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SVAZEK 17 (1972) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

ROOTS OF THE CIRCULAR CYLINDRICAL SHELL 
CHARACTERISTIC EQUATION 

MILAN GERYK 

(Received April 14, 1971) 

For the solution of the closed isotropic elastic circular cylindrical shell by means 
of linear bending theory in cylindrical coordinates, the decomposition into the 
simple Fourier series with respect to the circumferential angle can be used for the 
separation of independent variables. In this case, for each member of the series 
it is necessary to find the general solution of an ordinary homogeneous linear differen
tial equation with constant coefficients 

r d 8 d 6 d 4 d 2 1 
( 1 ) L a 8 d ^ + fl6d^ + fl4d^ + a 2 d ^ + a o J ^ = 0 

where Wn denotes the source-function and at (i = 8, 6, 4, 2, 0) are real coefficients 
dependent on the parameters n, H9v; n is the ordinal number of the member of the 
series, v is Poisson's ratio of the shell material, 5 is the shell thickness, r is the middle 
surface radius and H is the dimensionless quantity 

(2) ff = 
12г2 

From the point of view of technical problems, the following restrictions may be 
introduced: 

(3) H e (0; 0-001), v e <0; 0-4> , n ^ 2 

(The cases n = 0 and 1 are usually solved by simpler methods.) 

The above mentioned bending theory is known in some versions differing by their 
authors' approach to the geometry of a shell deformation. Each of them yields other 
coefficients at. With the exception of some of them (e.g. Lurje, Galerkin) coefficients 
ai may be expressed as polynomials in n, H, v. The representatives of three important 
streams are introduced in Tab. I., for a more detailed account see [1] and [2]. The 
Wlasow's version coincides with that by Fliigge, but subsequently it neglects some 
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little members. The Goldenweiser's version which is presented here without neglecting 
little members, is different from that by Wlasow because of the different opinion 
of the change of circumferential curvature. In this point it coincides with Love-
Timoshenko's version. The simplest Donnell's version which is also mentioned 
here is known as the technical theory. 

The characteristic equation to (1) is 

(4) a8m
8 + a6m

6 + a4m
4 + a2m

2 + a0 = 0 . 

Wlasow [3] proves that in consequence of the law of conservation of energy the 

Tab. I. Coefficients of Equation (4) divided by H, according to the most important authors. 

ai 
H 

Flügge Goldenweiser Donnell 

H 
1 + 2 H - ЗH2 1 + 4H 1 

н 
- 4n2 1 + — 

L 8 

9H2 

+ — (i - ^ 

+ 2v(l + ЗH) 

(11 - зv) + 

+ 

- 4n2[l + H] - 4 n 2 

H 
4. Г н н2 Л 

6 „ * | l + ү ( 2 - v ) - - v > J -

- 6и2 1 + — (2 - v + v2) + 

6n 4 1 + ~ (1 - v2) 

- 2n2(4 - v2) + 

! ! Å.(\ ЛÌLЛ 

- 4 l - " 2 

6n4 + 
H 

H 

1 - v 2 

1 1 â - Зv2 + ЗH 
Г i 4 1 1 V J 

H 

4 l - " 2 

6n4 + 
H 

H 

1 я 1 4 
- Зv2 + ЗH 

4 l - " 2 

6n4 + 
H 

н 

- 4n 2(n 2 - l ) 2 -

- (n6/2) H(7 - Зv) -

- \n6H2(l - v) -

- 2n2v(n2 - 1) + n4H(7 - 5v) + 

+ зn4H2(i - o - |n 2 H(1 - v) -

- f n2H2(1 - v) 

-4л 2 (и 2 - D2 - 4 n 6 

ao 
H 

n4(n2 - 1)2 (1 + H) n\n2 - l ) 2 n8 
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equation (4) in region (3) should have only complex roots. Each of the authors — 
Wlasow in [3], Fliigge in [5] and Goldenweiser in [4]-affirms about his own equation 
that it has only complex roots in region (3). This property is obvious for Donnell's 
equation because its left hand side is the sum of a positive number and the fourth 
power of a binomial. On the other hand, from this point of view Wlasow criticises 
Goldenweiser's version. If we neglect H compared with 1 in Goldenweiser's equa
tion (4), then for certain n's greater than n0, 

, - / / 1 - v2 - 3H 
(5) n0 = 2H(1 - v2) 

it has four real roots, as it is proved in [1]. However, the complete (i.e. without 
neglecting H compared with 1) Goldenweiser's equation has not yet been analysed. 

Theorem. Characteristic equation (4) with Goldenweiser's coefficients from Tab. I. 
has only complex roots in region (3). They are of the following form: 

(6) ocn + ifin, a„ - ipn , -a M + ifiH, - a „ - ipn 

yn + iSn, y„ - iSn, -yn + iSn, -yn - iSn 

where a„, /?n, yn, dn are real positive numbers. 

Proof . By the transformation 

(7) z = m2 

the characteristic equation becomes an algebraic one of the fourth degree for z. 
As in the whole region (3) the successive coefficients of the equation have always 
the opposite signs, the equation for z cannot have negative roots and that is why 
the equation (4) cannot have pure imaginary roots. Zero cannot be a root, which 
follows from the form of a0. Therefore a real root of the equation for z yields a real 
root of the equation (4). It is sufficient to analyse the equation for z. From each 
complex root of the equation for z we obtain two roots of the equation (4) differing 
by the sign only. Hence the form (6) follows. 

We shall use the results from [6], p. 60: the character of the roots of an equation 
of the fourth degree is above all decided by the discriminant of its resolvent; if it is 
positive, the equation has different roots, either all real or all complex; if the discrimi
nant is equal to zero, the equation has multiple roots. The region (3) is simply con
nected. Although the quantity n is discrete, we extend it to the continuous quantity 
in the proof. Then the equation (4) has continuous coefficients at with respect to n9 

H, v in the region (3). If we prove the discriminant to be positive in the whole region 
(3), then multiple roots cannot exist and hence the roots will be either all real or all 
complex in the whole region (3): under the above mentioned suppositions it is im
possible for equation (4) to have only real roots in a subregion of region (3) and only 
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complex roots in another subregion because in this case the multiple roots should 
have to exist on the boundary between the subregions. However, the roots of the 
resolvent depend continuously on the coefficients of the 8-th degree equation in re
gion (3) (see e.g. trigonometric solution), and hence at least two of its roots should 
be equal to zero on the above mentioned boundary between subregions. Hence we 
obtain the existence of multiple roots of the 4-th degree equation, which is in contra
diction to the statement that the discriminant is positive in the whole region (3). 

The positive sign of the discriminant in the whole region (3) and the existence 
of only complex roots at one point of the region (3) form a sufficient condition 
for equation (4) to have only complex roots in the whole region (3). By a direct 
calculation we obtain complex roots e.g. for v = 0-3, n = 2, H = 1/1200. 

For the reduced equation of the fourth degree 

n4 + Cn2 + Dn + E = 0 

the discriminant is introduced in [6] in the form 

(8) A = 16C4K - 4C3D2 - 128C2E2 + 144CD2K + 256E3 - 27D4 . 

We shall write the equation for z in a more convenient form 

(9) b4z
4 - 4b3z3 + 6b2z

2 - 4bxz + b0 = 0 , 

where 

(10) b4 = as , - 4 b 3 = a6 , 6b2 = a4 , -4bl = a2 , b0 = a0 . 

Equation (9) can be transformed to the reduced form by means of the substitution 

b4Z - b3 = n . 

Calculating C, D, E by means of bt and substituting into (8) we get the discriminant 
of equation (9), which is equal to the following expression: 

(8a) A = 64b^[b3b3 - 3b2(4b3b!b2 + 6b2
2b

2
0 - 18b2b2b0 + 9b?) + 

+ 3b4(18b2b2b2 - 2b2b2b0 - 60b3b2b!b0 + 36b3b2b3 + 

+ 27b4b0 - 18b3b2) - 27b4b2 + b^lOSbAbo - 64b?) + 

+ b^(36b2b? - 54b3b0)] . 

The sum of numerical coefficients on the right hand side of (8a) is zero which is a con
sequence of multiple roots in the case of the equality of coefficients bt. The change 
of both the signs of bl9 b3 simultaneously maintains this property. 

The conclusion of the proof consists in substituting bt into (8a) from Tab. I. by 
means of (10) and in proving that the form obtained is always positive in region (3). 
We shall substitute only coefficients of the complete Goldenweiser's equation. By 
means of 

G = Hn2 , Z =Hv2 , [i = 1 - v2 
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we can write the result in the following form 

(8b) A = 64(1 + 4Hf G2n2(n2 - l)2 . 

. { £ n2~2JGJ(G - l)8-2Jfj + 54v4Gn~2[(G - l)2 + 4Gn"2]2} , 
j=0 

where j,- are polynomials in n~2,Z, v2, , : 

, 4 - 4Z,3 
(8c) j 0 

16н4 

л _= д з _ /JL^ + ,4 _ 4.5Z(/ť2 + 6v2) _ 

4 . 5 Z _ 2 _ + _ 1 2 v _ _ 4 z , 3 + 6-75v_i 

/_ = 12,з _ 8 Ь 4 _ I V ± 488v4

 + 6____27v_ _ + + 

n2 n4 

+ 54Z / 1 І±^ 2 -_24Z^±^ 2 , 

/ 3 _ 48,3 _ 6 4 g v 4 _ 48, 3 + 1296v4

 + 16,4 + 216v4 _ 
n2 n4 

- 216Z(,2 - 2v2) + 2 1 6 Z Í ± ^ - 16Z-^3 + 2 7 v 2 . 

j 4 = 64,3 - 1296v4 - 6 4 " 3 + 8 6 4 v 4 + - ^ + 2 7 / 

- 288Z(,2 - 6v2) + 288Z í- — - 64Z 
n4 

The arrangement of this expression was chosen like this so that the polynomials (8c) 
in region (3) might be positive for n > 4, which can be easily proved. There is no 
doubt as to n e (2; 4), but to make a mathematical proof it would be necessary 
to return from G back to H and to arrange the expression according to the powers 
ofH 

(8d) A = 4(1 - v2)4 H2n\n2 - l)2 |"l + 16Hn2 (-J!~_ - - ] + - . . ] . 

Here the members with higher powers of H are neglected with respect to little n's. 
For v approaching the value 0-5 which is out of the region (3) the expression (8b) 
is not always positive (plastic state). 
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The expression (8b) found by a computer practically never serves for substituting 
because of a big span of powers. 

The highest power of n in expression (8b) is 6 if G 4= 1 but it is 0 if G = 1. Hence 
it follows that the algorithm for the calculation of the discriminant must be carefully 
chosen with respect to numerical stability in the case of a limited number of decimal 
places of mantissa in the subregion 

(3a) G = 1 , i.e. n = 3-464 -
v S 

which we call the first instability region. In region (3) it is always n ^ 32. Lower 
powers of n can be neglected in comparison with higher ones for sufficiently big n's, 
which are also in subregion (3a). Goldenweiser's characteristic equation approaches 
that of Donnell, the complex roots of which have relatively big real parts a„, yn in 
comparison with the imaginary parts /?„, Sn in this subregion; this property is more 
and more apparent with growing n: 

m = ± » ± i y [ - ( l - v^H] - ± „ ± i«/[-(l - v2)] . ^3-464 rX 

which we obtain solving Donnell's equation and neglecting small members. 

If we return from G back to H then the highest power of n is 24 when H + 0 
but only 8 when H —> 0 as it can be seen from (8b) and (8d). Hence another require
ment concerning the calculation of discriminant arises, viz., the numerical stability 
in the subregion which we call the second instability region: 

(3b) H = 0 , n little. 

In this case the characteristic equation approaches the form (where Hn4 was neglected 
in comparison with 1) 

(11) [m4 + (1 - v2)/H] [m4 + a0/(l - v2)] = 0 

in which the modul of the so called "big" root an + ifin (derived from the first 
bracket) is much bigger than the modul of the so called "little" root yn + idn, see 
[4], In the region (3b) it holds 

(12) VK2 + Pi) > M + s2
n), 

ccn - p n ^ , yn - dn 4 
n ' " n c 

«» + Pn • /« + 5n 

The author of this paper carried out an analogous proof for Fliigge's equation, 
too. The result analogous to (8b) cannot be presented here since it would need too 
much space. 
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Although another expression for equation (4) is obtained by other authors, the 
properties of roots are the same. 

We shall introduce the relations between the roots and the coefficients of equation 
(4): 

(13) a„2 - ßl + y\ - Ы = - ^-
2a 

(< + ßl)2 + (ľ„2 + àiУ + 4(a„2 - ßl) (yl - ôl) = ^ 
a8 

(«2 - ßl) (ľ2 + ІЇУ + (ľ2 - Ы) (a„2 + ßiУ =-^-
2a 8 

(«î + ßly.(yl + *îУ = ~ 
aя 

CALCULATION OF ROOTS 

Mechanical application of usual algorithms does not yield any sufficiently accurate 
results in the whole region (3), which is caused by the properties of the roots described 
in the preceding section. Owing to unsuitable calculating methods we sometimes 
even get real roots from equation (4) by any author. For further analysis of the 
shell the roots should be known with the highest possible accuracy because especially 
in contact-problems the decisive role is played by the shear forces which are obtained 
by means of multiple differentiation of the source-function. 

Now let us introduce three algorithms for the solution of equation (4). The algo
rithm based on the classical method of solving the algebraic equation of the 4-th 
degree by means of its cubic resolvent is applicable in the largest extent from region 
(3). Equation (4) is first reduced so that the module of the big roots should be near 
to 1. Algorithm is made for complex roots only. If it is used for another problem, 
then in the case of other roots than complex ones the return from the procedure 
comes through label L due to the negative sign of the discriminant of the resolvent 
(4 roots real) or due to the positive sign of all the roots of the resolvent (8 roots 
real). Solution of these cases see e.g. [1]. After finding the big roots, numbers yn9 dn 

are found in a less usual way from coefficients a0, a2 according to (13) because of the 
above mentioned reason. The procedure is written in ALGOL 60 and it is described 
in Appendix. It uses arrays A\\ : 5], K[l : 8] and the shell parameter 

(14) 5 = i'2 = ^ V [ 3 ( l - v 2 ) ] = v / 
1 - v 2 

4Я 

The recommended function ARCSIN is applied. Procedure RADICES does not 

depend on the approach of the authors of the equation (4). Coefficients at must be 
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calculated numerically before, without neglecting little members, with the highest 

possible accuracy. The squares of the roots, which are partial results of the algorithm, 

must be also included into the result, because their later calculation from the roots 

may cause a big inaccuracy in the second instability region. 

With respect to the above mentioned instability regions it would be certainly 

advantageous to apply the "long real" ("double precission"). TRIPLEX-ALGOL 

would be advantageous for the estimation of the inaccuracy. However, these devices 

are not usually in the software of little computers. Procedure RADICES is practically 

used with a simple length of a number in author's programme for the calculation 

of closed circular cylindrical shells on the computer MINSK 22 with 29-bits mantissa. 

In the second instability region the discriminant is the difference of two nearly 

identical numbers, so that in some cases all bits of mantissa are lost and test L 1 

stops incorrectly the calculation by return through L. However, if it is proved that 

even in this case all roots are complex, it is no mistake to change the algorithm in line 

L 1 into the form 

L 1 : if DE S 1 then DE := DEI; 

where DF 1 denotes the nearest expressible number in computer, bigger than one. 

Such a modified algorithm gives very accurate results for He<10~7; 10~3>, 

n e <2; 120>. If coefficients are calculated back from the roots, then the new coeffi

cients coincide with the original ones in all ciphers except a6, which is sometimes 

less accurate in the instability regions. The roots of equation (4) by the three authors 

by means of procedure RADICES are calculated in Tab. II. with v = 0-3. 

As another possibility of the calculation, an iterative algorithm by Newton's 

method applied to a complex function was tested. The starting value for an + i/?w 

is the big root of Donnell's equation 

(15) 

/Rn2 //4n4 

m0 = - \ 1 + 
+ " ^ + 1 

bi . 2"\ //*?+! 
ь2 V V ь 4 

where b is taken from (14). Let us denote the polynomial on the left hand side of equa

tion (4) by P(m) and P'(m) = dP/dm . Then 

(16) mj+l = nij + Amj9 

where the complex increment is 

dn\ A
 P(mj) 

(17) Amj = - ~ L - i L 
P(mj) 

This course can be repeated till we reach the required accuracy for |P(m J + x) — P(m/)| 

with respect to the number of bits of mantissa. Except number ntj it is recommended 

to keep also mj during the iterative procedure, or more precisely, to add Re (Amj) — 
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Tab. II. Roots of Equation (4) 

n 
r 

S 

by Means of Procedure RADICES 

n 
r 

S Flügge Goldenweiser Donnell 

2 1000 <*n 40-695534 40-697363 40-697391 

ßn 40-600826 40-598976 40-599005 

Уn 0042651353 0-042649427 0049262158 

*n 0042570117 0042572059 0049143044 

<- •ßì 7-6994001 7-9984297 7-99843069 

УÌ- % 0-692302.10" 5 0-659336.10"5 011721492.10~4 

40 1000 an 61-556824 61-556535 61-559335 

ßn 30-336285 30-330874 30-341412 

Уn 20-904378 20-904959 20-911197 

к 10-307549 10-308405 10-306726 

<- ß2n 2868-9524 2869-2452 2868-9505 

УІ- *î 330-74745 330-75408 331-04953 

2 10 
« • » 

4-5686288 4-5768969 4-5993876 

ßn 3-6388997 3-6096019 3-6415651 

Уn 0-45590630 0-45491653 0-53457377 

K 0-37916436 0-38163031 0-42324878 

<- -ßl 7-6307777 7-9187592 7-8933703 

yl- Ы 0064084939 0061307361 0-106629596 

40 10 <*n 42-036994 40-982815 42-032499 

ßn 2-1190439 1-9612243 2-1356262 

Уn 37-932186 38-945494 37-967768 

*n 2-1607581 0-68520762 1-9291042 

«l- •ßl 1762-6185 1675-7447 1762-1701 

yl- *i 1434-1819 1516-2820 1437-8299 

— Im (Anij) to (<xnj — finj) in each step. The solution can be carried out in a reduced 
form as in the previous algorithm. The iterative algorithm is slower than the previous 
one. The root yn + iSn can be found for little rc's by the iterative course as well, if we 
start from the approximate value 

1 + i la0 
m0 = 4 / — . 

2b VH 

(18) 

However, the simple calculation by means of a2, a0, a8, an, /?„, an — fin according 
to the last two equations (13) explicitly formed, is better. 

As the third possibility of the calculation of roots an asymptotic series was tested. 
This method is applicable only in the second instability region 2n < b. It is possible 
to derive the following expressions for the roots an + ij8„, see [1]: 
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from Fliigge's equation 

,1ftx , [\ • 1 - ? 2«2 - v 1 + i 8n4 + 4vn2 - 12n2 + 4 - 3v2 1 
(19) b 1 + i + — H ... , 

V ; L b2 4 b4 32 J 

from Goldenweiser's equation 

/™\ . I~. • I - in2 1 + i 2n2 - 4 + v2

 2 "] 

(20) b 1 + z + — + n2 - . . . , 
V ; L b2 2 b4 8 J 
from Donnell's equation 
/^,\ . I"\ . \ — i n2 1 + i n4 

(21) b h + l + + 

It is interesting that the third member of the series is already affected by members 

of equation (4) that are usually neglected. Analogously the root yn + idn in the same 

region can be obtained, e.g. from Goldenweiser's version: 

(22) ^ V ( « 2 - l ) -
2b 

1 - i n2 - 1 
1 + i + 

b2 2 

1 + i 4и 4 - (6 - v2) n2 + 3 - 2v2 

+ 

In the region M ^ we get more accurate values of roots by means of the series 

by adding two or three members than by means of procedure RADICES, as the 

decimal orders of the members of the series decrease rapidly and the results are not 

influenced by the inaccuracy of the difference of the numbers as the case would be 

in the procedure RADICES in the second instability region. In the first example 

of Tab. II. we get 

m = 40-695536 + i. 40-600822 by means of (19), 

m - 40-697371 + i. 40-598966 by means of (20), 

m = 0-042649427 + i. 0-042572059 by means of (22). 

We can obtain another version of asymptotic series, if we start from the value 

m0 according to (15), which satisfies Donnell's equation. E.g. for Goldenweiser's 

version the series is 

4 - v2

 2 1 + i 
• ?r — - — h (23) an + ipn = m0 + i J 

- - • ] 
(8 - v2) n2 - 8 + 6v2

 2 1 
+ І n 2 — 

16 

which in the same example yields m = 40-697363 + i. 40-598976. However, for n 

approaching b the series are divergent. 
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The biggest part of region (3) is covered by the classical algebraic solution. Its 
accuracy fails only in both subregions of the numerical instability at the limited 
number of decimal places of mantissa. The method of the asymptotic series is suitable 
only in the second subregion (3b). The iterative algorithm is applicable in the same 
subregion and in other parts of region (3). It is possible to derive other versions 
of series or of the initial values of iterative algorithm suitable for the first subregion 
(3a), but this subregion occures practically very seldom. 

Appendix. Procedure for Calculation of Roots of Characteristic Equation by Means 
of Classical Algebraic Method. 

procedure RADICES (A) onedimensional array for the successive coefficients a8, 
a6, a4, a2, a0 (B) parameter (N) ordinal number of the member of the series (K) 
onedimensional array for the successive results an, fin, yn, Sn, a

2 — /?2, 2ocnt6n, y2 — b2
n, 

2ynSn (L) label for output in the case of other roots than complex; 

value A, B; array A, K; real B, N; label L; 

begin real M, P, Q, Kl, K2, D, E, DE, MD, EI, T\, T2, T3, AL, B\, D\, El, BD, 
BD2, CE, CE2, M l , M2; integer I; 
M l :=SQRT((N x N/B) | 2 + 0-25) + 0-5; 
M := (SQIvT(Ml) + Ml) x B; comment approximate value of the square of the 
module of the big root; 
P : = M x A[l]; 

for I : = 2 step 1 until 5 do 

begin A[I] := ,4[I]/P; P := P x M 
end reduction m2 = Mf, A[l] £4 + A[2] £3 + A[3] l2 + A[4] <J + v4[5] = 0; 

Kl := A[2]/4;P:=K1 x K1;K2 := 2 x P - ,4[3]/3; 
E : = ( ( _ 3 x P + A[3]) x Kl - A[4]) x Kl + A[5]; 
D : = ( 4 x P - A[3]) x 2 x Kl + A[4]; 
comment reduction f = ^ - Kl, T?4 - (K2/3) ?l2 + Df/ + E = 0 , 
resolvent t3 + (K2/3) t2 - 4Et - fEK2 - D2 = 0 ; 
Q := K2|2;P := -E /0-75 -Q;Q := ( - 4 x E + Q) x K2 -0 -5 x D x D; 
DE:= - ( P / f i ) T 2 x P; 
LI : if DE S 1 then go to L; comment test for the separation of the case with 4 
real roots; 
MD := SeKT(-4 x P); FI := (1-570796327 - ARCSIN (2/DE - l))/6; 
if Q < 0 then FI := 1-047197551 - FI; 
T l := 2 x K2 + MD x COS(FI); 
T2 := 2 x K2 + MD x COS(FI + 2-094395102); 
T3 := 2 x K2 + MD x COS(FI + 4-188790204); 
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comment roots of the resolvent, at least one of them is positive; 

if 71 < 0 then begin if T2 < 0 then begin P : = T3; T3 : = Tl end 

else begin P : = 72; T2 : = T\ end 

end else P : = Tl; 

AL:= SQRT(P); 

L2 : if T2 > 0 then go to L; 

comment test for the separation of the case with 8 real roots; 

Bl : = SQPT(-T2) + SQPT(-T3); Dl : = AL - 2 x K l ; 

BD : = Bl t 2 + Dl t 2; BD2 : = SQRT(BD); 

M l : = 025 x M; Ml : = 0-5 x M; 

CE : = 16 x A[5]/BD; El : = ( - D 1 x CE - 4 x A[4])/BD; 

CE2 : = SeKT(CE); 

X [ l ] : = SQPT(M1 x (D1 - BD2)); 

K[2] : = SQKT(M1 x ( - D 1 + BD2)); 

K[3] : = SQivT(Ml x (El + CE2)); 

K[4] : = , SgPT(Ml x ( - E 1 + CE2)); 

K[5] : = M2 x D1;K[6] : = M2 x Bl; 

K[7] : = Ml x E1;K[8] : = 2 x K[3] x K[4] 

end 
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S o u h r n 

KOŘENY CHARAKTERISTICKÉ ROVNICE 
ROTAČNĚ VÁLCOVÉ SKOŘEPINY 

MILAN GERYK 

Stav napjatosti a deformace uzavřené rotačně válcové skořepiny lze řešit rozkladem 
do Fourierovy řady podle obvodové proměnné. Pro rc-tý člen řady dostane se oby
čejná diferenciální rovnice tvaru (l), jejíž koeficienty at se liší podle přístupu jejich 
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autorů, viz tab. I. Její charakteristická rovnice (4) v oblasti (3) parametrů n, H, v 
má mít dle zákona o zachování energie pouze kořeny komplexní. Zanedbá-li se H 
proti jedné u Golděnvejzerovy verse, rovnice má pro určitá n větší než n0 též kořeny 
reálné. 

V článku se dokazuje věta, že úplná Golděnvejzerova rovnice dle tab. I., tedy bez 
zanedbání H proti jedné, má v oblasti (3) pouze komplexní kořeny. Zároveň jsou 
ukázány vlastnosti kořenů a nalezeny dvě oblasti numerické nestability při řešení 
s omezeným počtem míst mantisy. 

Vzhledem k použití na kontaktní úlohy vyžaduje se znalost kořenů se značnou 
přesností. Pro jejich výpočet je uvedena jednak procedura RADICES v algolu 
založená na klasickém řešení algebraické rovnice 4. stupně, jednak iterační postup 
pomocí Newtonovy metody pro komplexní přírůstek, jednak asymptotický rozvoj — 
tento je vhodný v druhé oblasti numerické nestability n <š b.V tab. II. jsou numerické 
výsledky procedury RADICES, která se osvědčila v autorově programu pro výpočet 
rotačně válcové skořepiny na počítači MINSK 22 s 29-bitovou mantisou. 

Authofs address: Ing. Milan Geryk CSc, Výzkumný ústav Přerovských strojíren, Přerov, 
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