dY” contains the point (u*, f(u*)) ie., pl’ f(u*) = plzy = u*TQY +
+ d or equivalently, the plane u’z = uTQ{’ + d is tangent to the surface
z = fU(u) at the point u*. Since f¥(u) is continuously differentiable, and since
pPz = uTQP + dY over C, this tangent plane is unique up to a constant positive
multiple, and therefore we do not need to adjoin these additional inequalities. A si-
milar argument obviously holds for the constraint functions.

7y See [5], p. 114.
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We now present the semi-infinite dual (II) and derive the conditions of the theorem.

max ZXUU)(“ Y — uTof PP 7D + 3 Y[ =g u) o + ul 8g(u,) o] AL
Jj o«
subject to
Z W =1

*Z Z(af(!)'u(l) -(J) + zzagmv(l);{(r)

and
n21=0.

By the dual theorem there exists a dual optimal solution (7*, 1*). By lemma 1 7*
has non-zero coordinates corresponding only to support planes passing through the
optimum (u*, z*), i.e., those gradient tangent planes at this point, one for each func-
tion £, This also applies to A* and constraint functions g¢”, and therefore we may
write 7% = (7", ..., 7%") and A* = (1{, .. I"")) Thus, upon setting #$? = u@’7

for j=1,..,N and 2{ = o{? I for i = 1, ..., m, we obtain the following dual
optimal conditions:

(1) z af(”ﬂ(” + Z ag(t)/{(t) =0

and

@ Y =1
J
where all 7’ and 4" > 0.

The equality of dual functionals yields,
S@) =z, = YfOu¥)n = YurT of Pn + YurT 9929 + Y (—gP(u¥) 1P)
J J i i
= SO 1 ~ ) A
J i

Since fO(u*) < f(u*) for all j and g®(u*) = 0 for all i, it therefore follows that, (3)
Y99(u*) A9 = 0. Furthermore, since f(u*) = max {fP(u*)}, it follows that n’ = 0
whenever fO(u*) < f(u*), giving condition (2). Thus, the three conditions of the
theorem are proved.

On the other hand, given positive vectors #* and A* satisfying conditions (1), (2),
and (3) with respect to u*, then since u$’ + 0 and AY’ # 0 in the canonically closed
system (I) we obtain dual feasible solutions upon setting 7§’ = #$’[u$’ and 1 =
= 2¢[vf. Furthermore, the dual objective value is Y f@(u*) 4, and condition (2)
implies that f(u*) = Y fO(u*) 5§ giving dual equality of objective functlons thereby
proving that (f(u*), u*) is optimal.
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Our generalization of the quasi-saddle point version of the Kuhn-Tucker Theorem is
not as general as we may possibly get, but it does indicate a unified approach to
study these equivalences under more general circumstances. In fact, we are already
obtaining results for generalized saddle-point equivalence theorems for arbitrary
convex functions over R,. This is the subject of another paper and will be reported
on elsewhere.

Already these methods have shown that the crucial property of the constraint
functions is the Farkas-Minkowski property, which is a property of the functions
themselves expressed in terms of finite positive linear combinations of their ‘“gra-
dients”. Geometric qualifications are sufficient restrictions on the constraining func-
tions to permit such Farkas-Minkowski expressions. In general however, it may be
necessary to go beyond the natural gradient inequalities provided by the constraint
functions to obtain strong duality results.

In conclusion, we illustrate this now by constructing a canonically closed equi-
valent for the one-variable Slater example by adjoining a new variable to the gradient
inequality system following the methods of our regularization procedures for semi-
infinite programs.®) Restating the Slater example, we have:

(1)
min x
subject to —(1 — x)*> 2 0

with unique optimum x, = 1. Introducing a differential system of supports to contain
the optimum, we obtain the equivalent problem:

o)
min x
subject to 2(1 — o) x = 1 — o?

for0 < o < 2.

Let M and V be large positive numbers, either real or non-Archimedean, i.e. larger
than any real number®), and construct the following semi-infinite dual regularizations.

(Le)

min Mt + x
subjectto  t+21—a)x=21—0o*, 0Za=<2
x= -V
—-x = =V

8) See Slater [7], [4] p. 216, and [5], p. 119.
%) See [3] pp. 756—7.
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(ITz)

max Y (1 —o?) A, — VA* — VA~
subject to Y. 2, =M
Yol —a)d, + 4T — A" =1
AMs =2 0.

Observe that problem (I;) is canonically closed and that ¢ > 0 is included in the
inequality system and corresponds to the index point & = 1. As stated above, M may
be viewed as real or non-Archimedean, and therefore we shall derive dual optimal
solutions for (Ig) and (IIg) in a manner which is valid for either case.

We know that (¢, x) = (0, 1) is (Ig)-feasible with functional value 1. Thus, we search
for a solution (1, x,) with objective value <1, if it exists, and therefore we assume
X4 < 1. By lemma 1, this optimum involves only support planes which are tangent
to it and therefore involves only its own gradient inequality with index point o, =
= X,. But this implies t, = (1 — a,)? yielding (Ig)-objective value M(1 — ay)® + oty
Applying the usual differential methods for finding a minimum to this function
yields the Taylor expansion,

4M -1 M(a*_ZM—l

2
M(1 — o) + oy = 4M_+ ) for 0Z o, <2,

an equation which is obviously valid for arbitrary M. This tells us to take o, =
= (2M — 1)[2M to obtain minimum objective value (4M — 1)/4M < 1. Further-
more, the point (ty, x,) = (1/4M?, (2M — 1)[2M) is (I)-feasible because

t >

_1\2
=4M2—<oz——2M 1)=l—a2—2(1—a)x* for 0<ax<2,

2M

which is a restatement of (I)-feasibility. But taking A, = M, the dual variable
associated with the binding constraint, and A, = 0 for « % ay and A* = 1~ =0,
yields a dual (IIg)-solution with equality of dual objective functions, and therefore
shows that in fact the two solutions form dual optimal solutions for problems (I),
(IIg) whether M is viewed as real or non-Archimedean.

Observe that the dual solution, A*, is an extreme point of the associated generalized
finite sequence space'®) and as such the non-zero coordinate is linear and homo-
geneous in M''), in particular, 4,, = M. Two courses of action with respect to M

10y See [4] p. 211.

11y See [2], where this statement was first proved for finite linear programming over non-
Archimedean ordered fields.
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are now open to us. First, if M is real, we may let M — o0 so that (t,, x,) = (0, 1),
the solution to the Slater problem, with corresponding dual variable characterized
by 4,, — o0. Second, viewing M as non-Archimedean, we obtain dual optimal solu-
tions in Hilbert’s fizld with common objzctive value 1 — 1/4M which in the extended
ordering is larger than any real number less than 1, but itself is less than 1.
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Souhrn

SEMIINFINITNI PROGRAMOVANI, DIFERENCOVATELNOST A
GEOMETRICKE PROGRAMOVANI: CAST 10

A. CHARNES, W. W. CooPERr, K. O. KORTANEK

Autofi se v éldnku zabyvaji jistou specializaci své teorie duality na pfipad, kdy
cilovd funkce je spojité diferencovatelnd a konvexni na mnoZin€ K pfipustnych feszni
a funkce omezeni definujici K jsou spojité diferencovatelné a konkdvni. V ¢ldn-
ku je ddle ukdzdna cesta jak vyklad zobzscnit na pfipad, kdy funkce v omezenich
problému jsou po &dstech diferencovatelné a konkdvni. Ziskané podminky lze

Mry

chdpat jako rozsifeni Kuhn-Tucherovy véty.
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