
Aplikace matematiky

Karel Čulík
A note on complexity of algorithmic nets without cycles

Aplikace matematiky, Vol. 16 (1971), No. 4, 297–301

Persistent URL: http://dml.cz/dmlcz/103359

Terms of use:
© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103359
http://dml.cz

SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 4

A NOTE ON COMPLEXITY OF ALGORITHMIC NETS WITHOUT CYCLES

KAREL CULIK

(Received March 26, 1971)

This note is an appendix to [2] and presents, among others, its comparison with
[5] and [1]. Further a generalized algorithm is sketched out by which the minimal
number of addresses (or registers) required by computation of a special simple
program is determined. All notations and terminology are used in accordance
with [2].

A. By each simple program as many functions as there are output addresses are
computed (see [3]), but it should be stressed that at two different output addresses
one and the same function may be computed (and, moreover, this function is com
puted by the same algorithmic method [4] in both cases). There arises a dilemma
for the user of such a program: either he does not allow to change his program
i.e. all the output addresses must be preserved, or he allows to simplify it in order
to avoid possible superfluous repetitions during the computation (obviously together
with an information about all "equivalent" = "the same results giving" output
addresses); for this case the necessary preprocessing has been described in [2] (i.e. for
a program its algorithmic net is constructed, then the algorithm of unification leading
to a simple net is used, and finally a course of it is chosen). In this way an equivalency
relation in the set of all output addresses (or of all output vertices of the corresponding
net) is determined. Only with respect to this equivalency relation we may speak
about the set of functions computed by a program (or by a net), i.e. if the computed
functions differ from each other.

It may be proved that two simple programs compute the same set of functions
(with respect to the above mentioned equivalency relation) in each of possible
computers (i.e. for each of possible choices of Obj and Fct) if and only if they are
structurally equivalent. To have this theorem is the main reason why the restriction
(2.1) — which says that different input vertices must be labelled by different input
addresses — has been accepted, and why never any use of special properties of
functions from Fct (as commutativity, associativity, etc) has been made.

Another reason for acceptance of (2.1), close to the mentioned one, is the require-

297

ment of being able to interprete the number of input vertices as the number of input
addresses of the corresponding program, and also as the number of variables
of the set of computed functions: we assume that each function has a fixed number
of variables, i.e. has its arity, independently as to whether some of them are singulary
or not (as it is very frequent with boolean functions in logic, e.g. in a v a, and
sometimes also in arithmetics, e.g. in a — a, a/a, the variable a is singulary etc).

B. In [5] a special type of algorithmic net from [2] is investigated where the
following restrictions are accepted: (i) id (x) = 2 for each non-input vertex x;
(ii) od (x) = 1 for each non-output vertex x and (in) there exists only one output
vertex which is usually called the root. By (ii) it follows: (iv) there are no parallel
paths and therefore such a net may be called an algorithmic binary rooted tree.
The second labelling XE of [2] is replaced by new partial ordering of vertices in planar
figures from the left to the right. According to (2.1) only special expressions correspond
to the algorithmic binary rooted trees, namely those in which no variable occurs
more than once; e.g. the expression a\(b + c) — a * (b + c) is not considered but
a\(b -f c) — d * (e + /) is, which is connected with the type of instructions allowed
in [5]. In [2] is assumed, as a fact of greatest importance that the first expression
just mentioned may be computed more efficiently than the second because of certain
repetition of variables and even subexpressions. Moreover in [2] both expressions
are considered absolutly independent of each other although the first arises from
the second by certain identification of its variables and the same is true for their
corresponding functions (see A.).

In order to be able to compare [5] and [2] let Adr = Reg u Sto where Reg n
n Sto = 0 and the set Reg, Sto contains the addresses of registers, of storage cells
respectively. Thus two sorts of memory elements are distinguished.

In [5] the following four types of instructions (or assignement statements) are
considered: 1. s = : r, 2. r = : s, 3. / (r , s) = : r*, 4. / (r , r*) = : r** where s e Sto
and r, r*, r** e Reg a n d / e Fct ("/" e Opr). A minimalization of number of registers
(or of register addresses) required by a computation of an expression represents
a search among the corresponding programs which do not contain instructions
of type 2. If, however, instructions of type 2. are not admitted, then the importance
of instructions of type 3. decreases considerably because they may be used only for
leaves of a tree and never within the tree itself. Therefore if the instructions of type 3.
are not allowed (or if there is another prescription for the minimal number or registers
required for leaves, which is possible in general case of n — ary functions in Fct)
then the required minimal number does not differ very much of that with instructions
of type 3.

The instructions of type 1. are mostly time-wasting and therefore the minimalization
of their number is of greater importance than that of the number of registers itself.
This is the point of view in [2] where the best possible case is assumed (if in the
expression some variables may occur many times), namely the minimal number

298

Of instructions of type 1. is assumed which is the number of different input addresses
(and simultaneously the number of input vertices, as mentioned in A.).

On the other hand, in [5] the worst possible case is assumed namely the maximal
number of instructions of type 1. being equal to the number of all occurrences of all
input addresses in the program (and simultaneously to the number of all leaves
of the tree). Here a much more decisive role will be played by the distinguishing
of two sorts of instructions of type 3. and 4., namely: 3a)f(r, s) = : r, 3b)f(r, s) = :
= : r*, 4a) f(r, r*) = : r, 4b) f(r, r*) = : r**, where it may, but need not, be r = r*
and r = r**.

If only types 3a) and 4a) are admitted which is unfortunately very often the case
with real computers, then the point of view of [2] loses its importance because after
the application of such an instruction the content of the first register address is always
disturbed (and therefore it cannot be preserved in the same register for all the time
when it is needed). In this case it seems to be desirable to pass to the next lower level
of microcommands. There must always be stated before each application of a micro-
command whether or not the content should be preserved, etc.

C. In [2] only instructions of type 4b) are admitted because (tacitly in accordance
with [6]) the instructions of type 1. are considered as input instructions and therefore
they are not confused with other operational types, i.e. it is assumed that the actual
program is preceded by its input program of the type (4 = : a, 5 = : b, 2 = : c)
for the simple program (b + c = : x, a\x = : y, a * x = : x, y — x = : x) of the
expression mentioned above (in [6] such programs are called standard).

Two sorts of memory elements allow an other point of view (in [6] the correspond
ing programs are called non-standard) illustrated by the following example: (5 = : b,
2 = : c, b + c = : b, 4 = : c, c\b = : a, c * b = : b, a — b = : a). Here 3 addresses
suffice, but above at least 5 of them are required. Thus the input data are coming
consecutively and not at once.

Therefore let us slightly modify the definitions of scopes in a course (vl9 v2, ..., vn)
of [2] as follows: the scope of an input vertex vt is defined in the same way as of any
non-ouput vertex, i.e. Sc(v() = (vi + 1, ..., Vj) where j is the maximal integer such that
(vh Vj) e O and <V, O) is the corresponding net; further let Sc(v) = 0 for each output
vertex v,-. This last change allows to have all results on one and the same address
but, of course, consecutively in time (after each occurence of an output address x
an ouput command "prin^x)" should be added).

According to [2] this new definitions of scopes lead to a new concept of scope
width of a course P = (vu v2, •••, vn) which will be denoted by scwi*(P) = max

scwi*(vt), and to a definition of scope width of a net N which will be denoted by
scwi*(N) = min scwi*(P) where P(N) is the set of all courses of N. This allows

PeP(N)

a formulation of the following conjecture: if Tis an algorithmic binary rooted tree

299

then scwi*(T) is the minimal number of registers required for computation of the
expression corresponding to the tree T

The following assertions may be proved about algorithmic rooted trees, i.e. if it
is allowed to have instructions f(ru r2, ..., rn) = : r0 where rteReg for i =
= 0, l , . . . , n :

Lemma. Let be given integers kt such that kt ^ k2 ^ ... ^ kn where n ^ 1.
Then an integer m satisfies the inequalities (l) and is as small as possible, if and
only if (2) where

(1) m = ki, m — 1 __ k2, ..., m — (/i — 1) = k„ ,

(2) m = max [kSq + 5^—1]

where p is the number of different integers kt and the integers si9 s2, ..., sp = n are
determined by the following inequalities

(3) kj = ... = ksi > kSi + 1 = .. . = kS2 > ... > kSp_1 + 1 = ... = kSp.

Theorem. Let T be an algorithmic rooted tree with the root v and let vl9 v2,..., vn

(n ^ 1) be all the vertices such that each edge terminating in the root v must start
in one of them. If Tt is the algorithmic rooted subtree of T with the root vt and if
we put k| = scwi*(Tt) for i = 1, 2, ..., n, then scwi*(T) = m where m is determined
by (2) and (3).

One easily sees that if n = 2 which is the case for binary rooted trees, then (3)
gives the same value as required in [5].

Therefore the number scwi*(v) is defined for aech vertex of an algorithmic rooted
tree Tand it is easy to describe simple algorithm by which a course (vl9 v2,..., vN)
of Tis constructed such that scwi*(vi) = scwi*(vj) for all i < j where i,j = 1, 2, . . .
. . . , N .

In this way a special case of a modification of the problem 2 of [2] is solved.

D. In [1] the ideas of Z. Pawlak concerning his addressfree computers are
fomalized. Here also only algorithmic binary rooted trees are considered. In [l]
a completely different structure of memory than in [2] or [5] is assumed, i.e. a push
down store is required. However there is a conjecture that the minimal deep of the
push-down store required for computation of the tree T s scwi*(T) again.

300

References

[1] Blikle, A.: Аddrеѕѕlеѕѕ unitѕ for сaiтying out loop-frее сomputationѕ, pp. 48, Poliѕh Асadеmy
of Sсiеnсеѕ, Inѕtitutе of Mathеmatiсѕ, July 1970.

[2] Čulík, K: Combinatorial problеmѕ in thеory of сomplеxity of algorithmiс nеtѕ without
сyсlеѕ for ѕimplе сomputеrѕ, Аpliкaсе matеmatiкy 16 (1971), 188 — 202.

[3] Čulik, K.: On ѕеmantiсѕ of programming languagеѕ, Аutomatеnthеoriе und formalе Spraсhеn
еd. J. Dörr, G. Hotz, Вibliographiѕсhеѕ Inѕtitut, Mannhеim— Wiеn— Züriсh, 1970, pp.
291-303.

[4] Čulík, K: Struсtural ѕimilarity of programѕ aпd ѕomе сonсеptѕ of algorithmiс mеtod, prеprint
of a lесturе prеѕеntеd at thе GI — Confеrеnсе in Muniсh, Marсh 1971.

[5] Sethi, R., UІlman, J. D.: Tһе gеnеration of optimal сodе for arithmеtiс еxprеѕѕionѕ, Jouг.
of АCM, vol. 17, No. 4, Oсtobеr 1970, pp. 715-728.

[6] Čulík, K: Thеory of programming languagеѕ and of algorìthmѕ, a tеxtbooк for Inѕtitutе
of Tесhnology in Praguе (in prìnt), July 1970.

S o u h r n

POZNÁMKA O SLOŽITOSTI ALGORITMICKÝCH SÍTÍ BEZ CYKLŮ

KAREL CULÍK

Rozsahovou šířkou algoritmické sítě bez cyklů N se rozumí číslo scwi*(N) =
= min scwi*(P), kde scwi*(P) je modifikovaná rozsahová šířka průběhu P sítě N

PeP(N)

a P(N) je množina všech průběhů sítě N. Je-li T algoritmický kořenový strom (tj. síť
s jedním výstupem a bez rovnoběžných sledů) s kořenem v a jestliže ví9 v2, . . ., vn

jsou všechny uzly stromu T, z nichž vedou hrany do v, a jestliže položíme kt =
= scwi*(Ti) pro i = 1, 2, . . . , n, potom je vyslovena domněnka, že scwi*(T) = m,
kde m je určeno podle (2) a (3).

Auíhors address: Prof. Dr. Karel Culík, DrSc, Výzkumný ústav matematických strojů, Luzná ul..
Praha 6-Vokovice.

301

		webmaster@dml.cz
	2020-07-02T01:09:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

