
Aplikace matematiky

Jaroslav Hrouda
A contribution to Balas’ algorithm

Aplikace matematiky, Vol. 16 (1971), No. 5, 336–353

Persistent URL: http://dml.cz/dmlcz/103366

Terms of use:
© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103366
http://dml.cz

SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 5

A CONTRIBUTION TO BALAS' ALGORITHM

JAROSLAV HROUDA

(Received June 26, 1970)

INTRODUCTION

It is the Balas' additive algorithm of solving the zero-one linear programming
problem which is meant in the title of the article. It is one of several possible approaches
to the problem, perhaps the best-known even if not quite successful. This algo
rithm has become classical nowadays and many authors have added modifications
and supplements to it (the most important are due to Glover and Geoffrion). The
aim of our article is (l) to give an alternative description of the algorithm suitable as
a propedeutics for the following article [16] in which some generalization of Balas'
algorithm will be introduced, (2) to systematize and generalize some older tests. Let
us mention the contents of the article more in detail.

In § 1 we briefly describe a backtracking-type enumeration process using our own
terminology (essentially equivalent to that of [15]). At the time when terminology is
being still formed such redundancy need not be useless. We believe that our termino
logy is quite natural and hence understandable.

In § 2 a modification of Balas', or better Geoffrion's, algorithm is presented under
the name Algorithm BG (without tests so far). Treating the objective function as the
0-th constraint simplifies the formalism; e.g. two versions of the algorithm — for
obtaining all optimal solutions (BG1), and at least one optimal solution (BG1') differ
from each other in only one point. Coefficients of the objective function are not as
sumed to be nonnegative since this assumption need not be always to the best ad
vantage. Glover's method of bookkeeping of the enumeration process is somewhat
adapted.

In § 3 three fairly strong tests are described: (1) Test BF generalizes some tests of
Balas and Fleischmann. It works upon a pair of sets F and G consisting respectively
of elements which must or must not be present so that feasibility may be achieved in
a given branch. The sets F, G are constructed here to be the largest possible of the
kind. (2) Test GZ generalizes a test of Glover and Zionts. It is no more related to the
objective function exclusively. A heuristic procedure is suggested to determine an

336

order in which constraints are to enter the test, and also a suggestion is given for
surrogate constraints to be used. (3) Test PI applies the same generalizing idea as GZ
to a test of Petersen.

Now a few remarks about symbolics and terminology used in the article.

Inclusion signs c , => have only sharp meaning (excluding equivalence).

Symbol JS| where S stands for a set denotes the set of absolute values of the ele
ments of 5 .

For typographic reasons we shall often write down a summation index into angle
brackets after the sum, e.g.

Yaij<J E jy instead of £ atj .
JeJ

The braces {...}, {... 1 ...} define sets by enumerating the elements or by indicating
a condition, respectively.

The sayings fi'i-th row, j- th column, 5-th iteration" refer to the value of the corre
sponding index, not to the order from the beginning; so i-th row is the row indexed
by i, though it may lie at the (i + l)-st position if there is a 0-th row.

§ 1 . ENUMERATION PROCESS B

Given the sets Jt = {0, 1, ..., m}, Jf = {1, ..., n}. We start our consideration by

Problem U. Determine all the vectors x = (xu ..., xn) satisfying the constraints

(VI) t<tij*j=bi O'e^r),
J = I

(1.2) xj = 0 or 1 .

A vector x will be said to be a solution or a feasible solution according to whether
it satisfies only (V2) or (V2) and also (1.1). Each solution x can be assigned a com
bination J of elements from Jf in this simple way: j eJf belongs to J if and only if
Xj — 1. Since this correspondence is unique, we may speak about combinations and
feasible combinations concerning Problem U as well. We denote combinations that take
I elements by J\. The zero solution x = 0 is assigned empty "combination" J0 = 0.

We define the branch on J\ with the outset Jl + 1 => Jt as a set of all combinations
J^ 2 Ji+i- The parameter / is called the branching level in this connexion. Naturally,
sub-branches may be distinguished in the structure of a branch.

To obtain all the combinations Jj (/ = 0, ..., rc), we shall use a procedure called here
enumeration process B (briefly, Process B). It is known as 'backtracking procedure'
in literature 1) and can be characterized by a recursive rule: Form all branches on

*) Its general formulation was given by Walker [21] and Golomb and Baumert [13].

337

each newly obtained combination. We shall perform it by means of two elementary
branching mechanisms:

(a) IBL (increasing of branching level): add an element which has not yet started
branching on a gven combination.

(P) DBL (decreasing of branching level): drop out the element which was added
last to make a combination.

Obviously, starting from an arbitrary combination (e.g. J0) and applying the
branching mechanisms with priority (a) over (p), we shall realize Process B. In other
words: decreasing of branching level can take place only when all possibilities of in
creasing of a gven level have b?en exhausted. For our purpose, however, the branch
ing process is necessary to be reduced in some ways. Two of them are known:

Reduction of the 1-st kind. When creating branches those combinations (sub-
branches) wh'ch were already created before are skipped.. The part of a branch which
has been made in this way is a nonredundant branch. To get a precise meaning,
however, th;s concept must be understood in relation to the enumeration process —
the s;ze of a nonredundant branch depends on the stage of the process at which it was
created, i.e. when its "turn" came. (The only branches created entirely are the first
branches on j 0 c j t c . . . c Jn-i-) ^n l n e whole, we get a nonredundant enumera
tion process — each combination being present only once.

Reduction of the 2-nd kind. Those combinations which can be found nonfeasible
in advance are left out. The criteria that facilitate such conclusions are called tests.
The most valuable will be those, of course, which eliminate from consideration whole
nonredundant branches, not only individual combinations. The reduction of this
kind is called implicit or partial enumeration in literature [8], [2]. It results in, as it
might be called, shortened branches and, eventually, shortened enumeration process.

In the sequel the two reductions w'll usuaUy be understood under the term Process
B. In the same way, speaking about branches we shall usually mean shortened non
redundant ones.

For the realization of an enumeration process its bookkeeping is important; by
that a way of recording the running process is meant so that we can read combinations
being created and control the process. Naturally, the bookkeeping is required to be
economical enough regarding the use of computers. We now describe briefly a book
keeping due to Glover [10] that fulfils this requirement in a high degree (also de
scribed in [8]).2)

A current state of Process B is determined by a sequence F consisting of elements j
and — j (j ejV); all these are d ff^rent in absolute value (thus F includes at most n
elements). The positive elements represent the combination J created last, the negative
ones keep "history" of the process — the combinations created before J or those
eliminated by tests. The branching mechanisms then work as follows:

) Other bookkeepings, also economical in some sense, were proposed in [19], [10] p. 913.

338

(a) IBL: add an element j e Jv" — JFj to the end of the sequence F;
((3) DBL: prefix the sign 'minus' to the last positive element of the sequence F

and leave out all (negative) elements standing after it.

The process starts with F being empty or containing an arbitrary comb'nation of
different elements j e Jf, and ends when F contains no positive elements. Whenever
we think of Process B in conjunction with this Glover's bookkeeping, we shall express
it by the name Process BG.

Now, we shall return to our Problem U. In view of what was said above, to solve
it means to select all the feasible combinations among those produced by Process B.
Whether such way will be of practical value, it will depend especially on the efficiency
of tests with respect to the given constraints (l . l) . As a rule, Problem U is stated in
a weaker form as

Problem Ul . Specify all feasible solutions of Problem U that minimize the
objective function

n

(1.3) z(x) = X a0JXj
1=1

n

assuming b0 = £ max {a0J, 0}.
j - i

This problem is known as zero-one linear programming problem. The feasible
solutions which solve it are optimal solutions. The minimization requirement may be
well utilized to increase reduction effect of tests. If it is sufficient to find only one from
all optimal solutions, we shall refer to the problem as U l ' .

§ 2. ALGORITHM BG

Under this title we are going to describe an algorithm which solves Problem U ac
cording to the outline given in § 1. Superscripts without parentheses stand for itera
tion numbers.

P r e p a r a t i o n pa r t . Set s = 0, /° = 0, F° = 0, y°t = bt(ie Jt\ vg = 1.

I t e r a t i o n p a r t (s-th iteration). Given a sequence Fs, numbers Is _ /, ys
t(i e Ji\

and a set (v0, ..., vs}.
If y\ §: 0 for all i e Jt and if either s = 0 or IBL took place in the preceding itera

tion, then score a. feasible solution J] = {j e Fs | j > 0}.
In any case, go on by selecting a set of "free" elements Ns = Jf — |FS|. If Ns = 0,

then go to DBL (see below); else apply tests to reduce the enumeration process
(see § 3). If none the tests is satisfied, go to

IBL: Let Fs = {j\, . . . , I J , Gs = {k1? ..., ka} be disjoint subsets of Ns with the
following meaning: Fs contains the elements which must be present in combinations

339

of the branches on Js
t so that a feasible solution may be reached; G\ on the other

hand, contains the elements which must not be present for this reason.3) Reduction
possibilities which might arise from the size of these sets (e.g. Ns — Gs = 0) are sup
posed to have been accepted in the tests.

(a) If Fs #= 0, then put

(2.1) Fs + 1 = Fs u {-kl9 ..., -K) u {ju . . . , j j ,

(2-2) yf1 = r t - j > u O e J) ,
j6Es

(2.3) vs:,1 = vs + ^ ,

(2.4) / s + 1 = Is + O.

The conjunction sign in equation (2.1) means adding new elements to the end of Fs

in the indicated order.

(b) If Fs = 0, then determine an element j \ from the relation

(2.5) v*h = max vs 4)
jeNs - Gs

where

(2.6) f$ = £ m i n { r i - a y , 0 } .
ieJi

Apply formulas (2.1), (2.2), and put

(2.30 Vs:1 = 1 ,

(2.40 / s + 1 = Is + 1 .

Assign superscript s + 1 also to all symbols which pass to the next iteration un
changed (namely v0, ..., v,), and proceed to the (s + l)-st iteration.

DBL: If Is < vs, then stop - the problem has been solved. Otherwise, leave out the
elements of Fs from the end through v* positive ones, prefix the sign 'minus' to the
last of them to get the sequence Fs+1, and put

(2.7) ls + i = Is - v s ,

(2.8) y-+1 = y1+ E % (ieJl)

where the summation is done over the positive elements j x left out from Fs. Assign
superscript s + 1 to all symbols which pass to the next iteration unchanged, and
proceed to the (s + l)-st iteration.

3) For a way of preparation of such sets see Test BF (§ 3).
4) In case of tie choose j \ according to the least aoj.

340

For solving Problems U1 and UV the above algorithm is to be only slightly
modified: After a feasible solution has been scored, i.e. ys ^ 0 (i e Jf) with IBL
preceded, replace y\ by y0 = 0 in case of Ul and by y0 = — e in case of UV. Here
e > 0 is a given number not exceeding the possibly least variation of the value of the
objective function (so if all a0j- are integers, we may simply take s = 1). These two
adaptations will be referred to as Algorithms BG1 and BGV respectively.

We provide only a few comments on Algorithm BG which we believe to be suffi
cient for its understanding:

The mechanism IBL is treated here in a more general sense than described in § 1 —
now more elements can be added all at once (those from Fs). A corresponding gener
alization for DBL is ensured by quantities v, which register the way of adding ele
ments to F making use of the characteristic property of sets F: After the branching
level has been decreased to the level of Js on which IBL with Fs =)= 0 preceded, it is
possible to decrease the branching level further without any testing (branches created
on J\ would no longer contain elements of Fs, which is the necessary condition for
feasibility in this case). This property of sets Fs is a cumulative one — therefore apply
(2.3) if Fs 4= 0; otherwise (2.3'). Thus v\ always specifies how much the level f is to
be decreased when DBL has occured.5)

The quantity j!s, as it is apparent from Preparatoin part of the algorithm, (2.2), and
(2.8), represents a current 'slack' value of the i-th constraint, i.e.

(2-9) y\ = b, - %iu<J e J*> .

It is sufficient for feasible solutions to be scored only after IBL (or when s = 0)
because at that time they appear first. Scoring after DBL, when the algorithm "passes
through a solution on its back way", would be a repetition.

The way of determining j t according to (2.5) was originally suggested by Balas
[1], The aim involved is to reach a feasible solution as fast as possible. Of course,
another criterion of preparing jY may be installed here, e.g. see [8] sect. 3.2.

Algorithm BG is in its mathematical background identical with the algorithms
described and proved by Balas [l] , Glover [10], and Geoffrion [8]. Hence it is not
necessary to carry out a formal proof to make sure that Algorithm BG actually
realizes Process BG.

Concerning Algorithm BG1: This differs from BG only in the role of the 0-th con
straint, the right hand side of which now represents the current lowest value of the
objective function so far achieved upon feasible solutions. All the solutions which
would produce a greater value of the objective are then eliminated as "infeasible"
ones. Indeed, let us define a sequence of quantities b0 = y0 + zs where zs = Yfioj
<j e J^>. It follows from (2.9) that the values of b0 may change merely at those

5) Vj's along with the 'minus' sign have a function equivalent to that of the Glover's underline
[10], [8].

341

iterations at which a feasible solution has been scored, and they decrease since there
is ys

0 ^ 0 there. Using tilde to distinguish the changed value of b0, we have

(2.10) b0 = / 0 + zs^ zs = y% + zs = B'0 .

For two arbitrary feasible combinations Js and J" (u > s) it is

(2-11) -" = l>o - 3>"o ^ SS = zs •

Concerning Algorithm BGV: Analogously to the above arguments, replacing re
lations (2.10), (2.11) by

(2.10') b% = / 0 + zs ^ zs > -e + zs = ys
0 + zs = fi* ,

(2.1V) zu = bu
0~ yu

0S bo = - * + z* •

R e m a r k 1. Enumeration can be started from an arbitrary combination J° (/ ^ 0);

only Preparation part of the algorithm is to be altered: F° = J°, l° = l, y°t = bt —

- E « o O " e J i> 0 e ^) > vo = v? = .. . = v? = 1 .

R e m a r k 2. The function of Algorithm BG may be simulated by Algorithm BG1:
we solve an auxiliary "minimization" problem, which is Problem U with the zero
objective function added.

The usefulness of a nontrivial upper bound b0 of the optimal value of the objective
function has been emphasized [7]. We may attempt to get such a bound by various
ways, e.g. to determine some feasible solution x by a heuristic procedure ([20], [5])
and put b0 = z(x). In [17] another way is suggested: Starting from a trial value of b0,
increase it gradually by steps until a feasible solution is found; hence the problem
splits into a number of stages which may amount, on the whole, to less computation
than the original problem itself (this idea is more deeply elaborated in [16]).

Balasian algorithms usually require a0j ^ 0.6) Some tests are actually based on
this assumption. Obviously, this is because of the important reduction role the objec
tive function may play in Problem Ul (of course, from the moment a "good" feasible
solution is found). Otherwise, there is no reason for this neither as regards the con
struction of tests, as we are going to show in the next paragraph, nor regarding
a possibly better course of the enumeration process, as it turned out in some numerical
experiments [17]. Therefore Algorithm BG (BG1) assumes nothing about the coef
ficients of the problem.

6) If this requirement is not fulfilled, it can be easily achieved by the transformation xfj •
- 1 - X:.

342

§ 3. TESTS

First we mention some principles that are used to construct tests. These are:
(1) Some yt (i e Ji) is such that in the branches on Js

(1a) it cannot be nonnegative, or
(1(3) if it were nonnegative, then another yk would turn out negative.

In both cases DBL may follow.
(2) Some Xj (j e Ns) are determined to assume specific values to reach feasibility in

a branch on Js, particularly,
(2a) xj = 1 for j e Fs gz Ns,
(2p) xj = 0 for jeGs cz Ns (Fs n Gs = 0).

Then those branches which do not contain all the elements of Fs or do contain some
elements of Gs can be omitted.

A great number of tests based more or less on the principles mentioned above has
been described in literature [l] , [2], [3], [4], [6], [10], [12], [15], [19], [20]. The
situation has become rather confused. Moreover, some of these tests are redundant in
the sense that they just anticipate the effect of other, more general tests. In this para
graph we are going to formulate some realizations of the principles (1) and (2) as
general as we are able to find.

1. Test BF. Let us denote sets Sf~ = {j eJf \ au < 0} and Sf^ = {j eJf \ atj> 0},
put F(0) = G(0) = 0, and start a recursive process for k = 0, 1, .. .:

(3.0) r<* > = ys. - %au<j e ((Ns - G(k)) n 9>J) u (F(fc) n <^+)> (i e Ji) ,

F(*+D = F(V u u {j eNs - (F(fc) u Gik)) | r(fc) + au < 0} ,
ieM

G(*+D = C/k) u U {j eN s - (F(fc+1) u G(fc)) I r(k) - atj < 0} .
ieM

As soon as rik) < 0 for some k and i, go to DBL. Otherwise, after the process has
been stabilized, i.e. when F(fc+1) = F(fc) and G(fc+1) = G(k) for some k, put

F s = F(k), Gs = Gik), rs = r(k) (i e Ji) .

If then Fs = 0, Ns u Gs = Jr, go to DBL; otherwise terminate the test.
The sets F(fc), G(fc) have the following meaning: F(fc) contains the elements which

must be present so that combinations in the branches on Js may be feasible. The same
applies to G(fc) if replacing 'must' by 'must not'.

Ju s t i f i ca t i on . Symbol B(JS, k) will denote a nonredundant branch on Js with
the outset Js u {k}; further we define B(JS, H) = U &(Js->j)- Let us assume that the

JeH

sets F(fc), Gik) have the meaning described above. Then the quantity r(.fc) obviously
represents the largest value that the variable yt can assume in the branches on Js:

rik) = max {bt ~Yaij\J S B(JS, H(fc))}
J jeJ

343

where H{k) - Ns - G(fc). Thus the inequality r{k) < 0 indicates the impossibility of

reaching a feasible solution in branches on Js.

Now we shall suppose rf} ^ 0. Let j x e H{k) - P(fc) be such that r{k) + aiJ% < 0

(so that ; x G £f~[\ Then we can write

, (*> Sa yO6((.V-G (*)-0x})n^r)^ ' i ' + fly„ = yl

u (F(fc) n ^ +) > = max {b{ - I « f i | I S B(j ' , H(fc))} < 0 ,
J JeJ-{j\}

which makes apparent that the element I x can be added to the set F(fc) since its ab

sence in combinations would cause their infeasibility.

Similarly, letjx x GH(fc) - F(fc+1) be such that rf ~ aiJ%% < 0 (s o t h a t j x x G <^+).

From the relation

•<> — a U x , = max {br - £ at) | / S B(ЈS u { j x x } , Н « - {jx *})} < 0
y e j

it is now apparent that the element j x x can be added to the set G{k) since its presence

in combinations would cause their infeasibility.

Finally, as the sets F(0) = G (0) =- 0 satisfy the assumption trivially, we have proved
our assertion about the meaning of F(fc) and G(fc) for any k. The recursive process is
finite because the sets involved are finite and disjoint. Concerning the second pos
sibility of DBL, there is no need for comments.

The sets Fs and Gs created by Test BF are the largest ones of the kind, i.e. no ele
ment j eNs — (Fs u Gs) exists such that either r s + atJ < 0 or rs — atJ < 0 for some
i G Jt. That makes a difference from the tests of Balas [l] , [2] and Fleischmann [6],
a generalization of which Test BF appears to be. Still in other words: whenever F(fc)

or G(fc) are extended on some constraint, then it influences back the constraints al
ready examined. Such approach to a problem, when the constraints are considered
as a system of simultaneous conditions, makes it quite natural to examine all of them,
not only the "infeasible" ones. (An aip j e F(fc) n ^ + in (3.0) can cause r(/° < 0 even
for y^ ^ 0.)

Regarding the principles, Test BF makes use of (la) and (2). The reduction effect

of the latter in Algorithm BG is accomplished by formula (2.1) and the quantities vt.

R e m a r k 1. Test BF could be modified to include the following criterion: The set
G (f c + 1) will not be disjoint to F{k+1\ but

G (f c + 1) = G(fc) u U {j ENS - (F{k) u G(fc)) | r (f c) - au < 0} .

As soon as (F(fc+1> - F(fc)) n (G (f c + 1) - G(fc)) + 0, then DBL. Since this arrange
ment would probably cause a difficulty in programming, we do not consider it any
more.

344

R e m a r k 2. Suppose that the sets Gs and Fs are produced only by Test BF. If in
the s-th iteration Fs 4= 0 and IBL is to follow, then in the next iteration the test
need not be applied. Indeed, equations (3.0), (2.2), and Ns+1 = Ns - (Fs u Gs)
imply that r(.0) for the (s + l)-st iteration are identical with rs resulting from the 5-th
iteration, but there all possibilities to increase F, G were already exhausted.

Regarding the computational efficiency, the algorithm of Test BF should be worked
out more carefully. Therefore, we present

A practical version of Test BF. The sets F and G are now developed gradually along
with i. After some of them is augmented on the 2-th constraint (A S 0 then all
implied corrections of r.'s (t ^ i) and, as the case may be, further augmentation of
F or G are immediately realized. We do not proceed to the (i + l)-st row before we
have obtained the largest sets F, G by means of the 0-th through 1-th constraints.

The information about r.'s which were corrected is kept by quantities-indicators xL

(moreover, they can predetermine which rows are to be tested at all):

{ 1 ... i-th row will be examined by the test,
0 ... t-th row was examined by the test,

— 1 ... t-th row will be ignored by the test.

Such arrangement of the test algorithm guarantees the system of constraints to be
passed through at most once; only those rows are treated repeatedly in which rL are
corrected.

Another saving of computation is introduced by quantities cot. Their purpose is to
suppress the examination of such a row in which none of the inequalities rA + axj < 0
can hold or there is a little chance of it.

The test is again an iteration process, now depending on indices % = 0 and
0 :g i :g m (index s is usually omitted). In symbolics we shall pursue the same con
vention as in § 2: Each new value of an index will pass to all quantities involved in
the process; however, the test (below) usually deals with it in its "old" fashion x or i. —
We shall start by describing a current iteration (in a form suitable for immediate
coding).

BEGIN: Determine min {i | x[x) = - } = ** and distinguish the possibilities:

(a) No minimum exists — there are no units among #0*\ ..., %(
f
x).

(aoc) If i = m, then put Fs = F(x), Gs = G(y\ and rs = r(x) (i e Jt). If Fs = 0,
Ns u Gs = .yV, then go to DBL; else terminate the test,

(ap) If i < m, increase the index i by 1. If then %(
i
x) = — 1, go to BEGIN; else put

(3.1) r (*+1) = ys - YflijH e {(Ns ' GM) n &J) u (F^ n ^ +) > .

If r(*+1) < 0, go to DBL; else go to BEGIN.

(b) t* = X. If r(x) ^ co{x\ set 7 (x + 1) ^ 0 anc* r e t u r n t o BEGIN; otherwise examine

the 2-th row of the constraint matrix:

345

(boc) If for some j =-= JU G Ns — (F(*} u G(x)) the inequality r(/} 4- aXfl < 0 holds,
then put

p(x + l) _ j?(*) U {/i}

and explore the /i-th column (for i g i such that x(*} ^ 0): If it is a4/1 > 0, then

(3-2) r<*+1> = / f > - a i M , x r l } = l 5

and if r(*+1> < 0, go to DBL; else continue to examine the 2-th row.

(bP) If for some j = ^ e Ns - (F(x) u G(x)) the inequality r£° - aA/i < 0 holds,
then put

G(*+1) = G ^ u ^ }

and explore the /i-th column (for t S i such that x[x)= 0): If it is a,;i < 0, then

(3-3) ^+i) = r^ + ^, x{r+1)-u
and if r(*+1> < 0, go to DBL; else continue to examine the 2-th row.

After the 2-th row has been examined, set x{*+1) = 0 and go on back to BEGIN.

We start the iteration process with the value i = — 1 (for the 0-th row to be in
cluded in it). The initial values of ^ ' s may be chosen by one of the ways:

(1) x?
) = 1 for all i e Jt,

(2) z<o) = 1 if y- < 0; else * (0) = - 1 .

The parameters coi may be prepared, for instance:

^x) = max \au\ ,
jeJi

(1) CDУ

(2) co (">=-ZN (0 > °) '
n jejr

(3) co(x) = max {\au\ | j e Ns - (FM u G(*>)} •
j

R e m a r k 3. If it occurs Ns — (F(x) u G (x)) = 0 during the test, we continue limiting
ourselves to the evaluation of (3.1) — the remaining part of the test will be dummy.
The test terminates in this case either by DBL after (3.1), or DBL when Ns u Gs = JV,
or normally after performing all examinations (the combination Js u F5 is then
feasible).

The evaluation of quantities rt according to (3,1) is the most laborious part of
Test BF. Therefore it was suggested in [17] that r,- should be derived recursively, by
analogy to y f's. Clearly, this requires that Xi be chosen according to (1).

Also in [17] some numerical properties of Tets BF are demonstrated. The advan
tage of choosing Xi according to (l) is particularly interesting, as well as the computa
tion economy due to the recursive preparation of r t 's (up to 20%). Of course, a sub-

346

stantial improvement with regard to the results obtained elsewhere could not be
expected.

Test BF stands for and generalizes almost all the tests of Balas' additive algorithm
[1]. The quantities r. (Fleischmann's notation) and the sets F have the corresponding
meaning. The function of Balas' sets D is accomplished by our G. Level decreasing
after obtaining a feasible solution in case of UV a0j > 0 (jeNs) results from Nsu Gs =
= Jf and in case of UV, aoj ^ 0 (j e Ns) from r(

0
0) < 0. Only Balas' sets E have no

counterpart in Test BF; but this is no loss because they produce a test of small effect
since it generally eliminates only individual combinations (see about that [15]).

2. Test GZ. Let us have indices p e Jt, q e Jt for which

ys^0, apj^0(jeNs),

y s
q < o ,

and a set H = Ns n &~; let H * 07). If for all jeH

(3-4) aPjys
q < a

qJy
s
P >

then go to DBL.

Jus t i f i ca t ion . Let us assume that some combination Jf (t > s) in a branch on Js

yields yq ^ 0. Denoting J* — Js u D we can write

(3-5) ^^j<ya-y',<ys<o
JeD

where the first inequality expresses the possibility that between the 5-th and the t-th
iteration yq will be reduced in Algorithm BG1 (after scoring a feasible solution when
q = 0). Below, this circumstance is considered for the quantity yP, too. From (3.5)
it follows D n H =t= 0 so that we can deduce

yp<yp-l aPj <./P- I « P / j ^ ^) =
JeD

= yp--s l<>pjys
9<J e D n H> < y, - - ^ a ^ i j e D n H} < 0 .

y, A

The last but one inequality is a consequence of (3.4), and the last one follows from
(3.5) because of

JeD

Thus, our initial assumption leads to yP < 0.

7) We hope it causes no trouble if we do not specify how newly introduced symbols depend on
the indices s and a.

347

Test GZ is constructed according to the principle (1(3) as a mild generalization of
a test suggested by Glover and Zionts in [12]. Their original test corresponds to GZ
with p = 0.

Test GZ may be applied only to problems with both positive and negative elements
among atj. (This is always the case in Problems U l and UV if these are not trivial.)

For practical use of the test, of course, it is necessary to specify how to select the
indices p, q. Let M++ c M and M~ c Jt stand for the sets of all indices of the types
p and q, respectively. We introduce a suitable ordering on these sets and then take
their elements in turn for testing, up to a prescribed number of them. We recommend
an ordering based on monotonically increasing ratios y] j at where at > 0 is some
magnitude characteristic of the elements atj (j eJVs), e.g.

(1) at = |min atj\ + n ,
jeNs

(2) a.--Z| f lu | .
jeNs

Here n is a small positive number guaranteeing the characteristic to be non-zero.
(For i e M~ it suffices to consider only Ns n SPJ instead of the whole Ns.) Such an
ordering is motivated by the endeavour to test first the elements "more hopeful"
with respect to the criterion (3.4). We use the following heuristic consideration (de
monstrated for the characteristic (1)): In the ordering of M + + the elements p for
which ys

p is small and ap large come first; all the more every apj (j e Ns) is large.
Similarly for M~, the elements q for which \yq\ is large and

aq = |min aqj\ = |min aqj\ = — min aqj =
jeNs jeH jeH

= mnx(-aqj) = max \aqj\
jeH jeH

is small come first; all the more every \aqj\ (j e H) is small. The validity of this con
sideration was proved by numerical experiments [17].

Before Test GZ itself some preliminary probe can be inserted: Let us determine

0C: =

fmin {atj \j e Ns} for ieM +

n{au\jeNs n^~} for i e M' |m i
j

If some of the inequalities

(3.4*) oipy\ < aqy
s
p (p e M + + , qe M~)

holds, then the criterion (3.4) is satisfied, too. This preliminary probe can easily be
performed even for all pairs of M + + and M~ elements. In case it does not "succeed"
the a/s can well serve for preparing the characteristics at.

R e m a r k 4. If Test GZ is placed after Test BF, then necessarily H #= 0 since other
wise Test BF would lead to DBL, and it is possible to use Ns — Gs instead of Ns.

348

Another possibility for applying Test GZ is provided by surrogate constraints
[10], [2], [9], [11], i.e. auxiliary constraints

Z (£ w i « y) * j - * £ w i * i (wf £ 0, M S • *) ,
,/e./Y ieM ieM

which are necessary conditions for the genuine constraints (1.1) to be satisfied. Now,
we shall apply the test only to one pair of constraints in an iteration. These may be
either one genuine and one surrogate constraint or both of them surrogate. For
a "mixed"' pair it is of advantage to have p = 0 since it can always be achieved
a0j = 0 (j e Jf\ y% = 0 by a transformation of the problem and earlier execution
of Test BF. Moreover, the 0-th constraint has a considerable reduction effect for
Problem U l . Surrogate constraints can be obtained, for instance, according to
Geoffrion's method [9] or prepared as specially fitting for Test GZ . In the latter case,
an extremum requirement follows from the nature of the test:

(3-6) min

ľ auwi
ieM

+ a = 0 (jeNs),

ľУ>i
iєM

= У,

WІ Ł 0 (i e M).

This is an auxiliary linear programming problem. The last but one constraint re
presents a normalization condition. To obtain a 'type c£ surrogate constraint, we may
set y = — 1. If M n M~ =f= 0, the auxiliary problem is feasible. We construct a sur
rogate constraint using an optimal solution (w, a) if a > 0; in other cases DBL may
immediately follow since there exists a surrogate constraint infeasible in a branch on
Js (Yswiaij = 0 f° r J eNs, X w iy i < 0)- To obtain a 'type p' constraint, we may set

i i

y = +1. If M n M + =# 0 where M + = {i e M | y\ > 0}, the auxiliary problem is
feasible. An unbounded solution implies DBL (there exist w, a such that Yuwiau >

> 1 = Yyt{y\ f ° r J e N s) . A finite optimal solution is useful for us only if a = 0 (in
case of a > 0 some Yuwtaij must be negative).

3. Test P I . Again let us have indices pe J{, qe Jt for which

ys

p = 0, apj = 0(jeNs),

ys
q<o,

a set H = Ns n S?~, and let v stand for the number of its elements. If v = 0, then go
to DBL; else introduce an ordering {hu ..., hv} into H so that

(3.7) 0 =

 Q^ = - ^ = ... =

 a^-.
Qqhi aqh2

 Qqhv

349

Let us further denote II(T) = {hl9..., hx}. For T = 1, 2, . . . form successively sums

^'= Z«-i, s«= S %
jeH<*) JeH(T)

and test:

(a2) If S™ g ys
p, S<T) > y*, and H - H(T) = 0, then DBL.

(a2) If Sp
x) ^ yp, s

q
x) > y* a n d H - H(T) 4= 0, then new T.

(P) If 5<*>>yp, S (T>^j!s, then DBL.

In other possible cases terminate the test for the given p and q.

Jus t i f i c a t i on . Only case (p) is to be dealt with. Let us assume that a combination
J* = Js KJ D (t > s) exists in a branch on Js for which yq = 0. We are going to show
that this assumption implies yp < 0. Let us denote the sets

D~ = D n &~ , D+ = D - D~ ,

K = H(T) - (H (T)n D"),

L = D~ - (H(T) n D-).

Obviously,

(3.8) £ > ~ * 0 , D~<=H, LcH-H(T), KnL=0.

Now we consider three possibilities:

(1) K = 0, i.e. H(T) n D- = H(T). For the increment of ys
p we may write

I «w = I « , , = £ « , , <J ^ ^ (I!(t) n I>")> =
jeD jeD~

= 2> P , -0 e L u H(t>> > X aw- = S<? > ^

so that y^ ^ yp — X! aPi < 0* (T h e n r s t inequality respects a possible reduction of
J6D

the quantity yp after reaching a feasible solution in Algorithm BG1; similarly for yq

below.)
(2) K * 0, L # 0. It holds

jeH<T) j e D + JeD-

where the last inequality follows from our assumption about y* Hence we can obtain

(3-9) I f l « y ^ S « , j -
jeK jeL

For all pairs of x e K and A e L, owing to (3.8) and (3.7), it is

a q x flqA

350

so that we have

Z <*qX ' Z aPK = Z "Pi ' Z <*,
AeL

This, with regard to (3.9), gives

qx
AєL xєK AєL ҡєK

Z ^ A ^ Z <*/>* •
AeL xeK

The increment of ys

p yields, similarly to (1),

Z «P; > I «P; + Z«w-<!eIf(t)n/)->>=
jeD jeL

^ Z aPJ + ~aPi<J e # (T) n D-> = Z «-/ = S ^ > / p .

(3) K -# 0, L = 0. This possibility does not occur because it implies D~ c H(T)

(sharp!), which contradicts the assumption as it may be seen from

y, < y\ - Z-.7 <- /. - Z «,, < /, - Z ««• = yl - $? = o.
j eD j e D " j'efl<T)

Test PI rests on the principles (1). It appears to be a slight generalization of Peter

sen's test [20] which, in our terms, corresponds to p = 0.8) Judging from some prac

tical results, Petersen's test represents an effective reduction means even if not always

(compare [22]).

The execution of Test PI might proceed similarly to Test GZ: The indices p, q are

selected from the sets M + + , M~ ordered according to the same considerations as for

Test GZ. Notice that a uniform adjustment of coefficients of a surrogate constraint,

as it is supplied by the auxiliary problem (3.6), is a suitable compromise with respect

to "antagonism" between the ordering (3.7) and the criterion (p) of the test. Thus in

this situation, when we shall work only with a limited number of judiciously selected

pairs of constraints, it will not be an unrealistic task to perform the ordering (3.7)

currently in iterations (thereby saving a great deal of computer memory).

R e m a r k 5. It may be easily seen that the validity of criterion (p) for T = 1 implies

the validity of (3.4) in Test GZ.

R e m a r k 6. If Test PI is placed after Test BF, then always H # 0 and Ns - Gs

can be used instead of Ns.

Conclusion. The elementary means that are used in Balasian enumerative algo

rithms should not be overvalued. It would not be very reasonable if one wanted to

solve problems (of general type) with n > 50. The best way of making these methods

more powerful seems to be the Glover's and Geoffrion's idea of surrogate constraints

[11], [9]. This may be added to an enumerative algorithm as an acceleration facility.

) Except for a not very much effective part for creating sets of type F. This may be left out
because the test is intended to be used along with Test BF. The name 'PI , relates to [15].

351

References*)

Balas, E.: An additive algorithm for solving linear programs with zero-one variables.
Operations Research 13 (1965), No 4, 517-546.
Balas, E.: Discrete programming by the filter method. Operations Research 15 (1967), No 5,
915-957.
Bertier, P., Nghiem, P. T: Resolution de problernes en variables bivalentes (Algorithme de
Balas et procedure SEP). SEMA, Paris, Note D.S, No 33, 1965.
Brauer, K. M.: A note on the efficiency of Balas' algorithm. Operations Research 15 (1967),
No 6, 1169-1171.
Byrne, J. L., Proll, L. G.: Initialising Geoffrion's implicit enumeration algorithm for the
zero-one linear programming problem. The Computer Journal 12 (1969), No 4, 381 — 384.
Fleischmann, B.: Computational experience with the algorithm of Balas. Operations Re
search 15 (1967), No 1, 153-155.
Freeman, R. J.: Computational experience with a 'Balasian' integer programming algorithm.
Operations Research 14 (1966), No 5, 935-941.
Geoffrion, A. M.: Integer programming by implicit enumeration and Balas' method. SIAM
Review 9 (1967), No 2, 178-190.
Geoffrion, A. M.: An improved implicit enumeration approach for integer programming.
Operations Research 17 (1969), No 3, 437—454.
Glover, F: A multiphase-dual algorithm for the zero-one integer programming problem.
Operations Research 13 (1965), No 6, 879-919.
Glover, F.: Surrogate constraints. Operations Research 16 (1968), No 4, 741 — 749.
Glover, F., Zionts, S.: A note on the additive algorithm of Balas. Operations Research 13
(1965), No 4, 546-549.
Golomb, S. W., Baumert, L. D.: Backtrack programming. Journal ACM 12 (1965), No 4,
516-524.
Gue, R. L., Liggett, J. C, Cain, K. C: Analysis of algorithms for the zero-one programming
problem. Communications ACM 11 (1968), No 12, 837-844.
Hrouda, J.: Jeden popis Balasova aditivního algoritmu se zřetelem k programování. Ekono-
micko-matematický obzor 5 (1969), No 1, 45—59.
Hrouda, J.: Staging in Balas' algorithm. This issue, 354—369.
Hrouda, J: Tři příspěvky k bivalentnímu lineárnímu programování. Příloha k výzkumné
zprávě VZ-321/70, VÚTECHP, Praha 1970.
Kopóym, A. A., €>unKeAbmmeůn, IO. JO.: jHncKpeTiioe nporpaMMHpoBaroie. HayKa, Moc-
KBal969.
Lemke, C. E., Spielberg, K.: Direct search algorithms for zero-one and mixed-integer pro
gramming. Operations Research 15 (1967), No 5, 892—914.
Petersen, C. C: Computational experience with variants of the Balas algorithm applied to
the selection of R & D projects. Management Science 13 (1967), No 9, 736—750.
Walker, R. J.: An enumerative technique for a class of combinatorial problems. Proceedings
of Symposia in Applied Mathematics, vol. 10 (eds. R. Bellman, M. Hall), Providence 1960,
91-94.
Výzkumná zpráva VZ-124/68 (řešitel J. Hrouda). VÚTECHP, Praha 1968.
Výzkumná zpráva VZ-211/69 (řešitel J. Tesař). VÚTECHP, Praha 1969, 42-46.

*) A great deal of bibliogгaphy can be found in [2], [14], and [18].

352

S o u h r n

PŘÍSPĚVEK K BALASOVU ALGORITMU

JAROSLAV HROUDA

Čiánek sleduje dvojí cíl: (1) Podat alternativní popis algoritmu vhodný jako pro
pedeutika k článku [16], v němž provedeme jisté zobecnění Balasova algoritmu.
(2) Usoustavnit a zobecnit některé starší testy.

V § 1 stručně popisujeme enumerační proces typu ,backtracking6-včetně způsobu
jeho redukce a evidence.

V § 2 pod označením ,algoritmus BG' presentujeme modifikaci Balasova, resp.
Geoffrionova algoritmu (bez testů). K formálnímu zjednodušení přispívá pojetí úče
lové funkce jako 0-tého omezení s proměnnou pravou stranou. Rozlišení versí
algoritmu — pro získání všech optimálních řešení (BG1) a nejvýše jednoho optimál
ního řešení (BGV) — se pak docílí úpravou jediného místa algoritmu. Nepožaduje se
nezápornost koeficientů účelové funkce, neboť to nemusí být vždy výhodné. Gloverův
způsob evidence enumeračního procesuje poněkud upraven.

V § 3 uvádíme tři poměrně silné testy, jež vznikly zobecněním starších známých
testů: (1) Test BF (zobecněný Balas-Fleischmannův) pracuje důsledně s dvojicí množin
F, G zahrnujících prvky, jež musí být, resp. nesmí být přítomny k dosažení přípust
nosti v dané větvi. Množiny F, G jsou v našem případě konstruovány jako maximálně
početné svého druhu. (2) Test GZ (zobecněný Glover-Ziontsův) se již výlučně neváže
na účelovou funkci. Je k němu vypracován heuristický postup pro stanovení vhodné
ho pořadí, v němž omezení úlohy mají vstupovat do testu, a navrženo použití zástup
ných omezení. (3) Test PÍ (zobecněný Petersenův) aplikuje touž zobecňovací ideu
i heuristiku jako GZ.

Authoťs address: Jaroslav Hrouda, prom. mat., Výzkumný ústav technicko-ekonomický che
mického průmyslu, Štěpánská 15, Praha 2.

353

		webmaster@dml.cz
	2020-07-02T01:11:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

