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1. STATIC AND DEFORMATION QUANTITIES

In the three-dimensional Euclidean space provided with an orthogonal Cartesian
coordinate system let us consider a body whose motion is described by the position
x,(t) of its each particle at the time t:

) x(1) = xi(X,, 1) (o <1Z9).

X, are coordinates of the particle in a certain reference configuration of the body ,
which need not be a position assumed by the body during the motion. For a real
material, the function of motion (1) must satisfy the condition

det 6x,-('c) >

a

The tensor indices corresponding to the general position of the material point at
the time 7 will be denoted by i, j, k; those corresponding to the position of the point
at the time 7 = ¢ will be denoted by p, r, ¢ and those concerning the configuration
% by a, f, y.

Suppose that the functoin x(Xa, r) has a number of continuous derivatives which
is sufficient for further evaluations.

The k-th deformation gradient let be denoted by ,G(r). Its components are

*x(7)

Giau...a = Xiaq..a = k = ], 2, e
(Ginea(?) = Ximal®) = 000 .

ay ce ax

Further denote ,G(t) = x(7), ,G = ,G(1).
The material derivative will be denoted by a dot over the quantity, e.g. ,G(r) =

=d kG(T)/dT lXa=konst.'
In the theory of continuum of the grade n, deformation gradients of higher orders
take part in the work of internal and external forces.
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The rate of work Vy(t) of the external forces ,#() at the point x,(t) which act on the
surface of the body, related to the unit of surface area in the configuration x (ds = 1)
may be expressed in the following way:

@) B = % i (1670

In terms of components this equation assumes the form

VJ(T) = ot,(7) ).Ci(f) +:§krial...ak(7) kGial...mk(T) .

Similarly the rate of work V() of the external body forces , f(t) which act at the
point x;(7), related to the unit of mass in the configuration % may be expressed in the
form

o 0 = S (0., 670)

If the scalar Vy(t) in equation (2) has the dimension of the rate of work of forces
and if ,G(7) is an arbitrary deformation gradient of the k-th order, then equation (2)
defines the generalized external forces ,#(t). Generalized body forces , f(t) may be
defined analogously on the basis of equation (3).

2. KINETIC ENERGY

Consider a neighbourhood of the material point X, with the mass M. Divide this
neighbourhood into N particles with the masses m‘® and with the material coordinates
of the centre of mass X{". The motion of the body given by equat’on (1) determines
also the motion of the centres of mass of the individual particles x{P(7) = x,(X{P, 7).
Denoting the position of the centre of mass of the neighbourhood of the point X,
at the time 7 by x,(t), the specific kinetic energy k (M = 1) obviously fulfils

V (4) 2 k(r) = %,(7) x(7) +PN;m(” ) 3P() yP(7)

N
W) = 5P = 5l Tm® =1,

The relative velocity of the particles y{"(r) can be evaluated from

1

= ¥

L o (X0 XD y®
k=1 k! ~

[

YP =xP - x

a
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Equation (4) can be arranged by means of these relations into the form
1
2 k(’C) = ).Ci(’f) )‘CI(T) + kE lya[“.a,-:[h...ﬁkxi,aumaj(r) xi,fil..»/-’k(r) ’
=

ul 1
— Py _~ _ yP) (P) y(P) (P)
ya]...d/:ﬁlu-ﬂk - Zl?’l r Y11 Yaj Yﬂx Yﬁk .
P=1 jlk!

j=
derivative of the specific kinetic energy is given by the equation

1
Introducing a new quantity (@is, 5.(7) = Y Vay..apr..pe Xiar..a,(T), the material
1

© KO = £ 56) + 31000 Gy ).

3. THE FIRST LAW OF THERMODYNAMICS

Denote the kinetic energy of the body by K and its internal energy by E. By the
action of the outer medium the body receives the mechanical energy cauesd by external
forces and the non-mechanical one caused by the heat flux and the heat supplies.-
If the mechanical power is denoted by Wand the non-mechanical power by Q, then.
the First Law of Thrermodynamics for the time T = ¢ may be written in the form

(6) K+E=W+ 0,

v

K = fgk dv, where ¢ = o(X,, t) is the mass density,

E ==J'gé dv, where e is the specific internal energy,
v

W=fV1ds +fQV2dU,

Q= —~Iq.nds+fgrdu,

where ¢ = ¢(X,, 1) is the heat flux and r = r(X,, 7) the heat supply.
Substituting the above relations into equation (6), we obtain with regard to (5),

(2).(3)
(™) JQ(of- x +:;Zitr {,F, G} + r)dv +
+ ~[v(ot. x +:§itr [, .G} — q.n)ds = J‘Q(x X4 é)dv,
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where
F=of—w. k=11
F = f, k=1+1,..,n—1.

Let us consider a motion which differs from that studied above by an arbitrary
constant velocity a:

(1) = %(t) + a.

Let us suppose that the quantities of, of; 4,  F (k =1,2,...,n — 1), é, q, r are
invariant with respect to the velocity @. A comparison of equations (7) written re-
spectively for the motions ¥(r) and £*(c) together with the relation ;G = G* (i =
=1,2,..., n) yield the equation

(8) J.gofdv+J‘0tds=Jgk'dv.

If we apply this equation to the elementary coordinate tetrahedron with the normal
ng and if we denote by (T,, the force acting on an element of surface perpendicular
to the coordinate axis X, we obtain the boundary condition

oTpmp = otp, P =1,2,3

by means of which the equations of balance

(9) OTPﬂ,ﬂ + Q Ofp = Qipa p= 1, 2, 3
follow from (8).
Using the preceding relations we arrange equation (7) to the form

r n—

1
(10) J (tr {,T, ;G"} + o Y tr {,F, ,G"} — divq + or — 0é) dv =
R k=1

n—1
= —J‘ Yotr {it, .G} ds .
k=1

If we apply this equation to the elementary coordinate tetrahedron with the normal
ny and if we denote by , T,,, ., the force acting on an element of surface perpendicular
to the coordinate axis X 5, we obtain the boundary condition for the generalized forces
ktpll..‘llk
(11) ¢ Doty = ilpay.ans k=12,...n—1.

If the notation

(12) T

pay...axf,p -

div, T,
div,T + o F+,-T=010, k=1,2,..,n—-1
n—l-T:nHa
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is introduced, then with respect to equation (11) the First Law of Thermodynamics
assumes the form

(13) 0é + divg — or — Y tr {I1,,G"} = 0.
k=1

Let us now consider a motion of the body which differs from that studied above by
an arb’trary constant angular velocity @ supposing that the body assumes the
original position at the time 7 = ¢. Evidently it holds

G =6 +00.,G, k=1,2,..,n.

Let us further assume that the quant'ties T, F (k =0,1,2,...,n — 1), e, g, rare
invariant with respzct to the angular velocity o@. A comparison of equation (13) with
n

the same equation written for the motion changed by (@ yields Y tr {11, (4@ . ,G)"} =
=0 k=1

Since (@ is an arb’trary skew-symmetric tensor, the preceding equation implies the
conditions of the balance of momantum

n—1
(14) espr n—-lTpal...a,. xr,al...a,. + Z(lTpal...a;ﬂ,ﬂ + Y leal.A.al + l—-lTpal...a,) xr,alu.a, = 0 s
=1

e =3s—p(p—r)(r—5); s,pr=1273.

A3

4. THE SECOND LAW OF THERMODYNAMICS

D:note by 3(X,, ) the local tempzrature which is assumed always to be positive
and by n{X,, ) the spec fic entropy. D>fine the quantities I and y in the following way

d r 1
15 r=— dv — —dv+ | —q.nds,

szgydu.

Transforming the relations we obtain

r 1 1
16 y=#——-—+—divg——gq.,9,
(16) i weial
where g = 9,
The S:cond Law of Thermodynam’cs asserts: The inequality I' = 0 must hold for
any adm'ssible thermodynamic process.
The necessary and sufficient condition that this inequality hold is y = 0.
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By introducing the free energy ¥ = e — 9y and by means of the First Law of Ther-
modynamic (13), equation (16) may be arranged to the form

1 < ; ; 1
(17) 8 = =+ - Y {l,6"} 1§ — —q.,920.
Qk=1 03

5. CONTINUUM OF GRADE n

Let us suppose in accordance with the principle of determinism and local action [ 1]
that all physical quantities are determined by the deformation and temperature history
of the material and that the values of these quantities at a point are affected by the
deformation history only of a small neighbourhood of this point. The deformation
history of the neighbourhood of the point is determined by the history of changes of
the distances of the points x,(X,, ) from an arbitrary point of the neighbourhood
2{(Z, 7).

This distance Ax(r) may be approximately expressed by the following formula:

[ —_

Ax(t) = )

(Zz - x)..G(v),

Toge
=

!

Where Z, X are the radiusvectors of the points with coordinates Z,, X,.

On the basis of the presented hypotheses, there is a functional relation between the
physical quantities and the gradients ,G(t) up to k = n for the continuum of grade n.

Such a continuum is called monopolar since all deformation quantities are derived
from one function (1).

Now let us have a physical quantity 4(t); its history A%(s) is defined by the relation

A(s) = At —s), 1=1t—5.
Further let us define the difference history A4j(s) by the equation
Aj(s) = A'(s) — 4'(0).

Hence the knowledge of the history A'(s) is equivalent to the knowledge of the
quantities Ag(s) and 4(0).

Let us suppose that the vector of the heat flux ¢ is dependent on m (m = 1) gra-
dients of temperature. The principle of equipresence asserts that if one of the constitu-
tive equations depends on a certain physical quantity, then also the other constitutive
equations must depend on it, provided this is not in contradiction with the funda-
mental principles of the mechanics of continuum. Hence it is necessary to consider
the dependence of all other physical quantities on the temperature gradients up to
the order m.
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Consequently, the constitutive equations of a material of grade n may be expressed
in the following functional form:

(18) Y = p (LGIs), ... Gi(s), 34(5); 1G, .. WG %5 18, oo s )

s=0

0
n = h(,Gis), ..., ,Gis), 9%s); G, ..., .G, % 19, ..., ng) >
=0

s

M= 1 (,Gis), ..., ,Gi(s), 3(s); 1G,.....G. % 1g,.... n9),
s=0

J = ((Gis), ..., ,Gi(s). 94(s): 1G. ..., ,G. &5 19, ..., m9),
s=0

g = q (,Gis), ... .Gi(5), 94(s); 1G, ..., ,G, %; 19,.... n9),
0

where the components of g are (X, ), ...z

All physical quantities (dependent as well as independent) together form a thermo-
dynamic process. It will be called admissible if these quantities do not contradict the
equations of balance and the First Law of Thermodynamics.

Lemma 1. 4 unique thermodynamic process corresponds to any choice of the
functions x(X,, ©) and 3(X,, 7).

Proof. All the gradients considered ,G(t) and ;g may be derived from the given
functions, as well as the quantities ¥, 1, 11, ¢ from equations (18). By a suitable choice
of r, o f, (F it can be guaranteed that equations (13), (9), (14) hold.

Lemma 2. Let oft), ;a(t), A(1) (j = 1,2,..,m; k =1,2,...,n), I-c] < oo be ar-
bitrary functions, Y the position of an arbitrary point whose coordinates are Y,.
Then there is at least one admissible thermodynamic process such that (X, 1),

A(X, 1) and G(X,7) (j=1,2,....m; k=1,2,...,n) assume the values of7),
(1), 1 A(7) for X = Y.

Proof. Choose the functions x(t) and 9(r) so that
51
x(t) = y(1) + kz1 o A (X — Y,

|
Yr) = or) + 3 —ja(0) (X = )"
j=1j!
The assertion of Lemma 2 follows from Lemma 1.
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Let us now introduce a vector space .« whose elements are ordered sets of tensor
and scalar quantities A = (ya, ..., ,a, b).
The following algebraic operations are defined in the vector space:

oA = (a a, ..., o 4 0b),
Ay + A, =(1ay + (a5, .., 8y + 48y, by + b)),
n
Ay Ay =Y tr{ay, a3} + bib,.
k=1

The norm of an element is given by the formula [Al| = /(A . A).

In what follows deformation gradients ,G(t) are considered instead of the compo-
nents ,a, b is the absolute temperature 9(t). Denote the difference history of the ele-
ment A'(s) by

Ails) = (1Gils)s - uGi(s), 9i(s)) »
Aj0)=0.
If the quantities ,G*(s), 9'(s) are constant in time for v < ¢, then denote Aj(s) =

= 0*(s).

Lemma 3. Given X, A'(s) and the quantities ;9, ;4 (j = 1, 2,..., m) may be chosen
arbitrarily and there exists at least one admissible thermodynamic process which
corresponds to the chosen values.

Proof. The given vector A(s) implies the values ,G(z) (k = 1, 2, ..., n), () for
T < t. If the temperature gradients are expressed in the form.

A =g+ -4, j=12..m

then for every 7 the quantities ,G(t), 3(t), ;9(t) are determined. According to Lemma 2
there is always a thermodynamic process corresponding to these values.
Let us introduce the vector X € &/

QZ = (lﬂs EER) nna “—Qﬂ) 5

which makes it possible to write the constitutive equations (18) more briefly in the
form

(19) Y= ;O(AL(S); A g, nl)s

s=

T = i(A;(s); A, g, nd),

q =—_q0(A§(S); A’lg: LX) mg) .
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Since A(t) = (;G(x), ..., ,G(1), (7)), the Second Law of Thermodynamics (17)
may be expressed in the following form:

. . 1
(20) 9y=—l//+E.A—~9q.lggO.
Qv

6. MATERIAL WITH FADING MEMORY

Let us assume the validity of the following principle of the fading memory: Defor-
mations and temperature from the more distant past have less effect on the present
physical quantities than those which occurred in the recent past.

The characteristic quantity of the fading is the function h(s) (0 < s < o0), which
expresses the rate of the fading of memory. We assume that this function is continu-
ous, positive, monotone decreasing and that for an arbitrarily small § > 0 the con-
dition lim s'/2*% h(s) = 0 is satisfied.

Let us now define a Hilbert space #,, as a space of functions I'(s) such that I'(s) € &
for all s; the scalar product being defined as follows:

(T'(s). Ta(s))s = f “Lu(s) . Ta(s) H*(s) ds

0

The norm of I'(s) € #,, is given by the formula
@ 1/2
el = ([ el we )
0

Let us assume that all functionals considered have a neighbourhood of zero history
0*(s) in the definition domain @ of the functions Aj(s) for arbitrary values of the
parameters A, ;¢ and that they have in the domain continuous Frechet differentials
with respect to the norm of the space J,.

Hence

£ (ALs) + T(s); A, 19, mg) = fo(Aj(s); A, g, ng) +
=0 s=

3 EO(A;(S); A 1ge e ng | T(5) + 0TS

holds for any pair of functions Aj(s) and I'(s) such that A)(s) as well as Aj(s) + I'(s)
are in 9, 8f being a linear functional with respect to I'(s), continuous in all variables.

Further let us assume that f is differentiable with respect to the variables A, g, ...
...» mg for any function Aj(s) € 2. This means that there exist functionals d,f and 0, f
such that the following relations hold for any @ from a neighbourhood of the zero
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of & and for any v from a neighbourhood of the zero of ¥":

I3

(1)

(A” ); A+ Q, 19, ... .9) = [ (A)s): A, 19, ... 09) +
s=0

+ 6,\ f (Adks) As lgs R mg) * Q + 0(”9”) 2

s=0

f (A‘;,S)’ ‘\s lga LS jg + v, RS my) f (At(s) s Ig’ RS mg) +

s=0

+ 0,5 f(ALS); A8, ) v + O(Hvﬁ), j=12..,m.
s=0

Any one of the functionals p, ¢, @ (k = 1,2, ..., n) might be considered in the
preceding equations instead of the functional f.

7. MATERIAL DERIVATIVE OF THE FREE ENERGY

The restrictions to which the functionals in the preceding chapter were subjected
enabl> us to ex»ess the material derivative of the free energy in the form

. i © «© .
l‘b = :1—; p (Ad \), A, 19 - I?!g) = (S 14 (Ai{s)’ Aa lga ceoomd I A;(\S)) +
s=0 s=0

m

+ 95 p (AYS); A, g 09) A+ 20 p(A () A, 195 nf) - 4 -

s=0
L=t us suppose that there exists the derivative (d/ds) A'(s) and that it is continuous

in the space #,. Then

. d .
ALs) = — L As) — A
ds
As A is constant with respect to the variable s, we can write A= A+(s).

Defie th> functional Vp by the equation
(22) Vop (AYs) A ge o ng) A =3 p (AYs); A, g, .. g | AT(s)).
s=0 s=0

H:nce it holds for the material derivative of the free energy:

(23) Y= 1[04 p (AYS); A (g ng) = V p (AYS) A, g, )] A —
s=0

s=0

—dp (A;'\s); A, 19, md

s=0

%0+z@pMSﬁm&”m@ﬁw
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8. APPLICATIONS OF THE SECOND LAW OF THERMODYNAMICS

If the expression (23) for the free energy is substituted into equation (20), then we
obtain with regard to (19)

(24) S =[L(ALs); A 19, mg) — 4 P (AYS): A, 19, ... ng) +
s=0 =0

i) -
1

_ E) O(A;(s); A G omf) 19 — Zlajg po(A;(s); A g, nl) 4
o s= j= s=

s

0

SV p (AKS): Asigs o ng)] K+ 0 p (A.xs); A g g
=0

s=0 s

It is evident from this equation that the quantity 9y depends only on the history
A(s) and on the vectors ;g and ;§ (j = 1,2, ..., m). It follows from Lemma 3 that
for fixed X and ¢ these quantities may be chosen arbitrarily and there always exists
an adm’ssible thermodynamic process which is in accordance w:th them. The Szcond
Law of Thermodynamics may be transformed to the form

m
9')) =0 — zaj_,,_n-jé 2 03
j=1
where the quantity 6 does not depend on ;¢ (j = 1, 2, ..., m). In order that this in-
equality be fulfilled for any values of g, it is necessary that d,,p =0, = 1,2,..., m.
Hence the free energy does not depend on the g-adients ;g.
Consequently, equation (24) assumes the form

(25) 9 = [ L (ALs): A, 19, mg) — 04 p (AYS)sA) +
s=0 s=0

0 €0
4V p (AYS:A)] A + 5 p (A;{s); A
0 s=0

s=

d 1 ®
=2 A'(s)) — — q(AYs); A1 Gy oo ml) 18 -
ds 09 s=0

Lemma 4. Let A'(s) be any differentiable history of the particle X. Put A =
= AY0), AY's) = A'(s) — A™(s), (d[dt) A'(s), A = — (d|ds) A'(s) IS:O. Suppose that
AY's) and (d|ds) A'(s) are in #,. Then for any 5 > 0 there is a history A'(s) which
is near to A'(s) in the sense that A = A(0), AYs) = A'(s) — A*(s) and (d]ds) A¥(s)
have the following properties:

(26) A=A,
@) &) — g9l <o
d . d
28 . —A'(s) — — A(s}|| <4, /
() IOl
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while A = —(d[ds) A'(s) |,= is arbitrary, i.e.
(29) A=20
Q being an arbitrary element of the space <.
Proof. Let A’(s), d > 0 and Q be fixed. Choose A’(s) in the form
(30) R(5) = A) - (5@ - &)
f(s) being a smooth scalar function, f(0) = 0. Hence equation (26) is satisfied.
Denoting f' = (d|ds) f we obtain

d -

(31) Afs) = — %A'(s) +1(s) (@ — A).

ds

If we choose f'(0) = 1, then equation (29) is fulfilled. By means of relations (30)
and (31) we obtain

|Ais) = Alls)] = |2 - 4

ﬁywmww

~ d
— Al(s) — — AYs
s d() s d\‘)

i

;,= H.Q - AHZ J:f’(s)z h(s)? ds .

The function f(s) can be chosen so as to satisfy inequalities (27) and (28).

The assumption of continuity of all functionals d,p, Vp, &, 6p and g with respect
to Ajs) and of p also with respect to (d/ds) A'(s) in the sense of the h-norm enables
us with regard to Lemma 4 to rewrite equation (25) in the form

'9)" = [y(A;(S), Aa g - mg) - aA 14 (A;(S), A) +
s=0 s=0

Y (AYs) A)]. Q@+ 5 p <A;(s);A
s=0 s=0

A0 -

1 @
— — q(AYs); A, 19, ....9). 9 +0(|Q))=0.
0% s=o0
Since the vector Q € & is arbitrary and the error O(HQH) may be arbitrarily small,
the coefficient at Q in the preceding inequality must be zero, i.e.

0

(32) £ =0, p (A9 A) — ¥ p (ALs):A).

s= §=

This equation implies that the vector & = ((1/g) 1, ..., (1]0) JT, —n) as well as
the internal energy e is independent of the temperature gradients ;g (i=12.., m).
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9. CONSTITUTIVE EQUATIONS

It is evident from equations (21) and (22) that the expressions d,f and Vp are
vectors of the space /. D:note their components by 0,4f, ..., 0,6f, sf and

VlG'dp7 ceey V"thp, vstdp'
Hence the constitutive equations (32) may be specified

(33) 1,{H:(?,‘Gp—Vthdp, k=1,2,...,n
Y

—1 = 0yp — Vyup.

The right hand sides of the cquations may be expressed more briefly by the opera-
tors
Dgp = 0,6P = ViguP »

Dyp = 0yp — VP

Cons‘dering the fact that the left hand s'des of equations (33) are defined by rela-

tions (12), we can arrange the system of constitutive equations in the following form:
w1l =0Dgp,

w2l =¢D _op—div _T—o F,

eD,_.gp — div(eDgp) — ¢, F,

Il

I =0D,, 60— div g T — @1 F,

of = oD gp —div,T —¢,F,
n = —Dyp.

If we know the functional of the free energy, it is possible to find from these equa-
tions all the stress tensors and the entropy as functionals dependent on the deforma-
tion and tempzrature history of the material.
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Souhrn

TERMODYNAMICKA TEORIE MONOPOLARNIHO KONTINUA
n-TEHO RADU S PAMETI

KAREL BUCHACEK

Oproti teorii prostého materidlu se v ¢lanku pfedpoklada, ze hodnoty fysikalnich
veli¢in v bodé€ jsou ovlivnény deformacéni historii konecného okoli bodu. V piipadé
monopolarniho kontinua n-tého fadu fysikaIni veliCiny zaviseji funkcionalné kromé
teploty na n deformaénich gradientech, vypoétenych od jediné funkce posunu.
Na zékladé prvého zdkona termodynamiky jsou odvozeny rovnice rovnovahy a okra-
jové podminky pro vsech n tensort napéii. Zavedenim Hi'bertova prostoru, v kierém
v normé& prvku je vyjadfen Gtlum paméti, Ize z druhého zakona termodynamiky od-
vodit systém konstitutivnich rovnic. Tyto rovnice umoziuji vypocet entropie a viech
tensor napéti, je-li ddna funkcionalni zavislost svobodné energie na historii n de-
formacnich gradient a na historii teploty.
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