
Aplikace matematiky

Jaroslav Morávek
On the complexity of discrete programming problems

Aplikace matematiky, Vol. 14 (1969), No. 6, 442–474

Persistent URL: http://dml.cz/dmlcz/103254

Terms of use:
© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103254
http://dml.cz

SVAZEK 14 (1969) A P L I K A C E M A T E M ATI KY ČÍSLO 6

ON THE COMPLEXITY OF DISCRETE PROGRAMMING PROBLEMS*)

JAROSLAV MORAVEK

(Received April 18, 1968)

I. INTRODUCTION

In this paper we shall be concerned with a general discrete (integer) programming
problem, as follows:

To maximize the given function of a discrete variable x

(1) f(x, a l 5 a 2 , . . . , a„)

subject to the constraints

(2) x e X

and

(3) gt(x, a l 9 a 2, . . , a „) ^ 0 (1 ^ i = n) ,

where the following assumptions are made:

A) X is a finite, nonempty set (the range of the discrete variable x),

B) a l 5 a 2 , . . . , an are parameters of the problem (1), (2), (3), where (a l 9 a2, ..., an) e
e A, A being a given non-empty set of Rn. (The symbol Rn denotes the set of all
ordered rc-tuples of real numbers, which will be called ra-space in the sequel), and

C) f and gt are real-valued functions denned on the set X x A.

R e m a r k . Usually we shall have A = Rn or A = Rn+, where Rn+ denotes the non-
negative cone in Rn.

*) The results of this paper were presented on the 6th International Symposium on Mathema
tical Programming (August 1967, Princeton University), on the 10th Scientific Colloquy (Septem
ber 1967, Technische Hochschule Ilmenau, Germany), and on the Conference on Applications
of Mathematics to Economics (December 1967, Bucharest University and the Romanian Academy
of Sciences, Bucharest).

442

E x a m p l e . Let us consider the following discrete programming problem: To
maximize the value of a linear form

c1 .x1 + c2 .x2 + ... + cn.xn

subject to the condition that xl9 ..., xn are integers satisfying the following system
of inequalities

ailx1 + ... + ainxn g b; (1 ^ i g n)

and

0 ^ x, ^ 1 (1 SJSn).

This problem can be presented in the form (1), (2), (3) by putting

X = {(xl9 ..., xn) | Xj e {0, 1} (1 S J S n)} = {0, 1}M

and by considering real parameters atj, bh and Cj as parameters ay- of problem (1),
(2), (3). Functions / and gt can be introduced in an obvious way.

In the example mentioned above functions / and gt are linear forms of the para
meters (where x is fixed), and at the same time the coefficients of these forms are
integers. In fact this is true for any discrete programming problem known to the
author. For this reason the following assumption concerning problem (1), (2), (3)
will be added to assumptions A), B), C):

D) Functions f(x, al9 ..., a„) and gt(x, al9 ..., an) can be expressed as follows:

n n

f(x, al9 a2, ..., a„) = £ c / x) . a i , gt(x, a1? ..., a„) = ^ c^x) . ocj
1=i 1=i

where coefficients Cy(x) and c^(x) (x e X) are integers.

A concrete numerical problem can be obtained from problem (l), (2), (3) by sub
stituting numerical values for parameters %j.

Discrete programming problems are very often discussed in the literature because
they occur in many problems of mathematics, operations research, engineering, etc.
For the solution of the discrete programming problems many algorithms have been
described. Then the essential problem arises to compare different algorithms from
the point of view of their efficiency (i.e. processing time and storage requirements,
etc.), and that of finding an "optimum" algorithm. Presenting the last problem in
this way, we at once face serious "philosophical" difficulties caused by the fact
that no general and mathematically rigorous concept of a discrete programming
algorithm is available and therefore it is not clear enough how to "measure" the
efficiency of such an algorithm.

443

If we want therefore to study the problem of optimization of discrete programming
algorithms by using theoretical methods, we have to find first of all a particular answer
to the main question: "What is an algorithm of discrete programming in general?" —
In other words it is necessary to introduce a certain class of algorithms.

In this paper a class of algorithms is introduced for the solution of the problem
(1), (2), (3), and certain complexity indices of algorithms are defined. At the same time
we try that these definitions fulfil the following requirements:

1) The formal definition of an algorithm must be general and natural enough
to describe naturally a large number of algorithms practically interesting and efficient
(described in the literature and so far imaginable).

2) The definition of complexity (i.e. the measure of efficiency of an algorithm)
must be sufficiently related to the required processing time, when realizing an algo
rithm by means of a computer.

According to the author's opinion the last requirement can be reached by intro
ducing a complexity index in terms of the number of required elementary operations.

Thus in this paper, instead of describing or investigating a concrete algorithm,
a very large class of algorithms is investigated. In this sense there exists a relation
to the paper [l] , where a certain class of algorithms for solving a 0, 1-linear pro
gramming problem is investigated. An elementary step of an algorithm in [1] con
sists in checking whether a given 0, 1-vector is a feasible solution or not. After a set
of 0, 1-vectors has been checked, the algorithm finds an optimum vector. The com
plexity index in [1] is defined as the number of checked vectors, and bounds on the
complexity index are derived.

Our approach differs from that in [l] mainly in the concept of complexity. In this
paper we make use of the fact that most of discrete programming algorithms require
only additive operations addition and subtraction and predicates of comparison of
real numbers. (According to the opinion of E. BALAS [2] multiplications and divisions
seem not to be natural in discrete programming algorithms, particularly because
they cause round-off errors.) Using certain algebraic construction, based on the graph
theory, a class of linear separating algorithms is defined, where the algorithms use
additions, subtractions and comparisons as elementary acts.

A main part of the paper consists of deriving certain lower (pessimistic) bounds on
the number of comparisons required by linear separating algorithms for solving
certain special discrete programming problems.

In section II problem (l), (2), (3) is generalized in an adequate way, and then the
concept of a linear separating algorithm is introduced, and simple properties of this
concept are shown. The linear separating algorithm is defined as a trichotomic finite
rooted tree with labelled nodes and edges. At the end of section II a theorem is given
about the existence of a linear separating algorithm.

In section III estimations of the number of required comparisons concerning
following discrete programming problems are derived:

444

1) Linear programming problems with 0, 1-variables.

2) Polynomial programming problem with 0 and 1 variables.

3) Shortest route problem in certain acyclic networks with labelled directed edges.

4) At the end of section III the complexity of a branching algorithm for finding

a 0, 1-solution of a given linear equation is discussed. The discussed problem is

related to the so called knap-sack problem.

The most definitive result is obtained in the case of the shortest route problem.

It is proved that the Bellman's dynamic programming method yields an algorithm

which is optimum in the sense of the number of required comparisons.

In the concluding section IV the obtained results are briefly discussed and possible

ways of further development of the ideas are shown.

In the sequel use of several lemmas is made. Proofs of these lemmas are presented

in Appendix (V.).

II. GENERAL CONCEPTS

1. Generalization of Problem (1), (2), (3). First of all we are going to show that

a certain finite system of subsets of -A corresponds to problem (1), (2), (3). Let us

put

A(x) = [loL a) e A P r o b l e m W> (2)> (3) w i t h a*> ' •" a" a s v a l u e s l =

^ } |V i' ••' m) of the parameters has optimum solution x J

= {(a l5 ..., a„) e A | gt{x, ccu ..., a„) ^ 0 (1 ^ i ^ m)} n

m

n n [U {(«!, •.., aB) e A | gt(x\ a1 ? ..., a„) > 0} u
x'eX-{x} i=l

u {(a1? . . . , a „) e A \f(x\au ..., a„) g / (x , a l 5 ..., a„)}]

for each x e X, and

Problem (l), (2), (3) with a 1 ? . . ,«„ as values)

of the parameters has no feasible solution j
А(0) = | (a i , . . . , a n) є А

m

= П U {(<*!, ..., GCП) є А | gt(x, a l 9 ..., aи) > 0} .

Making use of assumption D) concerning functions / and g t we can see that each of

the sets A(x) and A(0) can be expressed as the intersection of A with a union of

a finite system of certain convex polyhedral cones (the cones under consideration

may be defined both by inequalities :g and <) . The system {A(0)} u {A(x) | x e X}

is covering of A, i.e.

Щ u U A(x) = A .
xeX

445

Each algorithm for solving problem (1), (2), (3) must in fact realize in a constructive
way the following mapping: To each vector (a l9 . . . , aM) e A the algorithm must
assign a set of the system {-4(0)} u {A(x) | x e X}, containing the given vector

(« ! , . . . , 0Cn).

R e m a r k . Requiring an algorithm to determine the set of all the optimum solutions
of problem (1), (2), (3), we introduce the system of sets {A(Y) | Y CZ X}, where

Ã(У) = J (a 1 , . . . , « ,) є A
Y = {x} is the set of all the optimum solutions of problem

(1), (2), (3) with al9 ..., an as values of the parameters

instead of the system {-4(0)} u {A(x) | x e Xj. Then it results immediately A(0) =
= -4(0), and the conclusion that the system {A(Y) | Y c X} is disjoint decomposition
of A

Now, it is immediately seen that problem (1), (2), (3) is a special case of a more
general problem (called Basic Problem):

(BP) Let A be a nonempty set, A cz Rn, and let {At \t e I} be a finite system of
subsets of .4, where {At | i e /} is a covering of A, i.e.

U A, = A .

Problem (BP) consists in finding an algorithm, which has to determine such a set At

to each given vector (a l 9 ..., an) e A, that (a 1 ? ..., an) e Ar

As functions f, and gt are linear forms according to the assumption (D), we make
the additional adequate assumption concerning the problem (BP):

Each of the sets At (i e I) may be expressed as

At = An (Af

(1) u .

where each set A(Q) can be expressed as

u A (Q)

u u 4">),

A(Ѓ = (a 1 ; ..., a„)є A

X< -a, Š O (x=l,2,...,kj
J = I

tcl ' . f .a , <0 (A = l,2,...,/(>e)

where 6 ^ and c^f are integers (i.e. -4^} are certain convex polyhedral cones, which
are in general neither closed nor open, and at the same time the coefficients of the
linear homogeneous inequalities determining A(Q) &YG integers).

The problem (BP) is very general, and it is not restricted to the area of the discrete
programming. It covers a very large class of combinatorial problems.

2. Class of Linear Separating Algorithms. The purpose of this paragraph is to
describe formally the preparatory considerations of the preceding paragraphs. We

446

present a formal definition of the Linear Separating algorithm (LS-algorithm), which
is to formalize the intuitive concept of an arbitrary algorithm built up only from addi
tions, subtractions, and comparisons, where a comparison is a predicate defined
in the set of all ordered pairs of real numbers (x, y), taking on three values:

x is larger than y, x is equal to y, or x is less than y.

Definition. An LS-algorithm for solving problem (BP) is a finite trichotomic rooted
tree T, having labeled nodes and edges. At the same time, the tree T has the fol
lowing properties a —d:

a) The root v0 has degree (i.e. number of incident edges) 3, and each node dif
fering from v0 has degree either 1 or 4.

Let us denote sets of nodes having degree 1 or 4 as Vx or V4 respectively. The set
of all nodes of T will be denoted by V, thus V = {v0} u Vx u V4. It is known that
to each node vr e Vx there exists a unique sequence of different nodes {v0, vl9 ..., vr}
such that the nodes Vj„t and Vj are connected by an edge for j = 1, 2, ..., r. The
sequence {v0, vx, ..., vr} will be called a branch, and denoted by B(vr), i.e.

B(vr) = {v0,vl9 ...,vr} .

Further, it is known that a unique partial ordering -< exists such that u' -< u" is
valid if and only if such a branch B(vr) = {v0, vl9..., vr} exists that u' = vQ, and
u" = va for a pair of indices Q and a, where Q < a. Now, each edge of T can be orient
ed as follows:

A directed edge *) (u, v) starts from node u, and enters node v if and only if nodes u
and v are neighbours, and u -< v holds. Thus it is clear that from each node v e
e V4 u {v0} = V — V! exactly 3 lines start.

b) With each of the said three lines one of the numbers either —1 , or 0, or + 1
is associated, where each of the numbers — 1 , or 0, or + 1 is associated with the
considered triple of edges only once. Thus, each edge (u, v) of T has been labelled
by a number, which will be denoted by sign (u, v).

c) With each node v e {v0} u V4 a linear form S£v(al9 a2 , . . . , an) of parameters
n

a l9 a 2 , . . . and ocn is associated, where S^v(al9 a2 , . . . , art) = £ c^ . ocj9 and where
i = t

coefficients c[v), c(
2
v),... and cn

v) are integers, and where (c[v), c(
2
v), ..., c(v)) 4= (0,

0, . . . ,0) .

d) Each node veVx is labelled by a certain index iel9 such that the following
condition is fulfilled:

If sign (SCVj(al9 a2, ..., a„)) = sign (vj9 vj+1) (0 = j = r -- 1), where B(vr) = {v0,

*) In the sequel we say simply edge. »".• •

447

vl5 ..., vr}, then (a t , a2, ..., a.,) e At. The definition of the LS-algorithm is accom
plished.

3. Interpretation of LS-algorithm. The LS-algorithm can be interpreted in this

natural way:

i) First Step of LS-algorithm. The procedure starts from the root v0.

ii) General Step of LS-algorithm. Let us assume that a node u e {v0} u V4 has
been reached in the algorithm. By an application of a finite number of operations
+ and — the value SPV(OL19 ..., a,,) is determined. As the result of the comparison of
SPv{au ..., a„) and 0 a node v is determined such that v neighbours w, u < v, and
sign (w, v) = sign &J(ail9 ..., an).

Fig. 1.

hi) Final Step of LS-algorithm. At certain stage of the procedure an end node
v e V! has been reached. The subscript i e I assigned to v according to the definition
of LS-algorithm determines the set AL such that (a l5 a2 , . . . , ocn) e Alm

448

An LS-algorithm can be schematically shown as in figure 1. In our approach we
are going to discuss bounds on number of comparisons required by an LS-algorithm.
If we wanted, however, to estimate also the number of additive operations, it should
be necessary to introduce an alternative tree-algorithm, the tree containing also nodes
corresponding to additions and subtractions.

This paragraph is concluded by a remark concerning the used terminology. In
an LS-algorithm n-space is successively partitioned (separated) by hyperplanes
^ u (a 1 ? ..., ocn) = 0. A similar term was used in threshold logic (see e.g. [3]).

4. Complexity of LS-algorithm. In the preceding paragraphs it was shown that
in an LS-algorithm a comparison is associated with each node. Therefore, if the
process runs along a branch B(vr) = (v0, vl9..., vj, then the number of required
comparisons equals the length of the branch, i.e. r. Now, the following definition
will be introduced: A node veV1 (resp. the corresponding branch B(v)) is called
proper, if a vector of parameters (a1? a2 , . . . , ocn)e A exists such that the algorithm
terminates in the node v, when starting from the vector (a1? a2 , . . . , an). <

For the purpose of the following paragraphs we introduce two complexity indices
Ci(T) and C2(T):

1) Cj(T) denotes the length of the longest branch of T.

2) C2(T) denotes the length of the shortest proper branch of T.

From the latter definition it follows immediately CX(T) £> C2(T) for each LS-
algorithm T.

We have already noticed that the general idea of LS-algorithm does not exclude
the possibility to discuss the complexity of discrete programming in terms of additive
operations. In this paper, however, we investigate only comparisons requirements,
and we remark that the problem concering additive operations seems to be more
difficult. On the other hand, the adequacy of our approach consists, in our opinion,
in the following facts:

1) Comparisons usually occur as elementary operations in a computer;

2) Comparisions describe naturally the logical structure (branching) of an algo

rithm (resp. computational process).

5. Existence of LS-algorithm. A close connection between problem (BP) of para
graph ILL, and an LS-algorithm is shown in following theorem.

Theorem 1. There exists an LS-algorithm T for solving problem (BP) to each
problem (BP). Especially, to each discrete programming problem (1), (2), (3) there
exists such an LS-algorithm T 0 for solving problem (1), (2), (3) that

Ci(T) S(m + 1). card (X) - 1 .

449

Proof. First let us remember that each of the sets AL occurring in problem (BP)
can be expressed as

AL = A n (A(1) u ... u A(Q) u ... u A(n)),

where A(Q) is certain convex polyhedral cone (see ILL). Let us denote by $1 the system
of all hyperplanes facing at least one of the cones A(e). Let the equations of the hyper-
planes of $1 be

fc(r>.ai + k2°>.*2 + ... + ki°*m = o,

where a == 1, 2 , . . . , JR. Let us notice that coefficients k(p can be assumed to be
integers (see the end of paragraph II. 1.)

Now, let (8l9 8l9..., $R) denote arbitrary vector, with the coordinates taking on
either -f-1, or — 1, or 0, and let us put

H(51,d2,...,SR) =

= {(a , , . . . , a„)e A \ s i g n ^ . a, + .. . + fc<" . an) = ba (1 = a = R)} .

Further, let us denote by S the system of all sets H(Sl9 ..., SR)9 where 8a e {— 1, 0, l}»
for 1 ^ a S K- ® is a disjoint decomposition of A9 and at the same time © is a refine
ment of system {AL | tel} in the following sense:

VieIV(oil9...9(xn)eAL3H(5l9...9dR)e!B

((ocl9...9ocn)eH(3l9...95R) c AL) .

Now we are going to construct an LS-algorithm T for the solution of the problem
(BP) as follows: Let us put

V = {v(5l9 ..., 5,) | 3X e {0, - 1 , 1}, ..., dae {0, - 1 , l } ; o = 0, 1, ... , R} ,

vo = v(0) for the root, and

Vt = {v(Su..., 5R)\dle {-1,0, l},...,dRe {-1,0, I}}.

The set of the edges will consist of the ordered pairs

(v(5l9...98a)9v(5l9...,8a9S
1

a+1))9

where O\e{-1,0, l } , ...9da+1e{-l9091} (0 g O ^ K - 1). The node v(3l9 ..., (5ff)e
eV ~V1 will be labelled by k[a+1). a t + . . . + k(

n
a+1). an (o = 0, 1 , . . . , K - 1),

and the edge (v(8l9 ...98a)9 v(8l9 . . . , 8a+1)) by s ign(v (<5 l s . . . , 8a)9 v(8l9..., 8a+1)) =

= signO^^+i, where o = 0, 1, ..., R — 1. Each end node v(8l9 ...98R)eV1 will be
labeled by such an index i e I, that

H(8l9...98R)aAL.

450

It is clear that T is an LS-algorithm for solving problem (BP), and the first half of the
theorem is proved.

An LS-algorithm for the last half of the Theorem will be described in an intuitive
way. In the said algorithm elements x e X are successively examined in some chosen
order and feasibility conditions (3) are checked. In this part of the algorithm m .
. card (X) comparisons are required. Thus a set X of all feasible solutions is generated
(X cz X). Comparing values f(x) (x e X), we determine optimum solution x, that
is to say one of the optimum solutions. In that final part of the algorithm, required
number of comparisons is not larger than card (X) — 1. The described trivial algo
rithm can be obviously represented as an LS-algorithm for solving problem (1), (2),
(3), and at the same time the number of required comparisons does not exceed
(m + 1) . card (X) — 1, q.e.d.

III. BOUNDS OF COMPLEXITY OF SPECIAL PROBLEMS

1. Linear Programming Problem with 0 and 1 Variables. 1.1. Auxiliary Problem.
The linear programming problem with 0 and 1 variables has been described in the
Example of the Introduction.

It is to maximize a function

(4) c 1 . x 1 + c 2 . x 2 + ... + c„..x„

of the variables xl9 ...,x„, subject to

(5) *,.6{0,1}

and

(6) tatj.xj^bi (l ^ i r g m) .
1=i

As shown in the Example, problem (4), (5), (6) is a special case of problem (1), (2),
(3), and therefore an LS-algorithm for solving that problem exists. The purpose of the
section III.l, is to derive a lower bound for Ci(T), where T denotes arbitrary algo
rithm for solving problem (4), (5), (6).

First, let us introduce an auxiliary problem (P): Real values al9 a29..., an9 and a are
given. The problem consists in deciding whether linear equation

(7) fl1.x1 + a 2 . x 2 + . . . + a „ . x B = fl

has a solution (xl9 ..., xn) satisfying conditions (5).

451

Problem (P) can be obviously considered as a special case of problem (BP), if
putting I = (0, 1}, and

A0 = {(al9 ..., an, a) e Rn + i | equation (7) has no solution (5)} ,

and

Ax = {(aj, ..., an9 a)e Rn+{ | equation (7) has solution (5)} .

Problem (4), (5), (6) is in some respect "more difficult" than problem (P), as shown
in the following lemma.

Lemma 1. For each LS-algorithm T for solving (4), (5), (6) with m ^ 2, such
an LS-algorithm T for solving (P) exists, that

C/f)_C,(T) 0 = 1,2).

Proof. Beginning with T, we shall construct an LS-algorithm T for solving (P)
as follows:

1) Put axj = aj9 and a2j = —aj9 and Cj = 0 forj = 1, 2, ..., n in T.

2) Put h1 = a, and b2 = — a, and atj = b,- = 0 for i = 3, 4, ..., m, j = 1, 2, ..., n
i n T .

3) If node veVl has been labelled by vector (xl9 x2,..., x„), then it is relabelled by 1 •

4) If node v e V1 has been labelled by 0 it is relabelled by 0.

5) Performing operations 1) —4), we derive a labeled tree T (1) from T. Let us
assume that the sequence T (1), T (2) , ..., T (s) (s ^ 1) of trees has been constructed.
Following two cases can occur:

a) None of nodes of T(5) is labeled by a zero linear form. Then T = T (s) is the
required LS-algorithm for solving (P).

b) There exists a node v in T(s), which is labeled by a zero form. In this case the
following reduction of T (s) is applied: Let symbols v_1? v1? u, and w denote nodes
of T(s), which are uniquely determined by the following properties:

a) v_l9v1,u, and w are adjacent with node v,

P) v_! -< v9 v -< vl9 v -< u, and v < w,

y) sign (v, vj) = 0, sign (v, u) = 1, and sign (v, w) = — 1.

The said reduction consists in detaining node v together with the incident lines
(v_1? v), (v, u), (v, vt), and (v, w), and in detaining oriented subtrees defined by u,
and w as roots. Thereafter nodes v_x and v1 are connected by a new line (v_1? vx),
which is to be labelled by sign (v_ l9 vx) = sign (v_ l5 v). A new tree resulting by the
said reduction is denoted by T (s + 1) .

Now, it is clear that after a finite number of operations b) case a) takes place, and
thus proof of the lemma is accomplished.

452

1.2. Lower Bound of Complexity of (P).

Theorem2. Let T be an LS-algorithm for solving (P). Then

Proof. Put

Bn = {(x1,...,xn)\xje{0, ! } (; = l ,2 , . . . ,n) } ,

and

R(B) = (<!, й „ 4 e R " ł l

]T a7- . N7- > O if (xl9 ..., xM) G B
1=i

I ^ - *j < fl if (*!, .-.9xn)фB
i = i

for B c B". Let us denote by 9t the system of all nonempty sets R(B). The following
lemma is valid:

Lemma 2.

log2 (card (9?)) ^
0 - ì)2

(Proof of this lemma is presented in Appendix V.L)

Now, let T be an LS-algorithm for solving problem (P). Let us put

C(v)= | (a 1 , . . . , a „ , a) є R " + 1 sign •2'Vj(a1, ...,a„,a) = sign (vj, vj+1)

(0 = j = r - 1)

where v = vr6V1, and where B(vr) = {v0, vl5 ..., vr} denotes the corresponding
branch. Further, let us put

£ = (C(v) | C(v) * 0, sign (v„ v;+ 0 4= 0 (j = 0, 1 , . . . , r - 1)} .

(The condition C(v) #= 0 says that v must be a proper node.) The system (£ contains
no more than 2C l (T) sets. Now, let us observe that systems % and (£ have the follow
ing properties:

a) dim R(B) = n + 1 if R(B) e %

b) If sign (vj, vj+1) = 0 is valid at least for one edge lying on B(v), then dim C(v) S
= n,

c) If K(B) n c(v) 4= 0, where K(B) e 91, and C(v) e G, then C(v) c R(B).

Properties a) and b) are obvious, and property c) can be shown as follows: Sup-

453

posing on the contrary that c) is not true, a vector (xu ..., Xn) e Bn must exist such
that

C(v) n {(al9 ..., a„, a) | afx! + ... + an. xw =: a} 4= 0 ,

which is contradiction.

Using properties a), b), and c), we obtain the following property:

d) V R(B) e 91 3 C(v) e <£(C(v) e R(B)) .

Making use of property d) and of lemma 2, we obtain

2C l (T) ^ card (©) ^ card (K) £ 2 (w"1)2/2 ,

which completes the proof.

! 1.3. Bound of Complexity of Problem (4), (5), (6). Following theorem follows
immediately by combining Lemma 1, and Theorem 2.

Theorem3. If T is arbitrary LS-algorithm for solving problem (4), (5), (6),
then

cm s ^ ,
i.e. atj, bh and Cj can be chosen so that algorithm T requires at least (n — l)2/2
comparisons to solve the corresponding problem.

R e m a r k . To prove theorems 2 and 3 a simple cardinality (entropy) method was
used. The main idea of the proof consists in using a bound for card (91) (see lemma 2).
It can be simply shown that card (91) equals number of all threshold functions de
pending at most on n boolean variables (see e.g. [4]), and it is was shown ([4], [5])
that

log2 (card (9?)) < n2(n -» 00) .

Thus it is clear that the method of the proof of theorems 2 and 3 cannot yield any
sufficiently better bound. To obtain a more definitive bound (depending also on m)
it will be probably necessary to use some more sophiticated ideas of combinatorial
geometry.

1.4. Case of p-Value Variables. The results of theorems 2 and 3 can be generalized
to a more general case, where discrete variables Xj take on p different values (p ^ 2),
i.e.

(8) Xje{0, 1 , . . . ,P~ 1} (j = 1,2, . . . , ») .

454

In this more general case following theorems hold:

Theorem 2p. If Tn is an LS-algorithm for solving problem (Pp), where (Pp) is
introduced in the same way as problem (P), but each variable is assumed to fulfil
(8), then

Ci(Tn) > i . log2 p.n2 (n -+ oo) .

Theorem 3p . IfTn is an LS-algorithm for solving problem (4), (6), (8), then

Ci(T„) > i . log2 p . n2 (n ~> oo) .

Theorems 2p and 3p can be proved analogously as theorems 2 and 3 but a lower
bound of number of p-value threshold functions is to be used [3].

2, Complexity of Integer Polynomial Programming. In this paragraph we show
that an analogous cardinality method can be used in the case where the functions /
and gt occurring in (1), (2), (3) are polynomials of Xj. Let us consider following integer
programming problem:

To maximize function

(9) I c(j1 , . . . ,i„).^...xi»,
1^11,...Jn^0
jl+...+jn^k

subject to

(5) * y e { 0 , l } 0 = h2,...,n)

and

(10) £ a<iXj1,...,jn).x{>,...,xi»£b"
i ^ i i , . . . , i n ^ o
jl + ...+jn^k

(i = 1, 2, ..., m), where a(l)(j\, . . . , /„), b(l\ and c(j\, ...,j„) are parameters of the
problem, which can take on arbitrary real values. To derive a lower bound of the
complexity we introduce an auxiliary problem in an analogous way as in paragraph
III. 1.1.

We have to decide, whether equation

(11) X a(j1,...,jn).xi*.....xn» = a
l ^ . / l , - . . J n ^ 0
jl+...+jn^k

has or has not a solution (xt, ..., xn), where

(5) xje{0,l}

and where a(jx, ..., j„) and a denote given real parameters.

455

The following theorem holds:

Theorem4. If T(n) is an LS-algorithm for solving problem (9), (5), and (10),
where m _ 2, then

kk

Ci(T(n)) > nk + l . — if n -> oo and k = k(n) = o(Jn) . v w ; (k + l) f c + 1 .k ! W W 1

Theorem 4 can be proved analogously as theorem 3 of III.L3., but the following
lemma 3 is to be used instead of lemma 2.

Lemma 3. The system of hyper planes

{MIi> • • •> J»), a) | I a(ju • • .Jn) • A1 > • • • *n" = «} >
l^I l , . . .»/n^0
jl + ...+7n^fc

where Xj€ {0, 1} (j = 1, ..., n) divides the space of the points with coordinates

(k + n\
I + 1) into a system ©

Of nonempty open polyhedral cones. Let us put M(n) = card (©). Then

H* + 1 kk

log2 M(n) > - — , if 1 = k = k(n) = o(jn), and n -> oo .
(k + l f + 1 . k!

Remark . The asymptotic inequality > is used only to simplify corresponding
expressions in Theorem 4 and Lemma 3.

3. Shortest Route Problem. 3.1. Formulation of Shortest Route Problem. Now, we
shall be concerned with the problem of determining a shortest route in an oriented
acyclic graph with labelled edges, G = (91, E, X), where 91 denotes the set of nodes,
£ the set of edges, and X denotes the labelling of edges, and where the graph has the
following special structure:

1) The set of nodes 91 is partitioned into disjoint sets 9l±, ..., 9lr, i.e.

91 = 9lt u 9 t 2 u u9ln,

and

9l(n 9lj = 0 if i 4= j ,

where
Kj = {N(j,l),N(j,2),...,N(j,aj)}

(j = 1,2,..., n), where n, al9 a2, ...,an are positive integers, and n = 2.

2) The set of edges is

k = 1; 2 , . . . , ay, I = 1, 2,..., 0 / + i ;]

j = l , 2 , . . . , n - 1

456

E = í(N(j,k),N(j+l,ђ)

3) X is the labeling of the edges, i.e. a real-valued function defined on £. The
label of edge (N(I, k), N(I + 1, /)) is denoted by X(j, k, I) (we make use of an obvious
fact that edge (N(j, k),N(j + 1, /)) is uniquely determined by a triple of indices
(j, k, I)). Graph G, where n: = 3, ax = 2, a2 = 3, and a3 = 2 is shown in the figure 2.

S
4 \

ч 1
Ҡ (1,1,1)

s

^ V

i#2

т^
Ҡí1,2,3ì

Л. Ѓ2,Í,Я

1-^ '

> ,

,v.
г

- p *;

Å(2,3,2>

\Ж3

Fig. 2.

Following the main idea of this paper, the graph as a combinatorial structure is
assumed to be fixed, but labels X(j, k, I) as parameters of the problem vary arbitrarily
(- oo < X(j, k,l)< + oo).

Let us consider the set of all routes in the graph G, which start from a node of 9llm

Each of these routes is in a one-to-one correspondence to a sequence {kj}r

j=1, where
2 _ r g n, and where 1 S kjr g ay (j = 1, 2, ..., r). Let us denote the route de
termined by the sequence {kj}r

j=l as K(k1? ..., kr). With each route R(kl9 ..., kr)
we associate the number

L(k1,...,kr)
d^X(j9kpkj+1)i

1=i

called length of the route. In the shortest route problem we have to determine
a route R(kx, ..., kn) starting from a node of 91 x and entering a node of $ftn such that
L(k l 5 ..., kw) reaches a minimum value.

3.2. Dynamic Programming Algorithm. To solve the shortest route problem the

well-known dynamic programming method can be used. By this method a shortest

457

route is determined, starting from a node of 9^ and entering a node N(j, /), for each
given node N(j, I) e 9 l - 5fti. The algorithm proceeds recursively as follows:

A) To each node N(2, I) e$l2 (/ = 1, 2 , . . . , a2) a node N(l, k(l)) e 9t2 (fe(l) =
= 1, 2 , . . . , a/) is determined such that

A(l, fc(l>, /) g A(l, fe, /)

for fe = 1, 2 , . . . , av Then R(k(l), I) is a shortest route entering N(2, /).

B) Let us suppose that in the algorithm a shortest route entering node N(j, I)
has been determined for each N(j", /) e 9tj9 where j is fixed and 1 ^ / ^ aj. Let us
denote this route by R(k[J'l),..., k/l1}, I). Now, we determine a shortest route starting
from 911 and entering N(j + 1, m). The corresponding shortest route R(k[Jflim)),...
..., k(/il[m)), l(m), m) is determined by choosing such an index l(m) (1 ^ l(m) ^ a/) that

L(k(j^\ k(/iir\ l{m\ m) ^ L(k(j>\ ..., k(jil), /, m) ,

where / = 1, 2, ..., aj.

C) Having determined a shortest route R(k[l),..., kn
lll9 I) entering N(n,/) for

each node N(ny I) e $ln (I = 1, 2, . . . , a,,), we determine an index 1 (l ^ 1 ^ a„) such
that

L(fe^ . . . , fe^ 1 , l)^L(fe</>, . . . , fc^ 1 , /)

for / = 1, 2, ..., an. Route R(k(p, . . . , fe(
n

!), ?) is a solution of the shortest route prob
lem.

3.3. Complexity of Dynamic Programming Algorithm. First let us notice that the
shortest route problem can be treated as a special case of general problem (l), (2),
(3), if we put

A = (WI\ fe, /)) I - oo < X(j, fc, /) < + oo}

n - l

(A is the space of dimension]T aj . aj+1),
i = i

X = {R(ku fe2,..., kn) | 1 S kj ^ aj (j = 1, 2, ..., n)}

(thus X denotes the set of all routes of G starting from 91 x and entering 9l„)

x = R(ku fe2,..., kn) , and f(x) = L(ku k2,..., kn) .

Restrictions gt(x) g 0 do not occur in this problem, i.e. m = 0 in the terms of
problem (1), (2), (3).

458

The dynamic programming algorithm can be obviously represented as an LS-
algorithm for solving the shortest route problem. We are going to show that the said
algorithm requires

n - l n-l

1=1 j=2

comparisons for each choice of parameters X. In fact, at stage (A) of the algorithm
it is necessary to use (ax — 1) ax comparisons, and (a^ — l)a /+ i comparisons
(2 S j ̂ n — 1) at each stage (B). Thus the number of comparisons required at

n-l

stages (A) and (B) equals £ (a} — i) . aj+1. Adding an — 1 comparisons required
1=i

at stage (C) to the last expression, we obtain expression (12).

3.4. Optimality of Dynamic Programming Algorithm.

It is shown in the following theorem that the dynamic programming algorithm
is optimum with respect to the class of all LS-algorithms for solving the shortest
route problem as to the number of required comparisons.

Theorems. If T is an LS-algorithm for solving the shortest route problem, then

(13) CtmzZaj.aj^-'Zaj-l.
3=1 j=2

Proof. Let v = vre Vx be a proper node and B(v) = {v0, vu ..., vr} the cor
responding branch, and let node v be labelled by a route K(ki0), k(

2
0),. •., kn

0)) (accord
ing to the definition of an LS-algorithm). Let us introduce sets

K! = {(X(j, k, /)) | sign <?VQ(X(J, k, /)) = sign (ve, ve+l) (Q = 0, 1, ..., r - 1)} ,

where

£?v(2(j, k, 1)) = "X "i °J£c^(j, k, I). X(j, k, I)
j = l k=l 1=1

(thus K! is the set of all edge labellings for which algorithm T finishes in node v),
and

K2 = {(KJ> k> 0) I Uk{i\ • • - C O = L(ku ..., kn) for each route R(ku ..., kn)} =

= {(Kl k> 0) I E Kh kf\ kf+\) SY,Kh kj, kj+1) for each route R(ku ..., k„)} .
j = i j = i

(Thus K2 is the set of all labellings such that K(ki0), ..., kj,0)) is a shortest route in G).

459

Sets K! and K2 are convex polyhedral cones (Kt does not contain in general its
7 1 - 1

faces) in the Z a;. aj+1 -dimensional space, and Kt c K2. From the last relation
we obtain J = 1

(14) K*=>K*,

where K* denotes a polar cone associated with Kj (j = 1,2) (see e.g. [6]). To con
tinue the proof we are going to use following two lemmas concerning the form of K*
and K*. (The proofs of these lemmas are presented in Appendix 3.)

Lemma 4. Set Kt consists of all points (i^(j, k, /)) the coordinates of which can be
expressed as:

r - l

/L(j, k, /) = £ c(t?e)(j, k, /) . |>e(l - sign2 (v,, v,+ 1)) - fi2
Q . sign(v,, vt,+ 1)]

(? = 0

(k = 1,2, ..., ap I = V 2, ...,aJ+iJ = 1, 2, ..., n - 1) ,

where — oo < /ie < + oo (r denotes the length of branch B(v)).

Lemma 5. Set K* consists of all points (fi(j, k, /)), the coordinates of which can
be expressed as follows:

a i a2 uj-i aJ + 2 cin

/ l (j , k , /) = - X Z ••• E Z •• Z t(k!, k2, ..., ky.^k, /, kJ + 2, ..., kn)
/Ci = l fc2=l /Cy - 1 = 1 /Cj + 2 = 1 fc«=l

iy
(fc.O + ^r.fcJ+M

a/26?

«1 « j - l « j + 2 «n

Kjfc,/) = E ... E I I - E
fci = l / c j _ i = l l^kj^aj fc/ + 2 = l fcn=l

1 i fc7+ i ^ «j + i
(/ci,fci+1) + (fcJ(0)j/Cj.+ 1 (0))

H k i ? •••> ky-i> k/> ^j+u kj + 2i •••> kn)

iy

(fc,0 = (CUi°+
)
1),

where

T(k1?k2, . . . ,kn) = 0 .

Now let us continue the proof. It follows from lemma 4

(15) d imK t ^ r

and

(16) dimK* = d imK t

460

follows from (14). To accomplish the proof it is sufficient to prove inequality

(17) dimKlZZaj.aj^-Zaj-l.
7 = 2

(In fact, inequality (13) follows by combining (15), (16), (17), and by using relation
C2OO = m m {r I vr€Vu vr lS proper node}.) To prove inequality (17) we notice
that points of K* are linear combinations (with nonnegative coefficients) of rows of
certain matrix, as shown in lemma 5. Thus it is sufficient to prove that the rank of the
matrix under consideration is not less than

n - 1 n - 1

YJaj.aJ+l - 5 > j - 1.
7 = 1 7 = 2

The columns of the matrix do correspond to triples (j, k, /), where k = 1, 2, ..., ap

I = 1, . . . , aj+1,j = 1, 2 , . . . , n — 1. Now let us cancel the columns which do cor
respond to the triples (j, kf\ kj+1) (kJ+1 = 1, 2 , . . . , aj+1,j = 1, 2 , . . . , n - 2),
and that corresponding to triple (n — 1, k^i, kl0)). In this way the matrix has been
reduced to a new matrix, having

n - l M - l

£>,. .a / + 1 ~Yaj - !

1=1 1=2

columns. But the columns of the reduced matrix are linearly independent, as shown
in the following lemma:

Lemma 6. System of linear homogeneous equations

(18) "i>(f w, k%\) -"Z<J(J, kj, kj+1) = 0
7 = 1 1=1

(kj = 1,2, ...,a/J = 1,2, ..., n), and

(19) a(j,kf\kj+1) = 0

(kJ+1 = 1,2, ..., aj+1;j = 1,2, . . . ,« - 2), and

(20) a(n - 1, e \ , ki0)) = 0

has only trivial solution o(j, k, /) = 0.

R e m a r k . Equations (18) correspond to linear combinations of the original matrix,
and equations (19) and (20) correspond to the cancelled columns.

The p r o o f of lemma 6 is presented in Appendix 4. Lemma 6 has accomplished the
proof of Theorem 5.

461

R e m a r k on the proof of theorem 5. From the fact that the lower bound obtained
in theorem 5 is exact (it can be realized by the dynamic programming algorithm)
we obtain

n - i « - i

dim K* = X aj. aJ+1 - £ a} - 1 .
j = l I=2

Remark . Putting n = 2, al = 1, and a2 = m in Theorem 5, we obtain after
appropriate changes of notation the following statement: The number of compari
sons required in arbitrary LS-algorithm for determining a minimum element in
a given sequence of m real numbers is not less than m — 1.

4. Complexity of Special Algorithms for Solving Problem (P). In the foregoing
paragraphs bounds of the complexity of certain special discrete programming prob
lems were derived. Lower bounds obtained in paragraphs IILL and III.2. are
rather low yet. On the other hand, their improvement seems to be very difficult.
The difficulty of the prcblem is obviously caused by the fact that a very general
class of algorithms is considered. In order to derive better lower bounds, it is pos
sible to simplify the original problem as follows: We restrict appropriately the class
of all LS-algorithms, at the same time we require that the restricted class contain
some of the well-known, resp. interesting algorithms. As an example of the mentioned
approach we shall examine a class of certain special LS-algorithms for solving prob
lem (P) (see paragraph III. 1.1.). First, a branching algorithm for solving problem (P)
is described.

i i

Let us put a* =]T max (cij, 0), and aj =]^min(a j , 0) for i = 1, 2, ...,n. In
; = i j = i

the algorithm a sequence of sets En, F„_ l9..., Es,... is processed, where Ej contains
equations of the form

a1.x1 + . . . + aj.xj = a - aj+1 .aj+1 - . . . - an . an ,

where xl9..., Xj denote the unknowns, and cj+1,..., <?„ parameters, and where xLe
e (0, 1}, <JX e {0, 1}. At the same time vector (oj+1,..., an) is uniquely determined
by an equation of Ej9 but in general this is no mapping onto the set of all vectors
(aj+1,..., on), where ax e {0, 1}. The sequence of sets En, F„_ u ... is generated in the
algorithm until the evidence is obtained, whether the equation

(7) a1.x1 + . . . + an.xn = a

has a solution (xl9..., xn) or not, where Xj e (0, 1} for j = 1,2,. . . , n.

The algorithm proceeds as follows:

a) at and at~ are computed for i = 1, 2 , . . . , n. an and a~ are compared with a.
We distinguish three possible cases:

462

a1) It holds either an < a or an > a. Then equation (7) has no solution (5)
and the procedure stops.

a2) It holds either an = a or an = a. Then equation (7) has a solution (5), and
the procedure stops.

a3) It holds a~ < a < an . Putting En = {ax . xx + . . . + a„ . xn ==' a}, we pass
to the next step b).

b) Let us suppose a sequence En, En_1, ..., Et has been constructed. Let us put
Ft for the system of all equations

ax . xx + . . . + a,-_i . x;_i = a — at. o{ — .. . — a„ . cr„

(unknowns xl9.... xj-i), such that equation

al.xl + ... -{• ai.xi = a - ai+l.ai + x ~ ... - an.an

belongs to set Eh and ot e {0, 1}. Now, values at~_i and af-i are compared with
a — ai+l . ai+l — ... — an. an and three possible cases are distinguished:

bl) It holds either a^t > a — at. c- — . . . — an . an or a^Y < a — at. at —
— .. . — a„. an for all equations of Ft. Then equation (7) has no solution (5) and the
procedure is over.

b2) There exists at least one equation of F- such that

aT-i = a - at. <jt - . . . - an. an

o r ' • : ' • ' :

at-x = a - at.Gi - ... - an.an.

Then equation (7) has a solution (5) and thus the procedure stops.

b3) It holds neither (M) nor (b2). In such a case there exist equations of F{- such
that

(21) at~_i < a - a{. Oi - . . . - an . on < at-i .

Let us put F-_ i for the set of all equations of F- which satisfy relations (21), and pass
at the beginning of stage (b).

Thus the description of the algorithm is accomplished.

5. Complexity of Branching Algorithm. It is easy to verify that the algorithm of the
paragraph above can be represented as an LS-algorithm for solving problem (P).
Let us notice that the only comparisons occurring in the algorithm are
either

(22) a ^ l O

463

or

(23) Zaj.Xj-aЩO (X J Є { 0 , 1 })

In the following theorem there is derived a lower bound of the complexity of each

algorithm which requires only comparisons (22) or (23).

Theorem 6. Let T be an LS-algorithm for solving problem (P), where the only

comparisons occurring in T are either (22) or (23). Then

CiCO ш ' +
+1

Proof. Let us put

B0 = i(xx,...,x.)eB" .£*/>

and

R(BQ) = i (a „ ...,an,a)eRn+l y f >a if (xt, ...,xn)eB0

j=i J J \ <a if (xt, ...,xn)4B0

(see notation of paragraph III. 1.2.). It is easy to verify that R(B0) #= 0, and that
a node v e V, exists in T such that (notation C(v) was introduced in III. 1.2.)

1) C(v) c R(B0) ; 2) dim C(v) = n + 1 ,

and 3) There exists a point (at, ..., an, a) in C(v) such that aj > 0 for j = 1, 2, . . . , n,

and a > 0,

As in algorithm T only comparisons (22) or (23) occur, set C(v) consists of all
points (au . . . , an, a), which satisfy system of inequalities

a j > 0 if j e J ,

at . xt + ... + an . xn > a if (xt, ..., xn)eK ,

and

at . xt + ... + an.xn < a if (x ь ..., xn)є L,

where J c= (1, 2, ..., «}, K c B", L c B" and where K n L = 0. Furthermore sets

K and Lmust satisfy relations

(24)

464

K cz B0 and L n B0 =

To accomplish the proof it is sufficient to establish inclusions

+TJ. (25)

(26)

Kzэ Я x „ . . . , x „) є ß"

L => i(x,, ...,x„)єB"

J = l

ľ*;
We are going to prove only inclusion (26) because the proof of (25) is quite analogous.

Thus, suppose (x (0),..., x(0)) $ Land £ x$0) = [n/2] for a 0, 1-vector (x (0),..., x(0)).
Put J = 1

r 1 + i if x(0) = 1
a(0) = í "

l l if x(0) = 0

for j = 1, 2,.. . , n, and

a(0) = (1 +

We are going to show that

(27) (a{°\...,a<0\aw)eC(v)-R(B0),

n

which is a contradiction. First notice that £ a(0). x(0) = a(0), so that (a1
0),...

I=i
...,a(0),a(0))$R(B0). If (x1? ..., xn) eK, then (x l 5 . . . , xn) e B0 because of (24),

n

thus]T Xy ̂ [^/2] + 1. It follows from the last inequality
1=1

ľ-У0-*/*
1=1

+ 1 + - > a(0).
řî

On the other hand, if (x l 5..., x„) e L then (xu ..., xM) + (x1
0),..., x (0)), and (x l s..., x„) £

4 B0 because of (24), so that

14 =
1=1

It follows from the last inequality

Ě<)-*, = [;¥l + r j--<« (0)-
1=i L2 J V nJ n

At last, it holds a(0) > 0 (j = 1,..., n), thus relation (27) has been established. The
proof of Theorem 6 is accomplished.

Remark. A similar result has been established in [1] in a different way.

465

IV. CONCLUDING REMARKS

In this paper an attempt was made to present a general theory of the complexity
in the discrete programming. It should be noticed that the described approach is
not the only possible, and that in this approach a number of open problems exists,
e.g.

1) to obtain bounds of the number of required additions and subtractions,

2) to investigate the class of algorithms which include also the multiplication and
the division.

As to the concept of the complexity, let us notice that it would be of a considerable
interest to obtain nontrivial bounds for a new complexity index CE(T), where C£(T)
denotes the average value of the length of a branch in the sense of a probability
measure defined for subsets of A.

The mathematical methods for obtaining lower bounds can be summarized as
follows:

a) cardinality (entropy) technique for lower bounds in theorems 2, 3, and 4.
b) use of the concept of dimension of convex polyhedral cones in theorem 5, and
c) simple geometrical considerations in theorem 6.

In order to develop further efficient proof techniques it should be necessary to
investigate a series of special discrete programming problems, e.g. the travelling-
salesman problem, network flows problems, assignment problems, etc. At the same
time we think that it would be preferable to start our discussion with some special
classes of LS-algorithms which could be chosen so as to include e.g. algorithms of
[2], [7]-[10] respectively.

V. APPENDIX

1. Proof of Lemma 2, We are going to construct a system 9?n containing not less
than 2("""1)2/2 nonempty and mutually different cones R(B). Each of the cones of %n

will be represented by a vector which belongs to this cone. Thus system $ln will be
determined by a set 2Brt containing N(n) (n + l)-dimensional vectors, i.e.

2Bn = {(ai(i, n),..., an(i, n), l)\l£l£ N(n)}

(N(n) is determined in the proof.)

System of sets {̂ B }̂̂ 00! is constructed by means of an induction as follows:
(i) Put ax(l, 1) = —1, and ax(l, 1) = 2 (the corresponding sets are K(0) and

(ii) Induction step. Let us suppose that set 2B,, has been constructed. We can
suppose thait following condition is fulfilled for each vector of W„:•''••><'•

466

If (x1? ..., xn)e Bn and (xi, ..., x'n)e Bn and (xx, ..., xn) + (xi,..., x^), then

(28) ax(i, n) . xt + ... + an(i, n) . xn + a1(f, n). xi + ... + a„(i, n) . x̂ .

(Relation (28) holds for n = 1, and in general it is easy to guarantee it because cones
R(B) are open.)

Now, let us put

r(i, n, xu ..., x„) = 1 - (at(i, n) . xx + . . . + an(i, n) . x„).

It follows from (28) that 2n numbers r(i, n9xu ...,xn) (where i and n are fixed) may
be ordered with respect to their magnitude. Let their order be

r0(i, n) < rx(i, n) < . . . < r2n(i, n) < r2n+1(i, n),

where a more simple notation has been applied, and r0(i, n) = - c o or r0(i, n) =
= + co have been joined to the beginning or to the end of the above sequence
respectively. Now, let us choose 2n + 1 numbers p(i, n, I) according to conditions

ri-i(h n) < p(i, n, I) < rt(i, n) .

Set 2B„+1 will be constructed as follows: 2Bn+1 contains all (n + 2)-dimensional
vectors

(ax(i, n), a2(i, n),..., an(i, n), p(i, n, I), 1) ,

where i = 1, 2, ...,N(n), I = 1,2, . . . ,2" + 1.

Thus set 2BM+1 contains N(n + 1) = (2n + 1) . N(n) vectors. The last recurrent
formula together with N(l) = 2 accomplishes the proof.

R e m a r k . It can be simply shown that there exists a one-to-one correspondence
between cones of 5R„ and threshold functions of n variables (see e.g. [4]). This lower
bound has been established in terms of the number of threshold functions in [12],
[14] and [3],

2. Proof of Lemma 3. Similarly as in the proof of lemma 2 we are going to con
struct a subsystem S 0 of S>, where each cone of S is represented by a vector

(29) (a(j ,,...,]„), a),

contained in it. Vectors (29) are constructed as follows:

a) We put a = \ for each vector (29). Variables xl9..., xn are divided into
two disjoint groups, the first group containing xl9..., x[n/(fc+1)], and the second

•*[»/(* + 1)] + 1J •••> Xw

467

The remaining coordinates of vectors (29) are chosen as follows:
b) First let us put

a(l,0,...,0) = 2°,

a(0,...,0,l,0,...,0) = 2 ^ 1 ,

and
[«/(*+iyj

d(0, . . . ,0, 1, 0, ...,0) = 2[n/(fe+1)]-1

for each vector (29).

c) Coordinates d(ju...9jn) with j \ = ... = j [B / f k + 1)] = 0 and 0 ^ jr S 1 (r =
= [n/(fc + 1)] + 1, ..., n), and J[n/(fe+i)]~i + ... + jn = fc are chosen mutually
independent of each other from the set of numbers

{h - 1 + i, - 2 + i, ..., -2 [" / (f e + 1)] - 2 + i, -2
[" / f fe+1)] - 1 + i} .

d) At last the remaining coordinates d(ju ...,j„) of vectors (29) are to be put
zeroes.

It can be seen easily that each vector (29) satisfying a) - d) is contained in a cone
of S, and different vectors belong to different cones. The number of all vectors (29)
equals the number of all ways in which coordinates c) can be chosen. Each of co
ordinates c) ranges over the set containing 2['l/(fe + 1)] values, and the number of co
ordinates c) equals

fc

Thus the number of vectors (29) equals

2inKk+m.(n-inf+^

Now, making use of assumption 1 g fc = o(yJn) (n -> oo), we obtain

log2 M(„) > p - l (" _ L^lJ „ -JL_. (Vtll = n^ * '
Lfe + l J \ k J k + l fc! '(k + l)k+1 . k\'

The proof of lemma 3 has been accomplished.

*) It holds

k\ k\ ~\ k]- kl >

468

3. Polyhedral Convex Cones. Polar Cones. In this appendix we aply the usual
matrix and vector notation. Let 31 be a set of column vectors in Rn, and let us put

31* = {y e Rn | yT . x ^ 0 if x e 31} .

It can be simply shown that:

1) 31* is convex cone in Rn (the last fact enables to call 31* by the term polar
cone),

2) 31* is closed set in Rn,

3) It holds 31* = 31* (31 denotes the closure of 31),

4) 3*! c 3I2 c i ?"=> 31* 3 31*.

Now, let 31 be a set of all solutions of a system of linear inequalities, i.e.

(30) 31 = {x e Rn | A . x = 0} .

In this case the following theorem on the representation of 31* holds (see e. g.

Theorem (Farkas). If 31 is defined by (30), then

31* = {y e Rn | where yT = }J . A for k ^ 0} .

The Farkas's theorem is related to the case when 31 is a set of all solutions of
a system of linear inequalities with signs ^ . In the other case, if some of signs ^
are replaced by sharp inequalities < , the following modified theorem holds:

Proposition 1. If 31 = {x e Rn \ At . x ^ 0, A2 . x < 0} + 0 then

31* = {y e Rn | y = Xj . At + Xj . A2 where lj ^ 0 (j = 1, 2,)} .

Proof. The statement follows from property 3) and from relation 31 = 3I0, where

3lo = { x e K " | A i . x ^ 0 (j = 1,2)}.

Relation 51 = 3l0 can be proved as follows:

a) It holds 31 c 3l0, and 3l0 = 3I0, thus 31 c 3I0.

/ kn y / k+1y / kn y / kn y
\k+1y \ n) v k + v r/ 1 \ »/(*+-)•]*(*+nl" \ k + y

*! *! ^ ^ \ *!

A * + i /
if * = o(yjn), n -> co.

469

b) Let x0 e 2t0, i.e. Aj. x0 = 0 (j = 1, 2). According to the assumption of the
proposition, there exists y0 e 2t, and thus it holds Ax . y0 ^ 0 and A2 . y0 < 0 for
y0. Put xn = x0 + (1/rc) . y0 (n = 1, 2 , . . .) . It holds xn e 21 (n = 1, 2 , . . .) , and x„ -»
-• x0 if n -> +oo. Thus x0 e 31, and the proof is accomplished.

In following proposition a case is investigated when the set 21 is defined by a system
of linear constraints, where the set of constraints may be partitioned into two disjoint
groups, the first group containing linear equations and the second linear inequalities
having form < .

Proposition 2. Let

2t = {x e Rn | At . x = 0, A2 . x < 0} + 0

Then

21* = {y e Rn | y = X[. At + X[. A2 where (onlyty X2 = 0} .

Proof. Set 21* can be expressed as

21* = $xeRn f A l V x = 0, A2 . x <

and proposition 1 is to be applied.

Proposition 2 can be formulated in an equivalent way:

Proposition 3. Let 21 4= 0 be the set of all vectors xe Rn satisfying system of
conditions sign (a j . x) = Sj (j = 1, 2, ..., n), where 5j are given integers (djE
G { - 1 , 0 , 1}). Then

•}•

21* = <yeRn
= 0 i/ ^ = - 1 1

y = Z ^ i - *p where Xj I ^ 0 if ^ = 1 1 ,
• arbitrary, if dj = 0J

i.e.

^ = {y e Rn | y = X [-5,- • ^2 + ^ • (1 ~ 5j)] . a,, - c o < Mi < +oo} .
1=i

Lemma 4 follows immediately from Proposition 3, where subscript O denotes a row
and triple (j, k, I) a column of the matrix under consideration.

Lemma 5 follows immediately from the Farkas's theorem. It is only necessary
to notice that a row of the matrix under consideration is labelled by n-tuple (ku ..., fc„)
(i.e. it corresponds uniquely to a route of graph G), and a column is labelled by triple
(j, k, I) (i.e. it corresponds uniquely to an edge of graph G).

470

4. Proof of Lemma 6. We are going to prove lemma 6 by an induction method:

(i) First, let us show o(n — 1, k, /) = 0 if 1 ^ k ^ fl„-i, and 1 gj / ^ an. Ac
cording to equation (20) it is sufficient to investigate triples (n — 1, k, /) with (k, /) 4=
4= (k„_i, k„). Let be (n — 1, k, I) such a triple and let us choose an equation of
system (18) which corresponds to

kl = kl ? . . - J k/j-2 == kn-2, kn-l — k? kn — / •

The said equation is

o(n - 2, e > 2 , !£%) + o(n - 1, ft£?i. k<0)) - <x(n - 2, k<°_>2, k) -

- o(n - 1, k, /) = 0 .

But from the last equation and from (19) and (20) it follows o(n — 1, k, /) = 0.

(ii) Let us assume that

(31) o(i,xt,X) = 0 (1 ^ % / g at, 1 = 2t. ^ fl|+1,i = f + 1,7 + 2 , . . . , n - 1)

has been established for some j (1 rg 7 rg « — 2). We are going to show

o(j, k,l) = 0 (1 ^ k ^ a,, 1 ^ / = ay+1) .

According to equations (19) it is sufficient to establish the last fact only for triples
(7, k, /) with k =|= kj0). Let be (7, k, /) such a triple and let us choose an equation of
system (18) such that

ki = ki , . . . , kj-i — kj-i, kj = k, kj+i = / ,

(Indices kJ + 2 , . . . , kn can be chosen arbitrarily.) Making use of relations (31) we
obtain equation

a(j - 1, kf_\, fc<°>) + a(j, kf\ kf+\) - a(j - 1, „<»>., fc) - a(j, k, I) = 0

if 7 ^ 2, and equation

oil, fc<°>, fc<0)) - o-(l, fc, /) = 0

if 7 = 1. In both cases o(j, k, I) = 0 follows from (19). The proof of lemma 6 is
accomplished.

471

References

[I] Kopoбкoв, B. K.: O некoтopыx целoчисленныx зaдaчax линейнoгo пpoгpaммиpoвaния,
Пpoблемы кибеpнетики, тoм 14, Moсквa 1965.

[2] Balas, E.: An Additivе Algorithm for Solving Linеar Programѕ with 0—1 Variablеѕ, Opnѕ.
Rеѕ. 13, 517-549, 1965.

[3] Bloch, M. and Morávek, J.: Boundѕ of thе numbеr of thrеѕhold funсtionѕ, Information
Proсеѕѕing Maсhinеѕ, Praha 1967.

[4] Winder, R. O.: Boundѕ of thrеѕhold gatе rеalizability, TRNS IEEE EC — 12, Oсt. 63.
[5] Heчunopyк, E. И.: O синтезе сxем из пopoгoвыx элементoв. Пpoблемы кибеpнетики,

тoм 11, Moсквa 1964.
[6] Goldman, A. J., Tucker, A. W: Polyhеdral Convеx Conеѕ, Linеar Inеqualitiеѕ and Rеlatеd

Syѕtеmѕ, Prinсеton 1956.
[7] Ford, L. R., Fulkerson, D. R.: Ғlоwѕ in Nеtwоrkѕ, Prinсеtоn 1962.
[8] Bellman, R. E.: Dynamiс Prоgramming Trеatmеnt оf thе Travеlling Salеѕman Prоblеm,

J. Aѕѕос. fоr Cоmp. Maсh. 9, 61 — 63 (1962).
[9] Little, J. D. C, Murty, K. G., Sweeney, D. W., and Karel, C: An Algоrithm fоr thе Trаvеl-

ling Ѕаlеѕmаn Prоblеm, Opnѕ. Rеѕ. 11, 972-989, 1963.
[10] Vlach M.: Řеѕеní dоprаvníһо prоblému mеtоdоu v tvеní, Еkоnоmiсkо-mаtеmаtiсký оbzоr,

2, N. 4, 1966.
[II] Yajima, S., Ibaraki, T.: A lоwеr Bоund оf thе Numbеr оf Thrеѕhоld Funсtiоnѕ, IЕЕЕ,

ЕС Dес. 1965, Vоl. 14, N. 6.
[12] Moråvek, J.: O некотоpыx оценкаx для поpоговыx функций. Tеrm pаpеr, Lеningrаd Uni-

vеrѕitу, 1963.

Souhrn

O SLOŽITOSTI PROBLÉMŮ DISKRÉTNÍHO PROGRAMOVÁNÍ

JAROSLAV MORAVEK

Tato práce je příspěvkem k obecné teorii problémů diskrétního (celočíselného)
programování, speciálně se v ní zkoumá teoretickými prostředky složitost takových
problémů.

V úvodní části práce je zformulován jistý velmi obecný typ problému diskrétního
programování:

Maximalizovat funkci

(1) f(x9 ocl9 cc29...,aw)

diskrétní proměnné x9 na množině určené omezeními

(2) xeX

a

(3) 9Kx9*u*29...9*H)úO (i = 1,2,..., m).

472

Přitom dále předpokládáme, že

A) X je daná neprázdná konečná množina (obor diskrétní proměnné x),

B) a 1 ? a 2, ...,«„ označují parametry problému (1), (2), (3), přičemž (a l 5 a 2 , . . . , a„) e
e A, kde .4 je daná neprázdná množina prostoru Rn (Rn označuje množinu všech
uspořádaných n-tic reálných čísel)

C) Funkce f(x, a l 9 ..., a„) a gt(x, a l 5 ..., ctn) se dají vyjádřit ve tvaru

n

f(x9 a 1 ? ..., ocn) = E c X x) - a j
1=i

a
n

gt(x9au . ..,a„) = £ c<.°(x). ay ,
1=i

kde Cj(x) a c(jl)(x) jsou celá čísla pro x e X.

Konkrétní (t.j. numerický) problém ze třídy problémů (1), (2), (3) je určen dosa
zením číselných hodnot na místo parametrů <xu a2, ..., an.

V obecné části práce II definujeme s použitím jisté algebraické konstrukce spočí
vající na teorii grafů třídu tzv. lineárně separujících algoritmů (LS-algoritmus) pro
řešení problému (l), (2), (3), resp. pro řešení jistého ještě obecnějšího problému
identifikace jistých kuželů v Rn. Pojem LS-algoritmu formalizuje intuitivní pojem
algoritmu diskrétního programování, který používá jakožto elementárních aktů
pouze operací sčítání, odčítání a predikátu srovnání dvou reálných čísel.

V práci jsou zavedeny dva různé indexy složitosti: První je definován jako maxi
mální a druhý jako minimální počet srovnání, která se mohou vyskytnout při použití
algoritmu.

Obecná část práce je zakončena větou o existenci LS-algoritmu (věta 1). Jádrem
práce je část III, ve které je uvedeno několik vět o počtu srovnání nutných k řešení
následujících problémů diskrétního programování:

1) Úloha celočíselného lineárního programování, speciálně úloha lineárního pro
gramování s proměnnými 0 a 1.

2) Úloha polynomiálního programování s proměnnými 0 a 1 (účelová funkce
a funkce vystupující v omezeních jsou polynomy diskrétních proměnných).

3) Úloha o nejkratší cestě v jistém hranově ohodnoceném grafu.

4) Nakonec se zkoumá složitost jisté třídy algoritmů (obsahující jeden známý algo
ritmus typu větvení) pro rozhodnutí, zdali daná lineární rovnice pro n dvouhodnoto
vých neznámých má řešení. Poslední úloha souvisí s tzv. ,,knap sack" problémem.

Zmíníme se o metodách získání odhadů pro jednotlivé problémy diskrétního
programování. V případech 1) a 2) bylo použito mohutnostní (entropijní) metody
blízké např. k úvahám, pomocí nichž se provádí odhad minimálního počtu vážení
nutných k nalezení falešné mince. V případě 1) je dolní odhad získán zkoumáním

473

počtu konvexních polyedrických kuželů, na které rozdělí n-rozměrný prostor systém
všech nadrovin určených lineárně nezávislými n-ticemi bodů /t-rozměrné krychle.
Poznamenejme, že problém enumerace systému těchto kuželů je isomorfní s problé
mem určení počtu všech prahových funkcí algebry logiky, závisejících na n proměn
ných.

Při získání odhadu v případě úlohy o nejkratší cestě se vychází z následujícího
intuitivně zřejmého faktu: Jestliže jeden konvexní polyedrický kužel je částí druhého
konvexního polyedrického konvexního kuželu, přičemž počet stěn posledního kuželu
není větší než dimense prostoru, potom počet stěn prvního kuželu není menší než
počet stěn druhého kuželu. Tato geometricky intuitivní představa je přitom upřesněna
v terminologii polárních kuželů a používá se Farkasova lemmatu o vyjádření polár
ního kuželu.

K odhadu složitosti problému 4) bylo nutné určit počet stěn jistého konvexního
polyedrického kuželu.

Nejúplnější výsledek se podařilo získat v případě úlohy o nejkratší cestě v grafu.
Je dokázáno, že aplikací metody dynamického programování lze získat algoritmus
pro řešení této úlohy, který je optimální ve smyslu minimálního počtu použitých
srovnání.

Na závěr lze poznamenat, že popsaný přístup umožňuje z jednotného hlediska
diskutovat značně širokou třídu problémů nejen diskrétního programování, ale
vůbec kombinatorické a diskrétní matematiky.

Authoťs address: RNDr. Jaroslav Moravek, CSc, MÚ ČSAV, Praha 1, Žitná 25.

474

		webmaster@dml.cz
	2020-07-02T00:35:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

