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SVAZEK 16 (1971) APLIKACE M A T E M A T I K Y ČІSLO 5 

THERMODYNAMICS O F MONOPOLAR CONTINUUM O F GRADE n 

KAREL BUCHACEK 

(Received October 23, 1970) 

1. STATIC AND DEFORMATION QUANTITIES 

In the three-dimensional Euclidean space provided with an orthogonal Cartesian 

coordinate system let us consider a body whose motion is described by the position 

X((T) of its each particle at the time T: 

(1) * | ( T ) - xt(Xa9 T) ( - C O < T ^ t) . 

Xa are coordinates of the particle in a certain reference configuration of the body x, 

which need not be a position assumed by the body during the motion. For a real 

material, the function of motion (1) must satisfy the condition 

det 
faifт) 
дX„ 

> 0. 

The tensor indices corresponding to the general position of the material point at 

the time T will be denoted by i,j, k; those corresponding to the position of the point 

at the time T = t will be denoted by p, r, q and those concerning the configuration 

x by a, /?. y. 

Suppose that the functoin x(Xa, T) has a number of continuous derivatives which 

is sufficient for further evaluations. 

The k-th deformation gradient let be denoted by UG(T). Its components are 

kGttl... J t ) = x,,,... J T ) = JkXi(XlY , k = l,2,.... 
OAai . . . OAak 

Further denote 0G(T) = X(T), kG = kG(t). 

The material derivative will be denoted by a dot over the quantity, e.g. & G(T) = 

= d fcG(T)/dT | X a = k o n s t . 

In the theory of continuum of the grade n, deformation gradients of higher orders 

take part in the work of internal and external forces. 
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The rate of work F-(T) of the external forces kt(x) at the point X^T) which act on the 

surface of the body, related to the unit of surface area in the configuration x (ds = 1) 

may be expressed in the following way: 

(2) V ^ ^ t r ^ t ) , ^ ) } . 
n - 1 

fc = 0 

In terms of components this equation assumes the form 

H - l 

ViW = ot.(r)*;(T) + I . ( h l . . J t ) , ( } b l J t ) . 
fc=l 

Similarly the rate of work V2(T) of the external body forces kf(i) which act at the 

point X,-(T), related to the unit of mass in the configuration x may be expressed in the 

form 

(3) V2(r) = I1f{,/W,fcG
r(T)}. 

ft = 0 

If the scalar VX(T) in equation (2) has the dimension of the rate of work of forces 

and if feG(T) is an arbitrary deformation gradient of the k-th order, then equation (2) 

defines the generalized external forces ^ ( T ) . Generalized body forces kf(t) may be 

defined analogously on the basis of equation (3). 

2. KINETIC ENERGY 

Consider a neighbourhood of the material point Xa with the mass M. Divide this 

neighbourhood into N particles with the masses m ( P ) and with the material coordinates 

of the centre of mass Xa

p\ The motion of the body given by equation (1) determines 

also the motion of the centres of mass of the individual particles X ( P ) (T) = xt(Xa

p\ T). 

Denoting the position of the centre of mass of the neighbourhood of the point Xa 

at the time T by X^T), the specific kinetic energy k (M = 1) obviously fulfils 

(4) 2 k(r) = Щ xf(т) + £ m<"> j><Дт) ў\"\r) , 
P = l 

У T O = *TO-*.•(*)> î><'>=-i . 
N 

p = l 

The relative velocity of the particles () (P )(T) can be evaluated from 

-VTO= É i ^ A - ^ r - c . 
t= i k\ 

Fa<
p> = X<p> - Xx, l ú l ú n - l . 
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Equation (4) can be arranged by means of these relations into the form 

i 

21C(T) = X£(T)X£(T) + £ yai...aj:Pi...Pkxifai_aj(x) xiiPi^k(x), 

N i 

« - V m(p) Y ( p ) Y(p> Y(p> Y(p> 
P=l j ! k! 

Introducing a new quantity k(pipl...pk(i:) = Z y*i...*rPi...pk *( «i...«XT)» t h e m a t e r i a l 

1=1 
derivative of the specific kinetic energy is given by the equation 

(5) £(*) = *.(*) *.(*) + I rt»w,...fa(T) *ötfl...fc(T) . 
fc=l 

3. THE FIRST LAW OF THERMODYNAMICS 

Denote the kinetic energy of the body by K and its internal energy by E. By the 
action of the outer medium the body receives the mechanical energy cauesd by external 
forces and the non-mechanical one caused by the heat flux and the heat supplies. 
If the mechanical power is denoted by Wand the non-mechanical power by Q, then, 
the Fiist Law of Thrermodynamics for the time T = t may be written in the form 

(6) K + E = W + Q , 

K = \ gk dv, where g = g(Xa, t) is the mass density, 

& = I ge dv, where e is the specific internal energy, 

W= J vtds + I 0V2dv, 

Q = — J q . n 0*5 + gr dv , 

where # = #(Xa, t) is the heat flux and r = r(Xa, T) the heat supply. 
Substituting the above relations into equation (6), we obtain with regard to (5), 

(2), (3) 

(7) f e ( 0 / . £ + " l tr {kF, kG
T] + r)dv + 

Jv *=1 

+ (of • x + £ tr {kt, kG
T} - q.n)ds = f e(jg . x + e) i i ; , 
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where 

kF = kf- k<p, k = 1, ..., I 

kF = J, fc = / + l , . . . , n - 1 . 

Let us consider a motion which differs from that studied above by an arbitrary 
constant velocity a: 

X * ( T ) = JC(T) + a . 

Let us suppose that the quantities 0t, 0 f kt, kF (k = 1, 2 , . . . , n — l), e, #, r are 
invariant with respect to the velocity a. A comparison of equations (7) written re­
spectively for the motions JC(T) and X*(T) together with the relation tG = tG* (i = 
= 1, 2, ..., n) yield the equation 

(8) Q 0fdv + 0tds = \ Qxdv . 
J V J S J V 

If we apply this equation to the elementary coordinate tetrahedron with the normal 
np and if we denote by 0Tpp- the force acting on an element of surface perpendicular 
to the coordinate axis Xp, we obtain the boundary condition 

oTPfinfi = o*P, P = 1,2, 3 

by means of which the equations of balance 

(9) 0TpPfli + QofP = Qxp, P=V2, 3 

follow from (8). 
Using the preceding relations we arrange equation (7) to the form 

(10) f (tr {0T tG
T} + QY, tr {kF, kG

T} - div q + Qr - ge) 
Jv * = 1 

"J:\r{kt,kG
T}ds. 

dv 

n-í 

It 
, k = l 

If we apply this equation to the elementary coordinate tetrahedron with the normal 
np and if we denote by kTpauJXkP the force acting on an element of surface perpendicular 
to the coordinate axis Xp, we obtain the boundary condition for the generalized forces 

k1• pai...ctu 

(11) kTpai...akfinp = ktpai_ak, k = 1, 2, ..., n - 1 . 

If the notation 

(12) fc
fI;a1...a^...ciivfcT, 

d i v , J + QkF+h_1T = JI, k = 1,2, . . . , n - 1 

n-\T = nJT , 
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is introduced, then with respect to equation (11) the First Law of Thermodynamics 
assumes the form 

n 

(13) Qe + div q - Or - £ tr {fc/J, fcG
T} = 0 . 

* = i 

Let us now consider a motion of the body which differs from that studied above by 
an arb:trary constant angular velocity 0d> supposing that the body assumes the 
original position at the time T = t. Evidently it holds 

fcG* = kG + 0(b . kG, k = 1, 2 , . . . , n . 

Let us further assume that the quant ties kT, kF (k = 0, 1, 2, ..., n — 1), e, q, r are 
invariant with respect to the angular velocity 0<b. A comparison of equation (13) with 

n 

the same equation written for the motion changed by 0d) yields ]T tr (fc/I, (0ct). fcG)r} = 
= 0. fc=1 

Since 0<b is an arb:trary skew-symmetric tensor, the preceding equation implies the 
conditions of the balance of momentum 

(14 ) espr\n-\Tpai...an
Xr,ax...an + L, {l*p<zí...xlp,p' + Q i? pa^.Mi + l- Tpa^^ai) Xr,ai...al " 0 , 

«— 1 

•K 
J = l 

i(s - p)(p - r) (r - s) ; s, p, r = 1, 2, 3 . 

4. THE SECOND LAW OF THERMODYNAMICS 

Denote by &{Xa, T) the local temperature which is assumed always to be positive 
and by n{Xa, T) the specific entropy. Define the quantities F and y in the following way 

d f C r C 1 
(15) F = — QY\ dv — \ Q - dv + \ ~ q , n ds , 

dtjv Jv 9 J s # 

F = Qy dv . 

Transforming the relations we obtain 

r 1 1 
(16) y = jj - - + —div q - —q. xg , ' 

& QS QSZ 

where xg = # a . 
The Second Law of Thermodynam'cs asserts: The inequality F ^ 0 must hold for 

any adm ssible thermodynamic process. 
The necessary and sufficient condition that this inequality hold is y = 0. 
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By introducing the free energy \j/ == e — &n and by means of the First Law of Ther­
modynamic (13), equation (16) may be arranged to the form 

(17) 9y = -^ + ^YJu-{kn,kG
T)-n^- - q . l 9 ^ 0 . 

Qk=l Q& 

5. CONTINUUM OF GRADE n 

Let us suppose in accordance with the principle of determinism and local action [ l ] 
that all physical quantities are determined by the deformation and temperature history 
of the material and that the values of these quantities at a point are affected by the 
deformation history only of a small neighbourhood of this point. The deformation 
history of the neighbourhood of the point is determined by the history of changes of 
the distances of the points xt(Xa, T) from an arbitrary point of the neighbourhood 
Zi(Za, T). 

This distance Ax(r) may be approximately expressed by the following formula: 

Ax(x) = V 1 (Z - Xf . kG(x), 
k=i k\ 

Where Z, Xare the radiusvectors of the points with coordinates Za, Xa. 
On the basis of the presented hypotheses, there is a functional relation between the 

physical quantities and the gradients kG(x) up to k = n for the continuum of grade n. 
Such a continuum is called monopolar since all deformation quantities are derived 

from one function (l). 
Now let us have a physical quantity A(r); its history A*(s) is defined by the relation 

Af(s) = A(t - s) , T = t - s . 

Further let us define the difference history A*d(s) by the equation 

A<(s) = A'(s) - A'(0) . 

Hence the knowledge of the history A*(s) is equivalent to the knowledge of the 
quantities A^(s) and Af(0). 

Let us suppose that the vector of the heat flux q is dependent on m (m ^ 1) gra­
dients of temperature. The principle of equipresence asserts that if one of the constitu­
tive equations depends on a certain physical quantity, then also the other constitutive 
equations must depend on it, provided this is not in contradiction with the funda­
mental principles of the mechanics of continuum. Hence it is necessary to consider 
the dependence of ail other physical quantities on the temperature gradients up to 
the order m. 
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Consequently, the constitutive equations of a material of grade n may be expressed 
in the following functional form: 

00 

(18) -A = p GG'G),. •., nG'd{s), S'd(s); ,G, ..., „G, 9; l9,..., mg) , 
s = 0 

OO 

n = h dG&s), ..., nG'(s), Sj(s); iG,..., nG, 3; lflf, ..., mg) , 
s = 0 

00 

,17 = .a ( tGXs),. . . , nG'd{s), 3j(s); ,G, ..., „G, 9; lSr, ..., mg) , 
s = 0 

„77 = ,«(t<7i(s), ..., „GJ(s), Sj(s); , 0 , . . . , „G, 9; ,</,..., mg) , 
s = 0 

00 

q = </ (i<^(s), • • •' »^(s)> »&); !G, • • -, „G, 9; ,9, ..., mff) , 
s = 0 

where the components of fc# are #(Ka, i),aiiiia)c. 
All physical quantities (dependent as well as independent) together form a thermo­

dynamic process. It will be called admissible if these quantities do not contradict the 
equations of balance and the First Law of Thermodynamics. 

Lemma 1. A unique thermodynamic process corresponds to any choice of the 
functions x(Xa, T) and 9(Xa, T). 

Proof. All the gradients considered UG(T) and $ may be derived from the given 
functions, as well as the quantities i/>, n, kTl, q from equations (18). By a suitable choice 
°f r> 0 / fe-^it can be guaranteed that equations (13), (9), (14) hold. 

Lemma 2. Let OL(T), fi(x), UA(T) (j = 1,2,... , m; k = 1, 2, ..., n), |T| < 00 be ar­
bitrary functions, Y the position of an arbitrary point whose coordinates are Ya. 
Then there is at least one admissible thermodynamic process such that &(X, T), 
jg(X, T) and kG(X, T) (j = 1, 2, ..., m; k = 1, 2, ..., n) assume the values a(r), 
ja(T),kA(T)forX= Y. 

Proof. Choose the functions X(T) and S(T) SO that 

*W=J<T)+ t-"-^(x)(Jr-F)*, 
/c = i k! 

^) = <?) + il-x*)(x-Yf. 

J=IJ\ 

The assertion of Lemma 2 follows from Lemma 1. 
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Let us now introduce a vector space s4 whose elements are ordered sets of tensor 
and scalar quantities A = (va, ..., na, b) . 

The following algebraic operations are defined in the vector space: 

aA = (a ta, ..., a na, ab) , 

Ai + A2 = ( ^ i + xa2, ..., nat + na2, bl + b2) , 
n 

Ai • A2 = £ tr {kau ka
T

2) + btb2 . 
&=i 

The norm of an element is given by the formula || A|| = ^/(A . A). 
In what follows deformation gradients /cG(T) are considered instead of the compo­

nents ka, b is the absolute temperature *9(T). Denote the difference history of the ele­
ment Af(s) by 

A&) =-(,<3(-). •••./?&). SJ(-)). 

K(0) = 0. 

If the quantities fcG
f(s), #f(s) are constant in time for T ^ t, then denote A^(s) = 

= 0+(s). 

Lemma 3. Given X, A*(s) and the quantities }g, $ (j = 1, 2 , . . . , m) may be chosen 
arbitrarily and there exists at least one admissible thermodynamic process which 
corresponds to the chosen values. 

Proof. The given vector A'(s) implies the values kG(T) (k = 1, 2, ..., n), S(T) for 
T ^ t. If the temperature gradients are expressed in the form. 

j9(t) = j9 + (T - t) jg , j = 1, 2, ..., m 

then for every T the quantities kG(T), 3(T), ^ ( T ) are determined. According to Lemma 2 
there is always a thermodynamic process corresponding to these values. 

Let us introduce the vector L e ^ 

OS = ( 1 / 7 , . . , n I I , -Or /) , 

which makes it possible to write the constitutive equations (18) more briefly in the 
form 

00 

(19) ^ = p(AXs); A,l9,...,mg), 
s = 0 

00 

£ = ^ ( A ' ( s ) ; A,ig,...,mg), 
s = 0 

00 

a = a(A^(s); A5 la,.. . , m a ) . 
5 = 0 
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Since A(x) = (I<5(T), . •., nG(t), $(T))> t n e Second Law of Thermodynamics (17) 
may be expressed in the following form: 

(20) Sy = -\]/ + E . A - — q . ^ = 0 . 

6. MATERIAL WITH FADING MEMORY 

Let us assume the validity of the following principle of the fading memory: Defor­
mations and temperature from the more distant past have less effect on the present 
physical quantities than those which occurred in the recent past. 

The characteristic quantity of the fading is the function h(s) (0 ^ s < oo), which 
expresses the rate of the fading of memory. We assume that this function is continu­
ous, positive, monotone decreasing and that for an arbitrarily small 3 > 0 the con­
dition lim s1/2+3 h(s) = 0 is satisfied. 

s-»oo 

Let us now define a Hilbert space <ff h as a space of functions T(s) such that T(s) e stf 
for all s; the scalar product being defined as follows: 

(r\(s), r2(s))fc = r r \ ( s ) . r2(s) h2(s) ds. 

The norm of T(s) e jVh is given by the formula 

|r(s)||, = (rflr(s)||
2h2(s)dsY M2 

Let us assume that all functionals considered have a neighbourhood of zero history 
0+(s) in the definition domain 3f of the functions Aj(s) for arbitrary values of the 
parameters A, $ and that they have in the domain continuous Frechet differentials 
with respect to the norm of the space #£h. 

Hence 
OO 00 

/ (Afc) + r ( s ) ; A, tg,..., mg) = / {A'd{s); A, i9,..., mg) + 
s = 0 s=0 

00 

+ 5 / (A'd(s); A, l9, ...,mg\ T(s)) + 0(|r(S) | | ,) 
s = 0 

holds for any pair of functions Aj(s) and F(s) such that A^(s) as well as Aj(s) + T(s) 
are in 3, Sf being a linear functional with respect to V(s), continuous in all variables. 

Further let us assume that f is differentiable with respect to the variables A, xg, ... 
..., mg for any function A^(s) e Q). This means that there exist functionals O^fand dgf 
such that the following relations hold for any Q from a neighbourhood of the zero 
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of stf and for any v from a neighbourhood of the zero of 'V: 

00 00 

(21) / (A'd(s); A + n , ,f, ..., mg) = / (A'd(s); A,xg,..., mg) + 
s = 0 s = 0 

00 

+ SAf (A'd(s); A, ,f,..., ,„f). n + o( | |n | | ) , 
s = 0 

00 00 

/ (A/s); A, xg9 ..., jg + » , . . , wg) - / (A^(s); A, ^ , . . . , mg) + 
s = 0 s = 0 

00 

+ d f (A'd(s); A, xg, ..., mg) . v + 0(|t>j|), j = 1 , 2 , . . . , m . 
s = 0 

Any one of the functionals p, q, kn (k = V 2, ..., n) might be considered in the 
preceding equations instead of the functional / . 

7. MATERIAL DERIVATIVE OF THE FREE ENERGY 

The restrictions to which the functionals in the preceding chapter were subjected 
enable us to express the material derivative of the free energy in the form 

J oo oo 

i[/ = ~ p (A/s); A, tg9..., mg) = 5 p (A/s); A, xg9 ..., mO | A/s)) + 
at s = 0 s = 0 

oo m oo 

+ ^A P {A/s); A, ^ , ..., mg). A + £ 5^ p (A^(s); A, ^ , ..., „ j ) . ;# . 
s - 0 J = l s = 0 

Let us suppose that there exists the derivative (OJ/Js) Af(s) and that it is continuous 
in the space 2/f]v Then 

A/s) = - - A'(s) - A . 
O\s 

As A is constant with respect to the variable s, we can write A = A+(s). 

Define the functional Vp by the equation 

00 00 

(22) V p (Aft); A, ,f, ..., mg). A = 5 p (A'd(s); A, i9, ..., ,„f | A+(s)) . 
s = 0 s = 0 

Hmce it holds for the material derivative of the free energy: 

00 00 

(23) ^ = [dA p (A'/s); A, ,f,..., mg) - V p (Ad(s); A, l9,..., mg)] . A -

ô p [A/s); A, {g9 ...9mg 
s = 0 

m oo 

- A'(s) \ + £ djg p (A'd(s); A, ,f,..., mg). .gk. 
as J j=i s=o 
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8. APPLICATIONS OF THE SECOND LAW OF THERMODYNAMICS 

If the expression (23) for the free energy is substituted into equation (20), then we 
obtain with regard to (19) 

00 00 

(24) 9y = [&(A'/s); A, l9, ...,mg)-8Ap (A'd(s); A, l9, ..., mg) + 
s=0 s=0 

00 00 / 1 

+ V p (A'/s); A, l9, ..., mg)-\ . A + S p I A'/s); A, l9, ...,mg -A'(s] 
s=o s=o\ ds 
i oo m oo 

-9 (Ad(S); A ' 10' • • •> rn9) • 10 ~ Z djg P (Ad(5)^ A> 10> • • -- mO) • j9 • 
Qifs = 0 j=l s = 0 

It is evident from this equation that the quantity #y depends only on the history 
Af(s) and on the vectors jg and $ (j = 1, 2, ..„, m). It follows from Lemma 3 that 
for fixed X and t these quantities may be chosen arbitrarily and there always exists 
an adm'ssible thermodynamic process which is in accordance w'th them. The Second 
Law of Thermodynamics may be transformed to the form 

m 

^ = 0 - I V - 1 0 ^ o > 
1=1 

where the quantity 0 does not depend on jg (j = 1, 2, ..., m). In order that this in­
equality be fulfilled for any values of 7<j, it is necessary that d gp = 0, j = 1,2,..., m. 
Hence the free energy does not depend on the gradients j-g. 

Consequently, equation (24) assumes the form 

(25) 9 ľ = [ SЃ (A</s); A, l9, ..., ,„g) - Õл p (A/s); A) + 
s=0 s = 0 

+ V p ( л У s ) ; Л ) ] . Л + ô p Л^s) ;Л 
d \ 1 °° 
T A Ѓ ( 5 ) ) ~ T ^ ( A ^ 5 ) ; A ' !0' * ' m9) • d dS J QУЎ s = 0 

Lemma 4. Let A\s) he any differentiable history of the particle X. Put A = 

= Af(0), A'/s) = A'(s) - A+(s), (d\dt)A\s\ A = - (d\ds) A\s) | s = 0 . Suppose that 

A*/s) and (d\ds) A\s) are in Jf\. Then for any 3 > 0 there is a history A\s) which 

is near to A\s) in the sense that A = Af(0), A^s) = Af(s) — A+(s) and (d\ds) A\s) 

have the following properties: 

(26) 

(27) 

(28) 

Л = Л , 

Â'/s) - A'/s)\\ћ < S , 

- Â'(s) - - Л'(s) 
ds ds 

< S. 
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while A = — (d/ds) Af(s) | s = 0 is arbitrary, i.e. 

(29) A = Q 

H being an arbitrary element of the space stf. 

Proof. Let K\s), O* > 0 and H be fixed. Choose Ar(s) in the form 

(30) A'(s) = A'(s) - f(s) (SI - A) 

f(s) being a smooth scalar function, f(0) = 0. Hence equation (26) is satisfied. 

Denoting f — (d/Js)f we obtain 

(31) - l A ' ( s ) = - í - A<(s)+f(s)(П-A). 
ds ds 

If we choose f'(0) = 1, then equation (29) is fulfilled. By means of relations (30) 

and (31) we obtain 

||A<0) - A'd(s)l = | | n - A f I ~f(sf h(sf ds 

as as 

i 
ŕoo 

Цíì - A | 2 f'(s)2 h(s)2 ds . 

The function f(s) can be chosen so as to satisfy inequalities (27) and (28). 
The assumption of continuity of all functionals dAp, Vp, £f, bp and q with respect 

to Aj(s) and of dp also with respect to (djds) Af(s) in the sense of the h-norm enables 
us with regard to Lemma 4 to rewrite equation (25) in the form 

00 00 

9y = [6e(A'd(s); A, xg,..., „,g) - 8A p (A'd(s); A) + 
s = 0 s = 0 

00 00 / 

+ V p (A'/s); A)] . í í + 5 p l Ad(s); A 
s = 0 s = 0 \ ds 

A'(s) -

- — q (A'ls); A, xg,..., mg). l9 + 0 ( | 0||) ^ 0 . 
Oi/s = 0 

Since the vector Q G jrf is arbitrary and the error 0(||ll|j) may be arbitrarily small, 
the coefficient at Q in the preceding inequality must be zero, i.e. 

(32) E = ÔA p (Ađ(s); A) - V p (Ađ(s); A) . 
s = 0 

This equation implies that the vector L = ((l/O) i l l, ..., (1/O) n i l , — tj) as well as 
the internal energy e is independent of the temperature gradients fl (j = 1, 2, ..., m). 
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9. CONSTITUTIVE EQUATIONS 

It is evident from equations (21) and (22) that the expressions dAf and Vp are 

vectors of the space srf. Denote their components by dlGf, ..., dnGf, d$f and 

VlG<aP"~> VnG^dP^^dP' 

Hence the constitutive equations (32) may be specified 

(33) - kn = 3kGp - VkGtdP , fc= l , 2 , . . . , n 
Q 

~rj = Gap - V$dtp . 

The right hand sides of the equations may be expressed more briefly by the opera­

tors 

D

kGP = duGP - V,6VP > 

D$P = d&p - VS dtP . 

Cons :dering the fact that the left hand sides of equations (33) are defined by rela­

tions (12), we can arrange the system of constitutive equations in the following form: 

n_lT = QDnGp , 

n-2T = QD

n_lGP - d i v n _ 1 T - Q n_lF, 

: = QDn-xGP - d'W(QD

nGP) - Q n-lF> 

kT = QDk+lGp - d i v f c + 1 J - Qk+lF, 

0T = QDxGp - div tT - Q XF, 

rj = -D^p. 

If we know the functional of the free energy, it is possible to find from these equa­

tions all the stress tensors and the entropy as functional dependent on the deforma­

tion and temperature history of the material. 
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S o u h r n 

TERMODYNAMICKÁ TEORIE MONOPOLÁRNÍHO KONTINUA 
n-TÉHO ŘÁDU S PAMĚTÍ 

KAREL BUCHÁČEK 

Oproti teorii prostého materiálu se v článku, předpokládá, že hodnoty fysikálních 
veličin v bodě jsou ovlivněny deformační histoiií konečného okolí bodu. V případě 
monopolárního kontinua n-tého řádu fysikální veličiny závisejí funkcionálně kromě 
teploty na n deformačních gradientech, vypočtených od jediné funkce posunu. 
Na základě prvého zákona termodynamiky jsou odvozeny rovnice rovnováhy a okra­
jové podmínky pro všech n tensorů napětí. Zavedením HFbertova prostoru, v kterém 
v normě prvku je vyjádřen útlum paměti, lze z druhého zákona termodynamiky od­
vodit systém konstitutivních rovnic. Tyto rovnice umožňují výpočet entropie a všech 
tensorů napětí, je-li dána funkcionální závislost svobodné energie na historii n de­
formačních gradientů a na historii teploty. 
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