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ON REISSNER’S VARIATIONAL THEOREM FOR BOUNDARY
VALUES IN LINEAR ELASTICITY

IvaAN HLAVACEK

(Received February 18, 1970)

1. INTRODUCTION

E. Reissner suggested in [1] a variational theorem for the theory of elasticity,
related closely to the well-known Trefftz method. The theorem says, that if the equa-
tions of equilibrium in terms of displacements are satisfied a priori by the admissible
functions, then all boundary conditions follow from the stationarity of a certain
functional as natural conditions. Similar method of approximate solution in elasticity
were presented by D. Riidiger [2]. In the shell theory, a variational principle, ana-
logous to that of Reissner, was established by K. ®. Yepnpix [3].

In the present paper, we discuss the Reissner’s theorem within the range of linear
anisotropic and non-homogeneous elasticity. For the traction boundary-value
problem the minimal property of the functional and the convergence of any mini-
mizing sequence are proved, which is an extension of a result of [4]. For the displace-
ment boundary-value problem, however, some modification is needed, enabling the
Reisnner’s theorem to remain in force. Then the maximal property of the functional
on a modified class of admissible functions and the convergence of any maximizing
sequence can be proved. For mixed problems with separate conditions in the normal
and tangential directions to the boundary (see [5], [6]) some particular cases are
shown, in which the kinematic boundary conditions do not follow as natural condi-
tions, unless a modification similar to that of displacement boundary-value problem
is accomplished. A general condition is established, that is necessary for the original
assertion on the natural conditions without modification.

2. DEFINITION OF THE GENERAL BOUNDARY-VALUE PROBLEM
First let us introduce some preliminary definitions and notations. E; denotes the
Euclidean three-dimensional space with Cartesian coordinates X = (x,, x,, x;). We

call aregion Q < E; Lipschitz region, if it is bounded and its boundary I" has the
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following properties: a) to each point X e I" an open sphere Sy about X exists, such that
the intersection Sy N I" may be described by means of a Lipschitz function, and b) Syn T’
divides Sy into exterior and interior parts with respect to Q.

Let a Lipschitz region 2 < E; be given. L,(Q) will denote the space of real func-
tions which are square-integrable on  (in the Lebesgue-sense). W(Q) denotes the
subspace of L,() consisting of functions, whose derivatives of the first order, in the
sense of distributions, are in L,(Q). Let us introduce the norm on W{"(2) by means of

[l =J (u® + uu ;) dX,
Q2

where u ; = 0u/0x; and a repeated suffix (excepting ¢ or n) implies always summation
over the range 1, 2, 3.

L,(I') denotes the space of real functions which are square-integrable on I
[WiP(Q)] or [Ly(I')]? denotes the space of vector-functions each component of
which belongs to WiV(Q) or L,(I'), respectively. The norm on [W{"(Q)]? is defined
by means of

”"thwz“)m)]s = ””J‘"Wz<1>m> ”“j”Wzm(m-

The norm on [L,(I')]* is analogous. Similarly, the space [L,(2)]? is defined. Let the
body forces K e [L,(2)]* and the surface tractions P e [L,(I')]* be prescribed and
assume, that the surface displacements are given by means of a function u, €
e [WiD(Q)]3.

Suppose that the strain-displacement relations

(1) &y = %(ui,k + “k,i) s
the stress-strain relations
(2) Tik = CikimEim

and the stress equations of equilibrium
(3) Tux + Ki =0

hold on Q. Here u;, ¢, and 71, designate respectively the rectangular Cartesian
components of the displacement vector u, the strain tensor ¢ and the stress tensor .
The elastic coefficients ¢y, (X) are assumed to be measurable and bounded on Q N I
and to satisfy the symmetry relations

(4) Cikim = Ckitm = Cimik -
Moreover, we suppose that
(5) Cikzm(X) EikEim = HoEintik

for every symmetric tensor ¢; at each point X € Q where a positive constant p, is
independent of X.
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On the boundary I' of the region @ the boundary conditions are prescribed in the
form of linear combinations of the displacement and surface traction components,
thus
(6) Anun + Bn’Tn = Cu

Au, + BT, =C,,
where the suffices n or ¢ denote the components of vectors u and T with components

T; = Tuhy in the direction of the unit outward normal n or of the tangential plane
to I', respectively, that is

|
I

(7) u, = uh, T, = tynng,

U,; = u; — u;n;n

j ] Ty = Tphg — Tyl .

i’ J

The coefficients A4,, A, are piecewise constant functions on I whose values are either 0
or 1, while B, and B, are bounded measurable functions defined almost everywhere
on I', such that

(8) B,2p,>0 or B, =0,
B,zZp,>0 or B,=0
with f3,, B, constant. We suppose that
9) A, +B,>0, A4, +B,>0
holds for almost all') X e I'. Let us introduce the following point sets:

o, ={Xel, B,=0}, #,={Xel,B, >0}, I,={Xel, A,B, >0},
o, ={Xel, B,=0}, #, ={Xel,B,>0}, I''={Xel, 4B, >0}.

A set G < I' will be called open in I if for any point X, € G there exists an # > 0
. such that each X e I, for which dist (X, X,) < 7, belongs to G. Here we denoted

dist (X, Xo) = [(x; — xo1) (x; — X0)]'/2.

Suppose that the sets «,, ,, 8,, B, I,, [, are either empty, or open in I.
Furthermore, let the given vector-function u, e [W;"(2)]* define functions C, e
€ Ly(s#,) and C, e [L,(s#,)]* on o, and o/, by means of (6), that is, by means of the
relations

Uy, = C, on ,, uy,=C, on ,.
1) That is, for X € I' — A", where A" is a set of surface measure zero.
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C, is defined on 4, by means of the given surface traction P, namely
C, = B,P,e Ly(%,)
and C, is defined on %, by means of
C,=BP.e[L(8)].

Inserting (1) and (2) into (3) and making use of the symmetry (4), we obtain the
system of equilibrium equations in terms of displacements

(10) » (Cortmttim) i + Ki = 0.

3. REISSNER’S THEOREM “FOR BOUNDARY VALUES”

We shall introduce a set of vector-functions satisfying the homogeneous equation
(10) (with K = O) in a sense which is suitable also for cases of discontinuous elasticity
coefficients.

Definition 1. Assume that the region Q can be subdivided into a finite number of
disjoint Lipschitz subregions Q;, such that Cim(X) are continuous in every sub-
region and

J
QnTr=0=08;, QnQ,=0forj+h.

ji=1

Let My, be the linear manifold of vector-functions w, whose components are con-
tinuous in Q, continuously differentiable in every Q; = Q; U I'}, i.e., w;e C'Y(Q))
forj=1,2,...,J, w;e C(Q) and for which

(1 1) J CiktmWi k01m dX = f CiktmWi1,mtti0; AT
Q r

holds for every v e [WiY(Q)]°.

Remark 1. Obviously, (11) holds, if a function w satisfies (10) (with K = O) in
every Q; and if

nk[(ciklmwl,m) (Q,) - (ciklmwl,m) (Qh)] =0

holds for the limits on the interregion boundaries of any two adjacent subregions, i.e.,
for almost all points

Xel,=9,n8Q,, j+h.

In fact, rewriting the left-hand side of (11) as a sum of integrals over all the sub-
regions Q; and integrating by parts, the integrals on I';, cancel out.
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Theorem 1 (Reissner). Let the traces of functions from My be dense in [Ly(I')]>.
Define the functional

(12 #(w) = =3 | K | 0 1o, — ) or +
Q o n

+ [ T(u) (ug, — Ju)) oI + j
o Ay

Bn+Tn

wdT) = P)Or+ [ uimie) - par +

RBe+ T,

+'[ %* fu, + 3B, T(u) — C,)dI" + J g—' ju, + 1B, T(u) — C)dr,
rn

I, t

where T,(u), T(u) are defined by means of (1), (2) and (7), the components of displa-
cements u;e CO(Q)),j = 1,2,..., J, u; e C(Q) and they satisfy the equations (10)
in the following sense:

(]3) J. Citmth 1, mVi g dX = J Cixtmb gm0 AT +J Ky; dX
Q r Q

holds for every v e [W3"(Q)]>.

Then from the condition 5%(u) = O the boundary conditions on %, and %,
follow as natural conditions.

The boundary conditions on of, and </, follow from there only if
(14) {J‘ p, T,(0u) dI +f p. T(6u)dl' = 0 for every due MO} =
n ol ¢
p, =0 on o, and
= b
P, =0 on o,

where p = a + b x r, a, b denote constant vectors, r the radius vector and x the
vector product.

Proof. It is easy to derive

S(u) = — ;J

Kw;dX + % J [, Ty(v) + u, T(v) — v, Tj(u) — v, T{u)] dI" +
A'n r

+ | (ugn — u,) T(v)dI +J- (T(u) = P,) v, dI" +

An Bn+Tn

+J (T,,(u) LI 9!) v dl + [ (dor — u) T(v)ar +
. B, B

n n e

+ (T(u) = P)v,dI + T(u) + g —Cl) v, dr.
Be+Te I, B B

t 3
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Using the properties of u and v, we obtain (u, v e [W{(Q)]?):
- J\ K dX + 'f [“i T(v) — UiTL(”)] dar = J‘ [ui,k(’ikun”z,m ~ Ui 4Ciktmbhi,n] dX = 0.
2 r Q

From the assumption on the density of M, in [L,(I')]’, we deduce the boundary
conditions on %4, and 4, as natural ones.

Next let us satisfy the boundary conditions on %, and 4,. Then If (14) is not
satisfied, there exists a vector p such that it holds at least one of the following two
relations

p,+¥0on ,, p,+0on .,
and simultaneously
s(u) = J Py T(du) dI" + f p.T,(du)dl" = 0
n ot

holds for every du e M. Hence the boundary conditions on 27, and o/, are satisfied
except for a polynomial p, and p,, respectively.

Remark 2. We can show several cases, for which the necessary condition (14) is
not satisfied. The most important is the case of

a) the displacement boundary-value problem, when &/, = &/, = I'. Then we have

J pn T,(Su)dI" + j p, T(Su)dI = J PiCoimOUy mhy AT =
n e

r

= J Pi 4CiktmOUy  dX = f %’Cikzm(Pi,k + Pi.i) Ouy, dX =0
2 Q

for every 6u e M, and any vector p = a + b x r with arbitrary constant coefficients
a, b. Hence (14) is violated.

/3) Let Q be a circular cylinder whose axis is identical with x; — axis, bounded by
two planes x; = ¢, X3 = ¢,. Let

u =uy, T,=P,

be prescribed almost everywhere on its boundary I'. Consequently, &/, = 0, &, = I.
Consider a vector p = b3k x r, where k denotes the unit vector of the positive x; —
axis and b, is an arbitrary constant. We have ‘

f P, T,(6u)dI" = f [p: T(u) — p, T,(5u)] 4T =
o r
= f PiiCittmOUy,m dX — J pa T,(du)dl’ = 0
0 r
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for every ou € M, because p, vanishes almost everywhereon I'. As p, = p = b3k x r
on o/, (14) is violated.

y) Let Q be the same cylinder as in the previous case. Denote the two plane bases
by I'; and the cylindrical surface by I',. Let the following boundary conditions be
prescribed:

u, = ug,, T,=0 on I,

n

u =u,, T,=P,on I,.

Consequently, o/, = I'y, o/, = 'y, o, U o/, = T (except for a set of surface measure
zero). Let p = a3k, where aj; is an arbitrary constant. Then we can write

j pa Tou) 4T + f p.T(6u)dr -
Iy I,

_ f p: T{(Su) dI" — J p, T (6u) dr" — J P Ty(ou)dI" = 0
r Iy

r;

for every 6u € M, because p, = O on I'; and p, = 0 on I',. At the same time, however,
P, = +a;on.o, and p, = a;k on o/, hence (14) is violated.

Remark 3. In Section 5, we shall suggest a modification of the Theorem 1 for the
case (oc), such that the boundary conditions are natural. A similar approach could be
applied to the cases (B), (v).

4. TRACTION BOUNDARY-VALUE PROBLEM

First let us analyse the important problem with tractions assigned on the whole
boundary. Consequently, we have

r=a,=%, oAd,=o7,=0.

Let the conditions of the total equilibrium of the body

jKdX—%JPdF:O, erKdX%—“‘rdeF:O
Q r o r

hold. Assume there exists a particular solution u of the equations of equilibrium (10)
in the sense of (13), with @; € C©O(Q) n C(Q,). Let M| = M, be a linear manifold
of vector-functions w, for which

(15) jde=O,erde=0
Q Q

(or any equivalent conditions — see [6], Part II., Theorem IL.1 and Lemma II.2)
hold.
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Let us introduce the scalar product on [L,(I')]?
(u,v) = f uw; dI’
r

and define the operator A, mapping M, into [L,(I')]? by means of
(Au)i = ciklmul.mnk .
Using (4) and (11), we can write
(Au, V) = f CixtmUy mi0; AT =f CatmUi,mix dX = (”’ AV) ,
r 2
so that A is symmetric. Moreover, the following inequalities hold in M,

(Au, u) = fﬂcik,ms,-k(u) (W) dX 2 o f (u) £(u) AX =

2

> c, j it 4X 2 Colluly e = Calufiains
Q

This is a consequence of the Korn’s and Poincaré’s inequalities and of the continuity
of embedding of W;X(Q) into L,(I') (cf. also [6], Theorem I1.1). Hence the operator A
is positive definite in H = [L,(I')]*. Completing M, by means of the associated

norm
(Au, u) = [u|§ = [u,u],

a new Hilbert space H, with the scalar product [u,v] arises, such that H} <
c [WiD(Q)]? and
(16) |ula 2 Calulliw,crayp = Csluliryiype

holds for every u e H, (see [7]).
Let us seek a function w e H, such that u = u 4+ w satisfies the equations of
equilibrium and the conditions on the boundary in the following sense:

\

17) veM, :I Citmti 01w X = f Kp;dX +J. Pw,dr .
2 2 r

The relation (17) may be rewritten as follows

(18) veM, =>f Cik:m‘:’i,kvz mdX = J' (P.' - ciklmﬁl.mnk) v, dr.
) r

By virtue of
P; — Citmtly,mMi € Lz(r) s
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on the right-hand side of (18), there is a functional continuous on H,, because of (16).
On the left-hand side of (18), we have the scalar product [w, v]. From the Riesz
theorem and the density of M, in H,, we deduce that there exists one and only one

element w € H,,, satisfying (17).

Lemma 1. The functional

(19) H(u) = _21. J

Q2

Corambi gy m dX — f Ku; dX —fP,.ui dr
r

Q

attains its minimum on the set u @ H,, if and only if

Ju = dlw.o@p = 0.
where u is the solution defined by means of (17).
Proof. Define on H, the functional
(20) F(w) =[w, w] = 2[w.w] = |w — wli — Wiz — Wi

Inserting with respect to (18)

[VQV, W] = f (Pi - C.'krmﬁx.m"k) w;dI’
r

and w; = u; — #;, we obtain

Fw) = #(u~ i) =

=f Cium(“ - ﬁ)i,k (“ - ﬁ)t,m dx — 2] (Pi - Ciklmﬁz.m"k) (ui - ﬁi) dr =
Q r

= f Cinmti gy, dX — 2f Cintmbi gy m dX — ZJ. (Pi - ciklmﬁl,mnk) u; dI' + Fx(a) .
Q Q r
Using (13), we can write

Fu—u)= f Cittm; sy dX — 2f

Q 2

Ku;,dX — 2f Pu,dI + F,(u).

r

Defining
2(u) = [F(u — u) — Fy(u)]
and making use of (20), we obtain the assertion to be proved.

Remark 4. The functional (19) coincides with that of potential energy, so that the
Lemma expresses a restriction of the principle of minimum potential energy.
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Next let us consider the functional f(w) only on the set M,. Then we may write
[W, WJ = f ciklmwl,mnkwi dr
r

and consequently
F(w) = F(u—u) =

= f ciklm(u - li)l,m "k(" - ﬁ)i dar — 2f (Pi - ciklmﬁl.mnk) (” - ﬁ)idr =
r r

= f [Ciklmnk("l,mui — Uyl + Gy u;) — 2Pu;] dl + 9’_2('}) .
r

Using (11) for w and (13) for u, we obtain
fciklmnk(ﬁl,m”i - ul,mﬁi) dr = f Ciklmnk[";l,m(ﬁi + Wi) - (ﬁ + w)l,m ﬁi] dr =
r r

Kw,dX = —fKi(ui — ) dXx

2

=fcikzm’1k[”1,m“’i - wl,mui] dr = —f
r

2

and
F(u — u) =f(cik,mnku,_mui — 2Pu,)dr — f Ku;dX + F4(u).
r

2
Comparison with (12) leads to the relation
) = [#(u — i) - 75(@].
From (20) and (16) we obtain the following

Theorem 2. Let a sequence {u,},".,, u, € u @ M, be such that

lim %(u,) = min %(u)
n—co \ UBHy

Then
lim [lu, — @], =0

where ue u @ H, is defined by means of (17).
In other words, every sequence from u @ M,, minimizing the functional %(u)
on u @ H,, converges to the solution (defined in the sense of (17)) in [W3"(Q)]°.

Remark 5. Theorem 2 is an extension of an earlier result [4]. The proof is based
on the “method of minimal surface integrals” as was presented in [8], § 47.
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5. DISPLACEMENT BOUNDARY-VALUE PROBLEM

Let us consider the second particular boundary-value problem, when the displace-
ments are prescribed on the whole boundary I'. Then we have I' = «, = /, (except
of a set of surface measure zero). Let [ W5"(®)]® denote the subspace of [W;"(2)]*
of vector-functions, whose components vanish on the boundary (in the sense of
traces).

The weak solution of the problem (see [6] IL.) is defined as a vector-function &
such that

a) u — uo e [W(Q)],

b) ve [Wz(l)(g)]l :j Ciktmll fV1m dX = f Ky dX .
Q

Q2

Denote by T, = T(ﬁ) the stress tensor with components
(W) = Cirtm 3l + i) = Cimlpm -

Let us recall also the principle of minimum complementary energy [5]: The
quadratic functional

~.5’(T) = J (%aiklm‘fikﬂm - Tik“()i,k) dX
o

attains its minimum on the set of tensor-functions with all components 7;, € LZ(Q),
which satisfy the equations of equilibrium in the following sense

(21) ve[m(@Q)]? =>J Tyl dX = J‘ K, dXx ,
o

o
if and only if

IT- 1> = J. Lo — (@] [ta — wa(@)] dX = 0.

Consider T= T(u), u=u + w, we M,, where u is the particular solution
" introduced in Section 4 and M, the linear manifold according to the Definition 1.
It is easy to deduce that T(u) satisfy (21), and therefore T(u) are admissible fields in
the principle of minimum complementary energy.

Lemma 2. Let {w,}>.,. w, € M, be a sequence such that

lim ~#(T(u,)) = ~#(T,)

holds for u, = u + w,. Then
lim | T(u,) — T,| = 0.
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Proof. Denoting w — ¢ _ u, and

|T|2 = j igmTaTim dX
we may write (see [5]) ?
(22) A1) = T - T(wo)? — [T(wo)?) = (T = Tof? + [T(#)[* = [T(u,)|?)
and

iT("n) =T

P2 C|T(u,) - T2,
which is a consequence of (5).

Hence the Lemma follows immediately.
If we restrict the functional =& to the set u @ M,, it may be rewritten as follows

(23) ——~<¢(T(u)) = j (“%Ciktmui,kul,m + Ciklmul.muOi.k) dX =
Q

= J K{uo — u); dX + J Cormtty mmi(tto — 4u); dI = R(u) + J Ky, dX ,
(o] r

Q

where Z(u) is the appropriate Reissner’s functional “for boundary values”. Making
use of Lemma 2, we derive

Theorem 3. Let {w,} ", w, € My be a sequence such that

lim Z(u,) = =" #(T,) — J Ky, dX
Q

holds for u, = u + w,. Then
lim [|T(u,) — To]| = O.

In other words, for every sequence from u @ M,, maximizing the functional %(u)’
the corresponding stress components converge in the mean to the components of
stress of the weak solution.

Let us recall the fact, that the boundary condition does not follow from the station-
ary value of the functional %(u), as was 'shown in Remark 2 and Theorem 1. In
order to remove this defect, let us restrict the linear manifold M, to M,, by a require-
ment, that

M, = M,, weMZ:f wdl' =0, f rxwdl =0,
["‘ r.
where I'* < I' is an arbitrary open part of the boundary I' (in particular I'* = I').
Denote

P ={p =a + b x r; with a, b arbitrary constant vectors}
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and

(24) v, = {u e[m: (@], J

r

udI’=O,J rxud[‘:O}.
* re

V, is a subspace of [WiP(Q)]°. Let us introduce in V,, the scalar product
(", V)vP = f CiktmUi kV1m dx .
Q

This definition can be justified by means of (1), (4), (5) and the implication (see [6],
Lemma IL.2 and eq. (18))

[u]vp=0=>ueg’nvp=>u=0.

[Wi(Q)]? is a subspace of V,. In fact, the Korn’s inequality ([6], Theorem IL.1)
yields

|"n - "I\Z'p = C]]u,, - ”I’[ZWZ“’(Q)P

for u, e [W{"(Q)]®, consequently the limit of any sequence {u,};~, belongs to
ZR )

Remark 6. We may always suppose that u — u, € V,, because to any particular
solution u’ there exists a vector-polynomial p = @ + b x r such that u = o’ + p
is also a particular solution (in the sense of (13) Jand & — u, € V,. In fact, denote
concisely the system

(25) def:O,[rxde’:O
re r*

by p(p) =0 (i = 1,...,,6) or Aa = O, respectively, where « = (ay, a,, as, by, b,,
b;)". As from (25) & = O follows, det |A| # 0 and consequently, the system Ax = ¢
has a solution a(c) for ¢; = —p{(u’ — u,). Then

Pi(P) + Pi(a’ — up) = Pi(al +p—u) =0
holds for p with coefficients ().

Theorem 4. Let u — u, €V, Let {w,},"-, w, € M, be a sequence such that
lim 2(u,) = =~ (1) — J' Kiug; dX
n— o0 2

holds for u, = u + w,. Then

hm "un - a“[WZ(‘)(Q)]J =0 .
n— oo
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Proof. We have u, — ue V,and
(26) Iulvp = |T(u)| :

Using (22), (23) and the Korn’s inequality for u, — u, the assertion of the Theorem
follows.

Denote
R=V,0[W"(QF

the orthogonal complement of [W;"(2)]® by means of the scalar product in V,,.
Then M, < R, because M, = V, and (11) yields

weM,, ve[W(Q)] = (w,v), =0.
Lemma 3. The closure of M, in V, is equal to R, i.e.,
M7 =R,

if and only if for every u, e [Wi'(Q)]® a particular solution u and a sequence
{w,}= |, w, e M, exists, such that the sequence {u,} ., u, = u + w,, maximizes
the corresponding functional #(u, u).

Proof. Let us choose an arbitrary element ¢ € R. The sum u + g represents a weak
solution of the elasticity problem with the boundary condition u = u, = u 4+ gon I
Let the sequence {u + w,}, w,eM,, maximize the functional %(u, u,), where
u, = U + p. Denote

Ty = T(u + o) = T(u) + T(o)

the stress tensor corresponding with the displacement field u + . The tensors T(u+w),
with w e M,, are admissible in the principle of minimum complementary energy.
Using (22), (23), (26) with & = u + ¢, u, = u + w,, we obtain

() = Tl = [T(w,) = T@)|* = |T(w. — )| = [w, = oly, - 0.

Hence R = MY’ '

Conversely, let R = M}” hold and an arbitrary u, € [ W;"(Q)]? be given. According
to Remark 6, we choose u such that u, — ﬁeVl,. Put u, = & + ¢ + v, where
o€ R, ve [W"(Q)]’. Denote again

u=u+¢, T,= T+ T(o).
For the element ¢ a sequence {w,,} € M, exists such that

]w,, — QIV:: - 0.
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By virtue of (22), (23) and (26), we have

H ) = =" (7(w) [ Ko ¥ =

= *%(’T("n) - Tofz + IT(V)IZ - IT(UO)IZ) - f Kiug; dX

|T(u,) - To| = [T(w, — o)] = I‘”n - le,,-

The sequence {u + w,} maximizes the functional %(u, u,) and the proof is complete.

Theorem 5. Let u be such that u, — U e V,. Then from the condition
SR(u, ug) = 0

on the set u @ M,, the boundary condition u = u, on I follows as natural condition,
if and only if to any function uy € [W3(Q)]* a parttculal solution u and a sequence
(W} y, w, €M, exists such that the sequence {u + w,};>, maximizes the cor-
levpondlng functional /Z’(u up).

Procf. On the set U @ M, we have
OR(u, uy) = j CormOU p mi(to; — u;) dl .
r

Denote éu = we M,. It holds u — u, eV, and
OR(u, uy) = j. CitimWimltlo — 1); 4 dX = (W, ug — )y .
Q

Let 6%(u, up) = 0, consequently (uy — u, w), = 0 for every w € M,. Using Lemma
3 and the assumption on the existence of maximizing sequence, we obtain M%” = R,
consequently (u, — u, @)y, = 0 for all ge R. Hence u — uy e [W§"(2)]* follows,
which is equivalent to the relation u = u, on I' in the sense of traces.

Conversely, let from the zero variation the boundary condition follow, i.e., let

(27) (up —u,w), =0 forall weM,=u—u,=0 on I.
Suppose that M, is not dense in R. Then a nonzero subspace N, = R exists such that
R=M,®N,, V,=M,® N, ®[W"(Q].
From the condition
(up — u,w), =0 forall weM,

only u — uy e Ny ® [W{"(Q)]? follows. Hence it may hold u — uy e Ny, u — Uy *
+ 0, i, u — uy ¢ [WEV(Q)]?, consequently u — u, + O on I, which is a contradic-
tion to (27). Hence M, is dense in R and Lemma 3 yields the existence of a maximizing
sequence for any u,, which completes the proof.
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Souhrn

O REISSNEROVE VARIACNI VETE PRO OKRAJOVE PODMINKY
V LINEARNI TEORII PRUZNOSTI

IvAN HLAVACCK

E. Reissner navrhl v préci [1] varia¢ni v&tu v teorii pruZnosti, odpovidajici znamé
Trefftzové metod€. Véta tvrdi, Ze jsou-li rovnice rovnovahy v posunutich spln&ny
a priori pripustnymi funkcemi, pak v§echny okrajové podminky vyplyvaji ze stacio-
narni hodnoty jistého funkcionalu jako pfirozené podminky. V tomto ¢lanku je din
rozbor Reissnerovy véty v oblasti linearni anisotropni a nehomogenni pruZnosti.
V pfipadé povrchového zatizeni na celém povrchu télesa se dokazuje minimalni
vlastnost funkcionalu a konvergence kazdé minimizujici posloupnosti. V piipadé
posunuti danych na celém povrchu je vSak k zachovani platnosti Reissnerovy véty
zapotfebi jisté modifikace tfidy pfipustnych funkci. Pak lze dok&zat maximalni
vlastnost funkcionalu a konvergenci kazdé maximizujici posloupnosti. Pro smiSené
okrajové ulohy, s oddélenymi podminkami,ve sméru normaély a te€né roviny k povr-
chu télesa, jsou ukazany nékteré pfipady, pro které Reissnerova véta rovnéZ neplati,
neni-li pfislusnym zptisobem modifikovana. Clanek obsahuje té% jistou obecnou
podminku, ktera je nutna k tomu, aby Reissnerova véta platila v pivodnim tvaru bez
modifikace. ’

Author’s address: Ing. Ivan Hlavdéek, CSc., Matematicky ustav CSAV v Praze, Zitna 25,
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