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SVAZEK 18 (1973) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

PIECEWISE POLYNOMIAL INTERPOLATIONS IN THE FINITE 
ELEMENT METHOD 

STANISLAV KOUKAL 

(Received January 11, 1972) 

1. INTRODUCTION AND SOME NOTATIONS 

At first let us introduce some notations which are used in the paper. 
Let Q be a plane bounded domain and Q be its closure, i.e. Q = Q u dQ where dQ 

is the boundary of Q. Then 

W{k)(Q) is the Sobolev space of all functions which together with their generalized 
derivatives up to the kth order inclusive belong to L2(Q). For u e W2

k)(Q) the norm 
||wj|fc>Q is defined by 

fc 

\\U\\IQ = E M I . O ' where \u\2
jfQ = £ Il-O'wll-U-O > 

7 = 0 \i\=j 

jľi, 

ôxp õyą 
D'u = Tirr-n' ' = (P> «) > ' = P + i • 

C{k)(Q) is the set of all functions having in Q continuous derivatives up to the kth 
order inclusive, C(Q) is the set of all functions which are continuous in Q. 

W{k)(Q) is a subspace of W{k)(Q) which we get by completing in the norm \>\k,n 
the set of functions from C{k)(Q) with compact support in Q. 

By a polygonal domain we understand every plane bounded domain Q the boudary 
of which consists of a finite number of simple closed polygons F,, j = 0, 1, ..., s; 
Fi, F2, ..., rs lie inside F0 and do not intersect. 

By a triangulation T of a polygonal domain Q we understand a covering of the 
closure Q by a finite number of arbitrary closed triangles such that the union of all 
triangles is Q and any two triangles are either disjoint or have a common vertex 
or a common side. When we wish to express that h is the length of the greatest side 
and $ is the magnitude of the smallest angle of all triangles of the triangulation T we 
write T(/I, &). 
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A polygonal domain Q is said to be rectangular polygonal if each of the polygons 

forming the boundary of Q has the sides paralles to the axes of a Cartesian coordinate 

system. 

By a partition O of a rectangular polygonal domain Q we understand a covering of 

the closure Q by a finite number of arbitrary closed rectangles such that the union 

of all rectangles is Q and any two rectangles are either disjoint or have a com

mon vertex or a common side. If we wish to express that A and A are, respectively, 

the lengths of the greatest and of the smallest sides of all rectangles of the partition O, 

we write Q(A, A). 

S is said to be a partition of a polygonal domain Q if S defines a partition O of 

a rectangular polygonal domain Q± cz Q *) and a triangulation T of the set Q2 = 

Q — Qt

 2 ) provided that the intersection of an arbitrary rectangle of the partition O 

with an arbitrary triangle of the triangulation T is either void or is their common side 

or their common vertex. The rectangles of the partition O and the triangles of the 

triangulation T are called the rectangles and the triangles of the partition S, respec

tively. 

Let A and A be, respectively, the lengths of the greatest and of the smallest sides 

of all rectangles of a partition 5 of the given polygonal domain Q, and $ be the mag

nitude of the smallest angle of all triangles of S. A collection & of partitions of the 

domain Q is said to be regular if there exist two positive constants a0 and S0 such 

that A ^ <J0A, $ ^ $0, for all 3 e M. 

In [1] the hierarchy of interpolation polynomials on the triangle is defined in the 

following way: 

Let T be a triangle. Let Pjjj, Vj,j = \, 2, 3, and P0 be its vertices, sides, normals 

to the sides and center of gravity, respectively. Further, let the points Q(f'r), O = 1, 

2, ..., r, divide the side lj (j = 1, 2, 3) into r + 1 equal parts. Finally, let m, x be 

non-negative integers, 1 ^ x _ 4. Under these hypotheses to each fe C(2m + 1 ) (T) 

(for x = V 2 it is sufficient if f e C(2m)(T)) there is assigned a polynomial p of degree 

at most n = 4m + x such that 

(1) D'p(Pj) = Dlf(Pj), j = 1,2,3, 

(2) Dkp(P0) = Dkf(P0) , 

(з) ЫQҐ) = ЩQ(ГУ) 
dvsj Čvs, 

1, 2, 3, O = 1, 2, ..., r , 

) For different partitions of the domain Q the corresponding rectangular polygonal domains 
Qt may be different. 

) The set Q2 is either void or is the union of a finite number of disjoit polygonal domains. 
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and for n = 4m + x the indices i, k, r, s are determined by (4X): 

(4}) |i | :g 2m |k | ^ m — 2 , s = r = 1, 2, ... , m , 

(42) | i | ^ 2 m , |k| = m - 1 , s = r - l , r = 1, 2, ..., m + 1 , 

(43) |i| g 2m + 1 , |k| S m , s = r = 1, 2, ..., m , 

(44) |/| <; 2m + 1 , |k| g m + 1 , s = r - 1 , r = 1, 2, ..., m + 1 . 

The existence and uniqueness of just introduced interpolation are assured by 
Theorem 1 of [2] and the error estimate (in Sobolev's norm) is given by Theorem 2 
of [2]. If Q is a polygonal domain, T is any triangulation of Q and fe C(2m + l)(Q\ 
then the piecewise-polynomial function fx coinciding on each triangle of the triangu
lation T with the polynomial determined by the conditions (l) —(4X)3) belongs to 
C(m)(Q). 

Making use of the above described piecewise-polynomial interpolations for solving 
linear elliptic boundary value problems of order 2(m + 1) by the finite element me
thod (see e.g. [2]), it is necessary to use polynomials of degree not smaller than 
4m + 1. Then, of course, to get an approximate solution we must compute the values 
and the derivatives of this solution not only at the vertices of the triangles of a trian
gulation T of the considered polygonal domain, but also on the sides and at the centers 
of gravity of the triangles of z (see conditions (2) and (3)). However, the normal deri
vatives on the sides of the triangles are not necessary in applications and their evalua
tion prolongs the computation. For that reason Bell proposed in [5] a "reduced" 
polynomial of the fifth degree. We get it from the polynomial p(x, y) of the fifth degree 
of the above described hierarchy (m = x = 1) if we eliminate the values dp(Q(/ ,X))\^Vj, 
j = 1, 2, 3, by imposing on p(x, y) the condition that dpjcvj, j = 1, 2, 3, be cubic 
polynomials on the sides of the considered triangle (see Section 2, Theorem 1 
for m = i). In this case the highest order of accuracy for the finite element method 
applied to the fourth order boundary value problems is the third order (see Theorem 
15 for m = 1), whereas if we used the polynomial of the fifth degree from the above 
described hierarchy (m = x = 1) the highest order of accuracy would be the fourth 
order (see [2], Theorem 4), but this fact is not so essential for practical use. Likewise 
it is possible to save the computer time by eliminating the parameters prescribed 
at the center of gravity by imposing some restrictions on the polynomials. That was 
why Zlamal in [6], for solving second order boundary value problems, proposed 
a "reduced" cubic polynomial p*(x, y). If Tis a triangle with vertices Pj,j = 1,2, 3, 
and with the center of gravity P0, then p*(x, y) is on T uniquely determined by nine 
parameters Dlp*(Pj), j = 1, 2, 3, |i | ^ V in such a way that the tenth parameter 
p*(P0) is a certain linear combination of the above nine parameters. We apply the 
just mentioned devices of Bell and Zlamal to the hierarchy of the polynomials deter-

3( We say that the function fx is generated by the interpolation (1) — (4). 
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mined by the condition (1) —(4t) and thus we come to a hierarchy of reduced inter
polation polynomials which are, moreover, also especially suitable to a combination 
with the reduced Hermite polynomials of [4]. This combination is carried out in 
Section 3. 

When solving a second order boundary value problem by the finite element method 
and making use of the polynomials of the fifth degree, either determined by 21 para
meters (relations (1) — (4<) for m = 1) or reduced by Bell (18 parameters), the appro
ximate solutions have continuous derivatives of the first order on the closure Q of the 
considered domain Q even when the exact solution does not belong to C(1)(£2). In this 
case it would be apparently far better to use a polynomial of the fifth degree defined 
on a triangle with the vertices Pj9 j = V 2, 3, and with the center of gravity P0 by 
these 21 parameters (see [3]): Dip(Pj), \i\ ^ 2,j = 1, 2, 3, Dk(P0), \k\ ^ 1, Following 
the just mentioned idea we come to interpolation polynomials with "concentrated" 
parameters. By the concentration, roughly speaking, we mean such a choice of para
meters uniquely determining an interpolation polynomial on a triangle, that as many 
parameters as possible are prescribed at the vertices and at the center of gravity while 
only as many parameters (or conditions) as necessary for obtaining the desired 
smoothness of the piecewise-polynomial interpolation in the domain considered are 
prescribed on the sides. A combination of the just mentioned polynomials with the 
polynomials of [4] is again carried out in Section 3. In the last section the piece-
wise-polynomial interpolations of Section 3 are used for solving V-elliptic boundary 
value problems. 

2. REDUCTIONS AND CONCENTRATION OF PARAMETERS 
OF INTERPOLATION POLYNOMIALS ON THE TRIANGLE 

At first we are going to deal with a reduction of parameters of the interpolation 
polynomials determined by the conditions (l)--(41). This reduction is also mentioned 
in [2]. 

Theorem 1. Let T be a triangle. Let Pj9 lj9 VjJ = V 2, 3, and P0 be its vertices, 
sides, normals to the sides and center of gravity, respectively. Further let m be 
a non-negative integer. Then to each f e C{2m)(T)4) there exists exactly one poly
nomial p of degree at most Am + 1 such that 

(5) Dip(Pj) = FfiPj), j = 1,2,3, |/| £ 2 m , 

(6) Dkp(P0) = Dkf(P0) , \k\ ^ m - 2 , 

(7) on the side lj(j = 1, 2, 3), the normal derivatives drp\dv), r = \, 2, ..., m, are 

polynomials of degree at most Am + 1 — 2r. ) 

4) Obviously the existence of the derivatives D'f III - 2,;7 ' o n T i s sufficient. 
5) We leave out the conditions (6) or (7) if m - 0, 1 or m = 0, respectively. 
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Proof. Letf(x, y) _ 0 and let p(x, y) be a polynomial of degree at most 4m + 1 
satisfying the conditions (5) —(7). If lj(x, y) = 0, j = 1, 2, 3, are the equations of the 
sides of Tand /(x, y) = lx(x, y) /2(x, y) /3(x, y) then, according to (5) and (7), 

p(x,y) = r + l(x,y)q(x,y), 

where q(x, y) is a polynomial of degree at most m — 2. With respect to (6) Dkq(P0) = 
= 0, |k| = m — 2. Then, of course, q(x, y) = 0 and hence also p(x, y) _ 0 which was 
to be proved. 

Theorem 1 may be considered to be a consequence of Theorem 1 of [2] if we 
take into account that by (7) the parameters drp(Q(Q,r))\dvr in the interpolation (1) 
to (4j) are now given as certain linear combinations of the parameters Dlp(Pj), 
j = V 2, 3, |/| = 2m. The error estimate for the piecewise-polynomial interpolation 
generated by the interpolation of Theorem 1 is given by 

Theorem 2. Let Q be a polygonal domain and let x(h, Q) be any triangulation of Q. 
Further, let m be a non-negative integer and let f e W(k)(Q), k _ 2m + 2. Finally, 
let the function fx coincide with the polynomial p described in Theorem \ on each 
triangle of the triangulation T and let I = min (k, 3m + 2). Then fxe C{m)(Q) and 
for 0 = n = m + 1 

(8) \\f-fr\\n,0^(-^~-h""\f\l,Q, 
(sin &)n 

where the constant K depends neither on Q nor on f. 

Proof. The stated smoothness of fz follows from the fact that on each side of any 
triangle Tof T the values off together with its derivatives up to the order m inclusive 
are given merely by the values Df, |i| = 2m, at the vertices of Tlying on the consi
dered side. The error estimate could be proved in a similar way as the estimate (15) 
in [2]. 

Further reduction of parameters will be carried out in such a way that the parame
ters Dkp(P0), |k| = m — 2, will be given as certain linear combinations of the para
meters Dlp(Pj), j = 1, 2, 3, |i | ^ 2m. However, a practical way is to retain the para
meters Dk(P0) and use the method of condensation of internal parameters (see [9] 
or [10]). 

If p(x, y) is a polynomial of degree at most 4m + 1 and x = Xj(s), y = yj(s) 
is such a parametric representation of the median tj (j = 1,2, 3) connecting the vertex 
Pj with the center of gravity P0 that the values 5 = 0, §, 1 correspond to the vertex Pj9 

to the center of gravity P0 and to the center of the side lj (lying opposite the vertex Pj), 
respectively, then each of the polynomials 

n(/tfi\s) = D(^f})p(xj(s), yj(s)) , a + /? = r , 0 g r = m - 2 , 
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is of degree at most 4m + 1 — r. Let us approximate the polynomial n{fffi)(s) by 
a Hermite polynomial n(ffP)(s) of degree at most 3m + 1 - 2r determined in this way: 

Dln(f^(0) = Dtyf^XO) , 0 S i S 2m - r , 

Dkn(fJ\\) = Dkn(f>P)(\), 0 S k S m - r .6) 

If the polynomial p(x, y) satisfies the condition (7) then the values DWf'^O), 0 ^ 
:g i <; 2m — r, Dkn(f,P)(\), 0 g k ^ m — r, a + /? = r, are linear combinations 
of the parameters Dlp(Pn), n = 1,2,3, \i\ g 2m, hence the same is true for the values 

*ffi\i), 7 = 1, 2, 3, 0 ^ a + j ? £ # n - 2 . 

Now, with respect to the just performed consideration, the following theorem is an 
immediate consequence of Theorem 1. 

Theorem 3. Let T, Pf, lj9 Vj, P0 be the notation of Theorem 1 and let m = 2 
be an integer. Then to each fe C(2m)(T) there exists exactly one polynomial p of 
degree at most Am + 1 such that 

(9) Dip(PJ) = Dlf(Pf) , j = 1 , 2 , 3 , \i\ £ 2m , 

(! 0) D«-»p(PQ) = i i 7ria '^(|), 0 g a + )8 fg m - 2 , 
« = i 

where the values nn
a'p)(j) are linear combinations of the parameters Dlp(Pj), 

j = 1, 2, 3, |i| ^ 2m, by the above described construction, 

(1 1) on the side lj (j = 1,2, 3) the derivatives drpjdvrj, r = 1, 2, . . . , m, are /?O/y-
nomials of degree at most Am + 1 — 2r. 

From the construction of the parameters Dk(P0), \k\ rg m — 2, it is clear that the 
interpolation polynomial for the function / determined by the conditions (9) —(11) 
agrees with / i f / is any polynomial of degree at most 2m + 3, while the polynomial 
of Theorem 1 agrees with / i f / is any polynomial of degree at most 3m + 1. 
This fact implies, as follows from comparing Theorem 2 with the next theorem, that 
for m _- 2 and sufficiently smooth functions the error estimate for the interpolation 
(9) — (11) is worse than that for the interpolation (5) —(7). 

Theorem 4. Let Q be a polygonal domain and let x(h, 8) be any triangulation 
of Q. Further, let m ^ 2 be an integer and let fe W{k)(Q), k ^ 2m + 2. Finally, 
let the function fx coincide with the polynomial p described in Theorem 3 on each 
triangle of the triangulation % and let I = min (k, 2m + 4). Then fxe C(m)(Q) and 

b) D^f'^s) = dř7T^^)(s)/ds1'. 
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for 0 :g n ^ m + 1 

(12) | | / - / -B-^ ^ T-^-r- I t 1 - | / | , .o , 
(sin ,9) 

where the constant K depends neither on Q nor on f. 

Proof. The stated smoothness of the function fx follows from the definition off 
as in Theorem 2. The error estimate could again be proved in a similar way as the 
estimate (15) in [2]. 

Turning to the concentration of parameters determining the interpolation poly
nomials we begin with an interpolation of [3], which is very important for our 
further considerations. This interpolation is given by 

Theorem 5. Let Tbe a triangle with the vertices Pj,j = 1,2, 3, and with the center 
of gravity P0, and let m be a natural number. Then to each f e C(m_1)(T) there exists 
exactly one polynomial p of degree at most 2m — 1 such that 

(13) Dip(PJ) = D'f(Pj), j= 1,2,3, \l\ £ m - 1 , 

(14) ' Dkp(P0) = Dkf(P0), \k\^m-2?) 

The error estimate for the piecewise-polynomial interpolation generated by the 
interpolation of Theorem 5 is given in the following theorem (see [3], Theorem 4). 

Theorem 6. Let Q be a polygonal domain and let r(h, 9) be any triangulation 
of Q. Further, let m be a natural number and let f e W(p(Q)9 k ^ m + 1. Finally, 
let the function f coincide with the polynomial p described in Theorem 5 on each 
triangle of the triangulation x and let I = min (k, 2m). Then fteC(Q) and for 
n = 0, 1 

05) 1 1 / - / ^ ^ «^fci--|/|lifl> 
(sin v)n 

where the constant K depends neither on Q nor on f. 

While the function f of Theorem 6 is, in general, only continuous, the interpo
lations introduced by the following theorem generate piecewise-polynomial inter
polations of higher smoothness. 

Theorem 7. Let T P., L, v.- and P0 be the notation of Theorem 1. Further, let 
7 j 1 j 7 j v j 

the points Q(j*,r\ Q = 1, 2, ..., r, divide the side lj into r + 1 equal parts. Finally, 
let m, k be non-negative integers. Then to each f e C(2m+k\T) there exists exactly 

7) If m = 1 no condition is given at PQ. 
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one polynomial pm,u of degree at most Am + 1 + 2fc such that 

(16) Dipm,k{P^) = D%Pj) , j = 1, 2, 3 , |i | < 2m + fc , 

(17) VpmjJfo) = D f ( P o ) , H _ m - 2 for fc = 0 , 

s < m + к - 1 for fc > 0 

rřw(ôГr)) _ srf(Q'Гh 

( 1 8 ) _ V _ _ J = _ i _ J , / = 1,2,3, e = l , 2 , . . . , r , 
< 3 V ; dvj 

r = 1, 2, ..., m , 

(19) Pm,k(
RT) = / W O > ff = L 2, ..., fc - 1 , j = 1, 2, ..., m, 

where R^ ^ P0, cr = 1, 2, ..., k — 1, are distinct points lying inside T on 

a straight line dj (j = 1, 2, ..., m) which passes through the center of gravity 

and does not pass through any vertex of T 

It is necessary to add that from (17) —(19) we leave out those condition which 

have no sense for given m and k. Thus, for example, we leave out the condition 

(19) when fc g 1 or m = 0. 

Proof. Suppose m > 0 and fc > 1 since for k = 1 or m = 0 the interpolations 

were already considered. Let f(x, y) — 0 and let the polynomial pmJyX, y) of degree 

at most 4m + 1 + 2k satisfy the conditions (16)-(19). Let l/x, y) = 0 and tj(x, y) = 

= 0, j = 1, 2, 3, be the equations of the sides and of the medians of T, respectively, 

and let l(x, y) = lt(x, y) l2(x, y) l3(x, y), t(x, y) = tx(x, y) t2(x, y) t3(x, y). Then, by 

virtue of (16) and (18), 

Pm,k(x,y) = lm + 1(x,y)q(x,y), 

where q(x, y) is a polynomial of degree at most m + 2k — 2 which, according to (16), 

(17), (19), satisfies the conditions 

Diq(PJ) = 0 , j = 1, 2, 3 , |i | __ k - 2 , 

D^(Po) = 0 , |s| = m + k - 1 , 

q(R(p) = 0 , j=l,2,...,m, cr = 1, 2, ..., k - 1 . 

Hence 

q(x, y) = t(x, y) h(x, y) , 

where h(x, y) is a polynomial of degree at most m + 2k — 5 satisfying the conditions 

(16') Dlh(Pj) = 0 , j = 1, 2, 3 , | i | __ fc - 3 , 

(17') £>sh(P0) = 0 , |_| ^ m + k - 4 , 

(19') HRJ-^) = 0 , j = l , 2 , . . . , m , a = 1,2, . . . , fc - 1 . 
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If lc = 2 and m = 1, then h(x, y) is a constant and by (19') h(x, y) = 0. Therefore, 
assume k + m > 3. If dj(x, y) = 0 is the equation of the straight line dj (j = I, 
2, ..., m) and d(x, y) = c/^x, y) d2(x, y) ... dw(x, y) then, with respect to (17') and 
(19'), the polynomial h(x, y) is divisible by d(x, y). Hence for k = 2 h(x, y) = 0 
and for k > 2 

h(x, y) = d(x, y) z(x, y), 

where z(x, y) is a polynomial of degree at most 2k — 5 which satisfies 

D'lz(Pj) = 0 , j = 1, 2, 3 , |i | = k - 3 , 

Dv(P0) = 0 , \s\ S k - 4 . 

Then, of course, applying Theorem 5, we have z(x, y) = 0 and hence h(x, y) = 0 
again. Thus in all cases pmtk(x, y) = 0 and the proof is complete. 

Let us underline that between the parameters determining the polynomials pmk 

there are normal derivatives of order at most m only and that the piecewise-poly-
nomial approximation generated in a polygonal domain Q by these polynomials 
belongs to C(m)(Q). Further, let us note that for k = 0 or k = 1 we obtain the hierar
chy of the interpolation polynomials (l) —(4^) or (1) —(43), respectively, and for 
m = 0 we have the interpolation of Theorem 5. If k > 1 and m > 0 then, accord
ing to (19), the conditions determining the polynomials pmfc are not symmetric (with 
respect to the triangle T) which is a great disadvantage of these interpolations. For 
some k > 1 and m > 0 it is possible to replace the condition (19) by a symmetric 
condition. For example, to eachfE C(6)(T) there exists exactly one polynomial pf>4 

of degree at most 13 satisfying (16) —(18) for m = 1, k = 4 and 

09*) MAlA^mi, ;- = ],2,3, 
dsj dsj 

where Sj is the center of the line segment P,P0 and ej is the normal to PjP0. The 
parameters of this polynomial may again be reduced in the sense of Theorem 1. 
Thus we obtain a polynomial plj4 of degree at most 13 which is uniquely determined 
by the conditions 

(16") D% A(Pj) = Df(Pj), j= 1,2,3, |i| £ 6 , 

(17") D'p1A(P0) = D°f(P0), | s | £ 4 , 

(18") On the side lj(j = 1,2,3) the normal derivative dp1A\dVj is a polynomial 
of degree at most 11, 

(19") On the median PjP0 (j = 1, 2, 3) the normal derivative dp1A\dej is a poly
nomial of degree at most 11. 
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3. COMBINATIONS OF THE INTERPOLATIONS OF SECTION 2 
WITH THE REDUCED HERMITE INTERPOLATIONS OF [4] 

In [4] reductions of some parameters of Hermite interpolations of [7] were 
performed. These reduced interpolation polynomials are treated in the following 
Theorems 8 — 11. 

Theorem 8. Let R be a rectangle with the vertices Pj, j = 1,2, 3,4, the sides of which 
are parallel to Cartesian coordinate axes and let m be a natural number. Then to 
each f e C ( m _ 1 ) ( R ) there exists exactly one polynomial p(x, y) of degree at most 
2m — 1 in each variable, 

2m-l 

Xx> y) = X aijxiyj > 
ІJ = 0 

such that 

0 for 
І j 
— + _2_ _2_ 

D*p(Pj) = D%Pj) 

> m 

2 , 3 , 4 , |/| __ m - 1 . 

Theorem 9. Let Q be a rectangular polygonal domain and let Q(A, A), A = a A, 
be any partition of Q. Further, let m be a natural number and let f e W(£\Q), 
k __ m + 1. Finally, let the function fQ coincide with the polynomial p described in 
Theorem 8 on each rectangle of the partition _> and let I = min (k, 2m). Then 
fQeC(Q)andfor n = 0, \ 

(2°) \\f-feLo^~Al-n\f\ljQ, 

a 

where the constant K depends neither on Q nor on f. 

Theorem 10. Let R be a rectangle with the vertices Pj, j = 1, 2, 3, 4, the sides of 
which are parallel to the coordinate axes and let Vj be the normal to the side lj 
(j = \, 2, 3, 4). Further, let m be a non-negative integer. Then to each f e C{2m)(R) 
there exists exactly one polynomial p of degree at most 4m + 1 in each variable, 

such that 

P(x' У) = X a «7 x V = 
ij = 0 

= 0 for i,j __ 2(m + 1) , 

VpiPj) = DViPj), j = 1, 2, 3, 4 , | i | _ 2m , 

) Icl is the whole part of the number c. 
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on the side lj (j = 1, 2, 3, 4) the normal derivatives drpldvrj, r = i, 2, ..., m, are 
polynomials of degree at most 4m + 1 — 2r.9) 

Theorem 11. Let Q be a rectangular polygonal domain and let g(A, A), 3 = a A, 
be any partition of Q. Further, let m be a non-negative integer and f e W2

k)(Q), 
k ^ 2m + 2. Finally, let the function fQ coincide with the polynomial p described in 
Theorem 10 on each rectangle of the partition g and let I = min (k, 3m + 2). Then 
fQ e C(m)(Q) and for O ^ n ^ + 1 

(21) If-fX.oZ-.A'-'Wi** 
a 

where the constant K depends neither on Q nor on f. 

The combinations of the interpolations of Section 2 with the interpolations 
of [4] are now given in the following theorems. Thus, the combination of Theo
rems 6 and 9 gives 

Theorem 12. Let Q be a polygonal domain and let 5 be any partition of Q determi
ning a partition g(A, A), 3 = a A, of a rectangular polygonal domain Q{ a Q and 
a triangulation r(h, Q) of the set Q2 = Q — Qx. Further, let m be a natural number 
and let fe W(k)(Q), k _• m + 1. Finally, let the function fd coincide with the poly
nomial of Theorem 5 on each triangle of the triangulation T and with the poly
nomial of Theorem 8 on each rectangle of the partition g, and let I = min (k, 2m). 
Then fb e C(Q) and for n = 0. 1 

(22) ||f ~ UU £ ̂  I1"" \fU + - ^ ~ ft- |fU , 
a (sin v)n 

where the constants Kt and K2 depend neither on Q nor on f. 

Upon combining Theorem 2 with Theorem 11 we find 

Theorem 13. Let Q, 3, Qu Q2, g(A, 3), o,x(h, S), m be the notation of Theorem 12 
and let f e W(k)(Q), k ^ 2m + 2. Further, let the function f6 coincide with the poly
nomial of Theorem 1 on each triangle of T and with the polynomial of Theorem 10 
on each rectangle of a, and let I = min (k, 3m + 2). Then fb e C(m)(Q) and the error 
estimate (22) is valid for 0 :g n _" m + 1. 

4. APPLICATION TO V-ELLIPTIC BOUNDARY VALUE PROBLEMS 

To give some applications of the preceding error bounds, let us consider the 
Galerkin method for approximating the solutions of V-elliptic boundary value pro
blems with homogeneous stable boundary conditions. 

9) For m -= 0, p is a bilinear polynomial determined by the values at the vertices of R. 
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Let l ^ b e a polygonal domain. Let Vbe a Hilbert space consisting of all functions 
from W(n)(Q) for which all given stable boundary conditions are homogeneous, i.e. 

(23) W(
2
n)(Q) c V c W(n)(Q), 

with the norm induced by W2
n)(Q). Let a(u, v) be a complex functional on W2

n)(Q) x 
x W^n)(Q) which is linear in u, antilinear in v, bounded and V-elliptic, i.e. for some 

positive constants M, a 

(24) \a(u, v)\ ^ M \\u\\H,Q \\v\\n>Q V u, v e W2
n)(Q), 

(25) \a(v,v)\ ^a\\v\\XQ VvGV . 

Finally, let F(v) be an antilinear bounded functional on V Then a function u e V 
is said to be a solution of the boundary value problem (with the homogeneous stable 
boundary conditions) if 

(26) a(u, v) = L(v) V v e V . 

Under the above hypotheses, the problem (26) has a unique solution by the Lax-
Milgram Lemma (see [8], p. 38). 

We consider Galerkin's procedure for obtaining an approximate solution of (26). 
More precisely, let S be any finite dimensional subspace of V Consider the approxi
mate problem of finding a w e S such that 

(27) a(w, v) = L(v) V v e S . 

It is easy to show that the problem (27) has a unique solution. Moreover, if u e V 
is the solution of (26), then 

(28) I h - H U ^ -\\u - H k a V t ; e F > 
a 

where M and a are the constants from (24) and (25), i.e. independent of S (see 
[7], p. 252). 

Let Q be a polygonal domain and let 5 be any partition of Q determining a partition 
Q(A, A), A = a A, of a rectangular polygonal domain Qx c= Q and a triangulation 
T(/7, 8) of the set Q2 = Q — Qx. Let to each function f belonging simultaneously 
to both Cim~1}(Q) and V, W2

X)(Q) C V c J V , 1 ^ ) , there be assigned a function fm<5 

which coincides with the polynomial of Theorem 8 on each rectangle of the parti
tion Q and with the polynomial of Theorem 5 on each triangle of the triangulation T. 
The set GJ of ah in this way obtained piecewise-polynomial functions is a finite dimen
sional subspace of V. In a similar way, let to each function f belonging simultaneously 
to both C(2m)(Q) and V, W2

n)(Q) c V c W2
n)(Q), n S m + V be assigned a function 

fm,<5 which coincides with the polynomial of Theorem 10 on each rectangle of the 
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partition Q and with the polynomial of Theorem 1 on each triangle of the triangu-

lation T. The set H™ of all in this way obtained piecewise-polynomial functions again 

is a finite dimensional subspace of V. 

When solving the problem (27) for S = G™ and estimating the right-hand side of 

Cea's inequality (28) by Theorem 12, we obtain 

Theorem 14. Let Q be a polygonal domain and let (23) —(25) be valid for n = 1. 
If the solution u of (26) belongs to W2

ik)(Q), k ^ m + l,u™ is the solution of (27) 
for S = G™ and I = min (k, 2m), then 

(29) u - uл 
< K | / , ß i 

sin ,9 
\i,n2 

where the constant K is independent on the functions u and u™. 

In a similar fashion, combining the inequality (28) with Theorem 13 we have 

Theorem 15. Let Q be a polygonal domain and let (23) —(25) be valid. Let 
m ^ n — 1 and let the solution u of (26) belong to W2

k)(Q), k g: 2m + 2. If u™ 
is the solution of (21) for S = H™ and I = min (k, 3m + 2), then 

(30) 
1 

| / , ß i + (sin S)n 

where the constant K does not depend on the functions u and u™. 

In the case when M is a regular collection of partitions of Q (see Section 1) let us 
assign to each 5 e 0 determining a partition O(A, A) of a rectangular polygonal do
main Ql a Q and a triangulation x(h, 8) of the set Q2 = Q — Qx the parameter 
x = max (h, A). It is clear that if in Theorem 14 S e (M, then 

u™ Lnѓкy 

and if in Theorem 15 S e -M, then 

4d \\n,Q < K,xl 
\l,Q •> 

where the constants Ku K2 are independent on the functions u and uj. These ine
qualities give an asymptotic estimate of the rate of convergence of the approximate 
solutions u™ of the problem (26) under the assumptions that the exact solution u of 
(26) is sufficiently smooth. The following theorems, however, guarantee the conver
gence of the approximate solutions u™ to the exact solution u even in the case that u 
belongs only to W2

in)(Q\ 
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Theorem 16. Let Q be a polygonal domain and let 01 be a regular collection of 

partitions of Q. Let (23) —(25) be valid for n = 1 and let u be the solution of (26). 

Finally, let for each 5 e 01 the function um be the solution of (27), where S = Gm. 

Then 

\\u — u7\\i,n ~* ® a s x ~* 0 • 

Proof. The set of all functions belonging simultaneously to both V and W2
(2m)(c2) 

is dense in V. This fact, combined with Theorem 12, implies that to every e > 0 there 

exists v G Gm such that \\u — v|| x n < s as soon as x < xE, where xe depends only on e. 

Then, of course, by (28) \\u — wm||ijfi ^ (M/a) e and the convergence is demonstrated. 

Theorem 17. Let Q be a polygonal domain and let M be a regular collection of 

partitions of Q. Let (23) —(25) be valid and let u be the solution of (26). Finally, 

let for each 5 e 01 the function um be the solution Of (27), where S = Hm, m -f 1 ;> n. 

Then 

\u — um\n^Q —> 0 as x -* 0 . 

Proof. When noting that the set of all functions from V belonging to W^2m + 2)(Q\ 

is dense in Vand using Theorem 13, the proof is exactly analogous to that of the 

preceding theorem. 
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S o u h r n 

PO ČÁSTECH POLYNOMICKÉ INTERPOLACE V METODĚ 
KONEČNÝCH PRVKŮ 

STANISLAV K O U K A L 

V článku uvádíme některé redukce parametrů, kterými je určen interpolační poly
nom nad trojúhelníkem v [1]. Dále se zabýváme koncentrací parametrů určujících 
interpolační polynom nad trojúhelníkem. Přitom koncentrací, zhruba řečeno, rozu
míme takovou volbu parametrů určujících interpolační polynom nad trojúhelníkem, 
že maximální počet těchto parametrů je zadán ve vrcholech a v těžišti trojúhelníka, 
zatímco na stranách trojúhelníka je zadáno pouze tolik parametrů (nebo podmínek), 
aby po trojúhelnících polynomická funkce, ztotožňující se nad každým trojúhelníkem 
triangulace dané polygonální oblasti Q s interpolačním polynomem uvažovaného 
typu, měla v Q spojitost požadovaného řádu. Získané interpolace, jak s redukovanými 
tak i s koncentrovanými parametry, jsou kombinovány s redukovanými hermitov-
skými interpolacemi ze [4] a těchto kombinací je užito k řešení eliptických okrajových 
úloh metodou konečných prvků. 
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