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USE OF THE METHOD OF FACTORIZATION FOR SOLVING
DIFFERENTIAL EQUATIONS IN A RECTANGULAR REGION

Joser CERMAK

(Received October 10, 1968)

INTRODUCTION

When solving partial differential equations of elliptic type, very often we are
compelled to use the method of nets. The obtained systems of difference equations
are usually very extensive. Their solution by Gauss elimination demands a large
capacity of the store of the computer. Then the iteration methods of solving are often
used. But their use, when greater exactness is required, makes heavy demands on the
computing time. As the system contains a large number of zero coefficients, it is
suitable to use the factorization method for the solution. This method is one of direct
methods, but it employes the store of the computer minimally. The volume of calcul-
ation work is substantially minor than for the above mentioned methods.

1. DESCRIPTION OF SOLUTION

Consider the linear partial differential equation of the second order of elliptic
type in the form

o%u 0%u ou ou
1 a(x,y) — + c(x, y) — + d(x, y) — + e(x, y) — = f(x,
(1) ( ,v)ax2 ( y)ayz ( y)ax ( y)ay f(x, )
with the boundary condition
ou
) r(x, y)gl = s(x, y)u + 1(x, y)

at the boundary of a rectangular region (0 < x < p,0 < y < q). 8/0n signifies the
derivative in the direction of outer normal.
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In the direction x let us choose m inner nodal points of the net, in the direction y
let it be n, then their coordinates are determined by

(3 ' ;=0 +Hh, yi=0+3k
where h = p/m, k = g/n.

Consider the notation aj, ..., a(x;, y;), etc. for further functions. Then the dif-

ference equations obtained from the equation (1) can be written:

u

() P 2u; 5+ U
i,j

hZ

Uiy — 2u;

t+ ¢

Hijer = Ui + e MUivr,j — Uiy =f. .
i,j tyJ
2h

2k

where i =0,1,2,...,n —1; j=0,1,2,...,m — L.

Consequently the system contains m . n equations of m . n + 2m + 2n unknowns.
Further equations, which are resulting from the equation (2), can be grouped together
with the equations (4). For y = 0, g it can be written

(5) r(x;, 0) ‘LO_:;ki—l__f = 5(x, 0) Mii-ﬂ + 1(x;, 0),
Up,j = Un-1,j ‘un'+un—l'
r(xj q) === = (g, q) 2 4 1(x; )
k 2
for j=0,1,....m —1
(6) Let us interpret {u; o, u; 1, ..., U; -1} as the vector U, ,

then the equations (5) can be written in the form

U, - u_ U_ U
0 L A S S
) Lo ¥

Ry, So, R,, S, are diagonal matrices, T,, T, are vectors with the elements r(x s 0),
s(x;, 0), #(x;, q), s(x;, q), t(x;, 0), #(x, n), respectively.

‘The equation (7) replaces the equations of the nodal points of the first line, and
the equation (8) — those of the n-th line. The equations of other remaining lines
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are treated similarly. The equations for the nodal points of the i-th line can be written
as follows:

©) 70, ) “_o—h“_—l = 5(0, ) “_o_gb + 10, y),
im — Yim- im T Uim—
(10) r(p, yi)u’—hb = S(p, yi)% + t(p, yi) .

The equation (4) refers to the inner point of this line. By applying the equation (9),
u;_, can be eliminated out of the system, by applying the equation (10) we can
eliminate the unknown u; .

The equations (9) and (10) have been treated in the form

2r(0, y;) = hs(0, y;) 2h 1(0, y;)
Y0200, y) + hs(0,y)  2r(0, y)) + hs(0, y)

(11) U; .y =u

(12) wr = U 2r(p, y)) + hs(p, ) N 2h (p, ) '
2}"([), yx) —h S(pa ,V,) Zr(p, yl) —h S(P, yl)

After introducing (11) and (12) into the equation (4) and after rearranging them,
it can be written

(13) Moy + M jugy + M oy + Dyjugg g+ H ey ;= Foj o

The values of the coefficients for 0 < j < m — 1 are as follows:

(14) M, = Qi _ i po G Gy
"R 2k MR 2k
od, e

ME. = a”1+_l’_1, H, N
R 2k Tk 2k

L

M=—2<£’—’1+h>, Fi,jzfi,j'

Coefficients for j = 0:
(15) M, =0,

_2<CL'L9 + ﬁﬁ) + <c_1_',_9 _ qﬂ) zr(o’ yi) - hS(O, yi)

Il

M, ,
b0 PER K 2k ) 2r(0, y,) + hs(0, y))

Fl'0=fi,0+ M_CLQ 2ht(03yl) .
’ h: 2k ) 2r(0, ;) + hs(0, )
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The remaining coefficients are coincident with those of (14). The coefficients for
j=m-—1:

(16) M., =0,

Mipoi = =2 Fim-1 , Cim-1 + Gim-1 dim-1\ 2r(p, yi) + h s(p, yi)’
h? K> h? 2h ) 2r(p, yi) = h s(p, )

aim— di m-— 2ht s Ji
Fi,m—1=fi,m—1_< '21+ ; 1) 137 .
h 2h 2"(17: Yi) —h 5([’, )’i)

The remaining coefficients are coincident with the expressions (14) for j = m — 1.
If we apply the vector notation for u; ; according to (6), all equations for nodal
points of the i-th line can be expressed by one vector equation

(17) DU,_, + MU, + HU,,, =F,
where F; is the vector F; = {F, o, F; 1, .. Fim—1}»

D; — the diagonal matrix of elements D; o, D; 4, ..., D; u—1,

H; — the diagonal matrix of elements H; o, H; y, ..., H; o1,
M, is a tridiagonal matrix. The elements of its main

diagonal are M, ;, the elements under the diagonal are succesively M}, M‘if PT
...y M?,._;. The elements above the diagonal are M}y, M}, ..., M}, _,. By group-
ing the equations (7), (8), (17) together we get a quasitridiagonal system (18)

(18) M_,U_,+H_U =F_,,
DU,_,+MU,+HU,,,=F for i=0,1,..,n—1,
Dnun-—l + Mnun = Fns

where
S R S R
19 M_ =-2+——0-, H__ =—0—_9; F_ =_T’
(19) T Tk YTk ! 0
D”=§E+BL’, Mn=§'—-R"‘; Fn="Tn-
2 k 2 k

The solution can be carried out as follows:
The given equation of the system (16) has been treated in the form

(20) U_.,=M_U,+ F_,
where

M_, = —(M—l)—l H_y, F.;= (M—l)_l F_,.
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After the substitution into the second equation and after the treatment we get

(21) MyU, + HoU, = F,
where
My =DM_, + My, Fy=F,— DoF_,.

Further the process is repeated according to (20), (21) for the indices increasing
by one.

The operation (20) is repeated (n + 2) times, the operation (21) is repeated (n + 1)
times. In the last operation (20) for i = n, H, is the zero matrix. By the given process
U, is determined during the last step. By the backward process the remaining U; can
be determined.

2. PROGRAMMING OF THE PROBLEM

The problem has been programmed in the reference language ALGOL 60 in the
form of procedure. Solving the given problem it is necessary to introduce the function
procedures funa (i, j), func (i, j), fund (i, j), fune (i, j), funf (i, j), funr (x, ), funs
(x, ), funt (x, y). By these procedures the coefficients of the equation (1) eventually
(2) can be determined. It is necessary to know F;, M}, U, for the backward process
of the computation. Therefore it is not necessary to introduce any other arrays.
In the first part of the program the values F; ; are placed in the cells F; ;, the values
M, ; are placed in the cells M; ;. The matrix M_, is diagonal as well as the matrix
M'’_;. In the backward process we do not need to know the values of the elements
of this matrix, therefore we do not introduce it. The number of the elements of the
matrix M; is m*(n + 1). Therefore it is convenient to apply the program so that
m < n. As U; is needed only in the backward process of the computation in the
place where it is not necessary to hold in store f; ;, it is possible to place individual

elements u; ; into the cells f; ;.
In the program we have employed the following notation of values:

m number of inner points in the direction x,

n number of inner points in the direction y,

4 magnitude of the area in the direction x,

q ‘ magnitude of the area in the direction y,

eps . if the element of the main diagonal is less then eps during the inversion,
the program continues from the label OUT,

step h magnitude of the step in the direction x(h),

step k magnitude of the step in the direction y(k),

mat [i, j, k] elements of the matrix M, j the line index, k the column index,

S il array of the right sides, array of function values at the nodal points

[0:n,0:m - 1],
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funa (i, j)  value of the coefficient a(x, y) of the equation (1) at the point x = x;,
y = y;, the name of the function procedure (x; = (j + 1) h; y; =
= (i + 1) k),

func (i, j) value of the coefficient ¢(x, y) of the equation (1) at the point x = x;,
y = y,;, the name of the function procedure,

fund (i, j)  value of the coefficient d(x, y) of the equation (1) at the point x = x,
y = y;, the name of the function procedure,

Sune (i, j) value of the coefficient e(x, y) of the equation (1) at the point x = x;,
y = y;, the name of the function procedure,

funf (i, j) value of the coefficient f(x, y) of the equation (1) at the point x = x;,

y = y;, the name of the function procedure,

funr (x, y)  value of the coefficient r(x, y) of the boundary condition (2), the name
of the function procedure,

funs (x, y)  value of the coefficient s(x, y) of the boundary condition (2), the name
of the function procedure,

funt (x, y)  value of the coefficient #(x, y) of the boundary condition (2), the name
of the function procedure,

ouT the label for the case that the element of the main diagonal < eps.

The diagonal matrices D;, H; are not introduced, the values of their elements
can be determined always when needed.

3. THE PROGRAM

Procedure factor (m, n, p, q, eps, funa, func, fund, fune, funf, funr,
funs, funt, OUT) result : (f);

value m, n, p, q; integer m, n; real p, q, eps; array f;

real procedure funa, func, fune, funf, funr, funs, funt,

label OUT,;

begin integer i, j, k; real step h, step k, help;
array x [0:m — 1], y[0:n — 1], mat[0:n,0:m — 1,0:m — 1];
step h := p|m; step k := g[n; x[0] := step h|2; y[0] := step k[2;
for j := 1 step 1 until m — 1 do x[j] := x[j — 1] + step h;
for i := 1 step 1 until n — 1do y[i] := y[i — 1] + step k;
for k := O step 1 until n do

for j := O step 1 until m — 1 do
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for i := O step 1 until m — 1 do mat [k, i,j]:= 0;
for i := O step 1 until n — 1 do
begin real help 1, help 2, help 3;
for j := O step 1 until m — 1 do

begin mat [i, j, j] := —2x(funa (i, j)[step h 1 2 + func (i, j)[step k 1 2);
fLi, ] == funf (i, j);
if j > O then mat [i,j,j — 1] := funa (i, j)[step h 1 2 —
Sund (i, j)[(2 x step h);
if j < m — 1 then mat [i,j,j + 1] := funa (i, j)[step h 1 2 +
fund (i, j)|(2 x step h)
end j;
help := funa (i, 0)[step h 1 2 — fund (i, 0)/(2 x step h);
help 1 := 2 x funr (0, y[i]) + step h x funs (0, y[i]);
help 2 := funa (i, m — 1)[step h 1 2 + fund (i, m — 1)[(2 x step h);
help 3 := 2 x funr (p, y[i]) — step h x funs (p, i[i]);
mat [i, 0, 0] := mat [i,0,0) + help x (2 x funr (0, y[i]) — step h x
x funs (0, y[i]))[help 1;
mat [i,m — 1, m — 1] := mat [i,m — 1, m — 1] + help 2 x
x (2 x funr (p, y[i]) + step h x
x funs (p, y[i]))/help 3;
fli,0] := f[i, 0] + help x 2 x step h x funt (0, y[i])[help 1;
fli,m — 1] :=f[i,m — 1] — help2 x 2 x step h x funt(p, y, [i])/help 3

end i;
for j := O step 1 until m — 1 do

begin mat [n, j, j] := funs (x[j], g)[2-funr (x[j], q)[step k;
fln, jl := —funt (x[j], 9);
comment here expressing in, numbers of matrix coefficients
ends, the coefficients D, H will be expressed in numbers
during the course;
help := 2 x step k|(funs (x[j], 0) x step k + 2 x funr (x[j], 0)) x
(func (0, j)|step k T2 — fune (0, j)/(2 % step k));
mat [0, j, j] := mat [0, j, j] — help x (funs (x[j], 0)[2-funr (x[j], 0)

[step k);
f10,j] := f[0,j] — help x funt (x[j], 0)
end j;
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comment elimination of the vector U minus one has been done,
from here the direct process of solving starts;

for k := 0 step 1 until n do
begin integer k 1; array help f[0:m — 1];
for i := O step 1 until m — 1 do
begin
if abs (mat [k, i, i]) < eps then go to OUT;
help := 1|mat [k, i, i]; mat [k, i,i] := 1;

for k 1 := O step 1 until m — 1 do mat [k, i, k1] := mat [k, i, k1] x
x help;

for j := O step 1 until m — 1 do
if i & j then
begin help := mat [k, j, i]; mat [k, j, i] := 0;
for k1 := O step 1 until m — 1 do
mat [k, j, k1] := mat [k, j, k1] — help x mat [k, i, k1]
end j
end i;
for i := O step 1 until m — 1 do
begin help := 0;
for j := O step 1 until m — 1 do
help := help + mat [k, i,j] x f[k, j];
help f[i] := help
end i;
for i := O step 1 until m — 1 do f[k, i] := help f[i];
if kK = n then go to s;
for j := O step 1 until m — 1 do
begin help := func (k, j)[step k 1 2 + fune (k, j)[(2 x step k);
for i := O step 1 until m — 1 do mat [k, i, j] := —mat [k, i,j] x help;
end j;

for i := O step 1 until m — 1 do
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begin help := if k = n — 1 then funs (x[i], q)2 + funr (x[i], q)[step k
else func (k + 1, i)[step k 12 — fune (k + 1, i)(2 x step k);
for j := O step 1 until m — 1 do
mat [k + 1,i,j] := mat [k + 1,i,j] + help x mat [k, i,j];
flk + 1,i] := f[k + 1,i] — help x f[k, i]
end i;
s: end k;
comment end the direct process;
for k:=n — 1 step — 1 until 0 do
for i := O step 1 until m — 1 do
begin help := 0;
for j := O step 1 until m — 1 do
help := help + mat [k, i,j] + f[k + 1, j];
flk, i] := help + f[k, i]

end i

end factor;

References

[1] AnropuT™MBl ¥ anropuTMHYECKHE A3bIKH, BbIMyCK 4, Axanemuss Hayk CCCP BBIYHCITHTEIBHBIN

wzutp (1967).
[2] C. K. I'ooyHos, B. C. Psabenvkuii: BBeJeHuE B TEOPUIO Pa3HOCTHBIX cXeM, Mocksa 1962,

Souhrn

UZITI METODY FAKTORIZACE PRI RESENI DIFERENCIALNICH
ROVNIC V PRAVOUHLE OBLASTI

Joser CERMAK

Resenti linedrnich parcidlnich diferencidlnich rovnic eliptického typu metodou siti
vede pravideln€ k rozsdhlym systémim diferenénich rovnic. Matice systému obsahuje
velky poéet nulovych koeficienti. V publikaci je ukdzdno, jak vhodnou interpretaci
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pocitanych hodnot funkce v uzlovych bodech obdélnikové sité lze podstatné sniZit
potiebu paméti pocitace, soucasné sniZit i mnozstvi aritmetickych operaci. Program
pfedpokladd oblast feSeni obdélnik omezeny soufadnicovymi osami a piimkami
y = g, x = p. Uvedend oblast obsahuje ve sméru x . m vnitfnich bodu sité, ve sméru
y . n vnitfnich bodid. V jednotlivych smérech jsou vzddlenosti sitovych bodi kon-
stantni. Okrajové body jsou vzddleny o pul kroku od okraje oblasti. Okrajovou
podminku lze vhodnou volbou funkénich procedur r(x, y), s(x, y), #(x, ) v uZivatel-
ském programu upravit na podminky I, II i III. druhu (viz rovnice (2)). Reseni
rovnic s riiznymi koeficienty je opét umoznéno vhodnou volbou funkénich procedur
a, ¢, d, e, f v uzivatelském programu.

Author’s address: Dr. Josef Cermdk, CSc., Vysoka skola chemickotechnologicka v Pardubicich,
Leninovo n. 565, Pardubice.
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