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SVAZEK 14 (1969) APLIKACE MATEMATIKY CisLo 1

ON A CLASSIFICATION OF STATIONARY POINTS
IN NONLINEAR PROGRAMMING

JAROSLAV HROUDA

(Received April 20, 1967)

§1

We will deal with a constrained extremum problem (that of nonlinear programming)

(1) max {F(x) lfi(x) Sapi=1...,me(x) b, k=1,..,n}.

Here x is a point of Banach space E; F and f; are nonlinear functionals continuously
differentiable in the sense of Fréchet;') F'(x), fi(x) are their derivatives at the point x;
@, are linear functionals; a;, b, real numbers. Let R stand for the set of E (called the
feasible domain of the problem) defined by the inequalities in (1); R is a closed set.

Let us now briefly mention the terms introduced by ALTMAN in [1].2)

Definition 1. se E, s & 0 is called a feasible direction of the point x € R if there
exists a number T > 0 such that

(2) x+tseR forall 0<t<7.

We denote by A(x) the set of all feasible directions of the point x.

Definition 2. x € R is called an R-stationary point of the functional F if A(x) *0
and

(3) sup {F'(x)s|se A(x)} = 0.

Let us denote by M,, N, the sets of indices
“) My={i| fi(x) =a,1=i < m},
(5) Nx={k‘¢‘k(x)=bka1§k§n}

!y Fis not assumed to be concave nor f; convex.
2) Keeping his original notation.



and by S(x) the set of vectors

(6) S(x) = {seE|fi(x)s £0,ie M; p,(s) <0, keN,} >
Definition 3. s e E is called a regular direction of the point x if s € S(x) and

(7 fix)s <0, ieM,.

For the set of all regular directions of the point x the symbol Sg(x) will be used.
Obviously, 0 ¢ Sg(x) if M, # 0. If M, = 0, then Sg(x) = S(x).

Definition 4. x € R is called a regular stationary point of the functional F if
Sp(x) + 0 and

®) sup {F'(x)s|seSgx)} =0.

[The condition Sg(x) # @ can be formulated equivalently as follows: For any
numbers u;, v, the relations

Zuif;(x)'l'zvk(pk:()s u; =20, v, =0
keN,

{eM

%

imply u; = 0 (i € M,). Usually, this condition is required to be fulfilled for all the
points of the domain R as the so-called regularity condition.*)

§2

In this paragraph we will derive some properties of the concepts given by
Definitions 1 through 4. It will be shown that the regular stationary point is an
R-stationary point; under the regularity condition the concepts given by Defini-
tions 2 and 4 are equivalent.

Lemma 1. For each x € R the inclusions

© Sk(x) = A(x) = 5(x)
hold.

Proof. Let se Sg(x). According to the generalized Lagrange’s formula we can
write

(10) flx + 1) = fix) + tfilx + Ots)s, i=1,..,m.5)

3 If My= 0, N, = 0, then S(x) = E.
4) In [1] it is denoted by R, in [3, sect. 7.7] by CL
0< o, <1.
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Assuming f} to be continuous, it follows from (4) and (7) that there exist sufficiently
small numbers ¢; > 0 such that

flx+1s)<a; forall 0<t=<t, i=1..,m.

Further, for the linear functionals according to (5) and (6) there exist sufficiently
small ¢, > 0 such that

ox +1s)=x)+tofs) < b, 0<t=1t, k=1,..,n.

Then the demand (2) can be fulfilled by putting 7 = mm {tl, t}, hence s € A(x), and
the first inclusion in (9) is proved.

Let now s ¢ S(x). This means that f(x) s > 0 for some i€ M, or ¢s) > 0 for
some k e N,. (Following footnote 3, M, = 0, N, = § cannot hold simultaneously.)
In the former case the continuity of f3, (10), and (4) imply

fix + ts) > a; for all sufficiently small ¢ > 0,

i.e. s ¢ A(x). The same conclusion can be reached also in the latter case. Thus A(x) =
< S(x) holds.

Lemma 2. If Si(x) # 0, then Sg(x) is dense in S(x) for each x.

Proof. Let §e Sg(x). To each se S(x) there exists an arbitrarily close regular
direction

(11) s'=s+4+15, t>0 arbitrary.

Indeed,
fix)s' =fix)s + tfi(x)s§ <0, ieM,,

o(s) = ofs) +tefs) <0, keN,.
Lemma 3. If x € R, Sg(x) = 0, the conditions (3) and (8) are equivalent to
(12) sup {F'(x)s | se S(x)} = 0.

Proof. Let us denote by m,, mg, and mg the left-hand sides of (3), (8), and (12),
respectively.®) With regard to (9) it holds

(13) my < my < mg.

According to Lemma 2 there exist regular directions arbitrarily close to element
0 € S(x), thus

(14) mg 2 0.
6) Clearly, either m, = 0 or m4 = + o0; the same is true for other two symbols.
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Now,
(15) mg =0=>mg=0

for if there were an s e S(x) such that F'(x).s > 0, a regular direction s’ formed like
that in (11) with a sufficiently small ¢ > 0 would satisfy the (impossible) inequality

F(x)s' = F(x)s + t F(x)§>0.
Then it follows from (13), (14), and (15)

my=0<=mp=0=mg=0.
4 R s

§3

In this paragraph we will propose a generalization of the concept of the R-stationary
point.

Definition 5. x € R is called an R-quasistationary point of the functional F if
either

(16) Sp(x) =9
(17) 51ip {F'(x)s|seSx)} =0.

Spix)= 2
R- stationary points

Fig. 1.

The extent of the new concept is schematically illustrated in Figure 1. The logical
circle represents the set R and its dashed part the R-quasistationary points.

The quasi-stationarity of a point in the sense of Definition 5 can be proved by
means of a criterion identical with that of Altman [2, Theorem 1]:
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Theorem 1. x € R is an R-quasistationary point of the functional F if and only if

(18)  max{o|F(x)s 2 o;fi(x)s < —0.ieM; pfs) <0, keN,} =0.

5,0

Proof. Let ¢ denote the left-hand side of (18). Let ¢ = 0. Let us admit that the
point x is not R-quasistationary, i.e. there exists a vector § € Sg(x) for which F'(x) § >
> 0. If we put down

& = min {F'(x)§; —fix)5, ie M},

the vector § and the number & will fulfil the inequalities in (18) and at the same time
& > 0; but this contradicts our assumption. Conversely, let us suppose that the
point x is R-quasistationary. If there were some vector § satisfying the inequalities
in (18) with & > 0. then § would be a regular direction of the point x and
F'(x) § > 0. This is impossible, however, and therefore ¢ = 0 must hold (this value
of G is realized, e.g., by s = 0).

A constructive way of getting R-quasistationary points is provided by the well-
known method of feasible directions. Altman’s theorem [2, Theorem 2] on con-
vergence of this method remains valid even if the regularity condition is omitted;”)
then the limit point of the method will be an R-quasistationary point. The usefulness
of the new concept is now apparent: The regularity condition is a strong require-
ment when applied to general (non-convex) regions and is difficult to verify in prac-
tice. The method of the feasible directions can be used without it, however.

Remark. The terms from Definitions 2, 4, and 5 are essentially related to the
maximization-type problem (1), although this is not explicitly worded in them.
Evidently, the corresponding terms for the minimization-type problem could be
obtained by means of infimum.

The author wishes to express his thanks to Mr. Joser NEDOMA for help in correcting some
mistakes.
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7) The regularity condition enters the proof of the theorem only through Theorem 1.
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Souhrn

K JEDNE KLASIFIKACI STACIONARNICH BODU
V NELINEARNIM PROGRAMOVANI

JArROsLAV HROUDA

M. Altman v prdci ,,Stationary points in non-linear programming® popsal tfidy
R-staciondrnich a reguldrnich staciondrnich bodd (R je pfipustnd oblast wlohy
nelinedrniho programovéni v Banachové prostoru — obecné nekonvexni). V nasem
¢ldnku ukazujzme, Ze na mnoZindch R spliiujicich tzv. podminku regularity jsou obé
tyto t¥idy totoZné. Definujeme $ir$i tfidu stacionarit zahrnujici viechny body, k nimZ

miiZe (slab&) konvergovat Zoutendijkova metoda piipustnych sméri, je-li pouZita
bez ohledu na podminku regularity.

Author’s address: Jaroslav Hrouda, Vyzkumny ustav technicko-ekonomicky chemického pra-
myslu, Stépansk4 15, Praha 2.
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