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SVAZEK 18 (1973) APLIKACE MATEMATIKY ČÍSLO 6 

OVERIMPLICIT MULTISTEP METHODS 

MILAN PRAGER, JIRI TAUFER, EMIL VITASEK 

(Received January 12, 1973) 

1. INTRODUCTION 

The efficient solution of many technical problems leading to initial-value problems 
for ordinary differential equations (typical examples are stiff problems) by multistep 
difference methods calls not only for high asymptotic accuracy but also for satisfying 
other requirements. One of such requirements is Dahlquist's ^-stability which has 
often proved very reasonable. It is well-known, however, that in the class of basic 
methods for the numerical solution of initial-value problems (linear multistep 
methods, Runge-Kutta methods), Al-stable methods of order higher than 2 do not 
exist (Dahlquist [1963]). This to a great extent negative result made us to seek a larger 
class of methods that would include A-stable methods of arbitrarily high order. Since 
it is also well-known that A-stable linear multistep methods are necessarily implicit 
(cf. again Dahlquist [1963]), the implicit character of our methods will be emphasized 
in such a way that instead of computing the approximate solution at one point from 
the (known) approximate solutions at / preceding points (as it is in the case of linear 
/-step methods) we shall compute the approximate solutions at k successive points 
simultaneously from some (generaly nonlinear) system of equations, supposing that 
the solution is known at / successive points. For this reason our methods will be called 
overimplicit methods. 

In the paper, necessary and sufficient conditions for the convergence of over-
implicit methods are given and the existence of A-stable methods of arbitrarily high 
order is studied. 

2. OVERIMPLICIT MULTISTEP METHODS 

In this section we define a general overimplicit multistep method. For the sake of 
simplicity, we shall treat only one differential equation of the first order 

(2.1) y'=f(x,y) in <a,b) 
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(a, b being finite numbers) with the initial condition 

(2.2) y(a) = r,. 

Let us note, however, that all what follows is true also for systems of ordinary dif

ferential equations. The right-hand term of the given differential equation is assumed 

to be defined, continuous and satisfying the Lipschitz condition with respect to y 

(with a constant L independent of x) in the strip a __ x __ b, — oo < y < oo so that 

the solution of the problem (2.1), (2.2) exists and is unique in the whole interval 

<a, b}. The approximate solution will be sought at the points xt = a + ih, i = 

= 0, 1, . . . (or at some of them), where h > 0 is the mesh-size, and will be denoted 

by yt. One step of the method under consideration consists — as it was already 

mentioned — in computing the values yn+i, •.., yn+k of the approximate solution at 

the points xn+i,..., xn+k (assuming yn-l+1,..., yn to be known) simultaneously 

from the system 

(2.3) yи+1 + ß Уn-l+1 = ҺC Jn+ 1 + ҺD Jn-l+1 

_Уn + к_ Jn _Jn+к_ Jn 
where / . = f(xj9 }>7), C is a square matrix of order k and 6, D are k x / matrices. 

The fact that the function /(x, y) satisfies the Lipschitz condition guarantees the 
existence and the uniqueness of the solution of (2.3) for any sufficiently small h so 
that one step of our method is well-defined. In order to describe the whole method it 
is necessary, moreover, to indicate how to continue in the following step, i.e., how to 
choose I new initial values. The method will be practicable obviously only in the case 
when the new initial values will be chosen fom the values y n _ z + 2 , . . . , yn+k- Because 
this may be done in different ways, specify the new initial values as yn„l + 1+s,... 
..., yn+s where s is an integer, 1 __ s __ k. Hence our method is characterized not only 

by the matrices B, C, D but also by the parameter s. Let us note that if s < k it is 
necessary to forget the values yn+s+i,..., yn+k just computed and to recompute them 
in the following step. To simplify the notation, we shall always denote the value of the 
approximate solution at the point Xj by only one symbol yj even though this value 
need not be the same in different phases of the computation. This licence cannot 
cause any misunderstanding. 

3. CONVERGENCE OF OVERIMPLICIT METHODS 

Before formulating the main result of this section it is necessary to introduce some 
concepts and notations. 

Definition 3.1. The metod (2.3) given by the matrices B = {bf/}, C = {cl7}, 

D = {dij} and a parameter s is said to be of order p (p positive integer) if the 
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following k(p + 1) conditions are satisfied 

(3-1) i + iь,j = o, І -Іь/i-j) = ictJ + ídІJ, 
j=l j=l j=l j=l 

iv + ( - I ) ^ , C - J ) ' = v[ic„r» + (-i)-1 idttt -xr1], 
/ = ! j=l / = 1 

v = 2 , . . . , p ; i = 1, . . . , fc. 

Definition 3.2. The method (2.3) is said lO be consistent if it is of order at least one. 

Let us draw the reader's attention to the fact that both the consistence and the 
order of the method are local properties of the method, i.e., they depend only on 
the matrices B, C, D and do not depend on the parameter s. 

Definition 3.3. Let y e C1 and put 

(3.2) 'y(x + Һ) ' 

y(x + kh) 

+ ß 

- ҺD 

У(x - (l - 1) h) 

y(x) 

'/(x - ( ! - - ) h) 

y'(x) 

- ҺC y'(x + h) 

y'(x + kh) 

L(y(x);h). 

The vector L(y(x); h) with components Lt(y(x); h) is called the local error of the 

method. 

The conditions (3.1) express that the local error of the method (2.3) is of order hp+1. 

More precisely, we have 

Lemma 3.1. Le£ fhe method (2.3) Of order p be given; let y(x) e Cp+1((a, b>) and 
let Y= max |y ( p + 1 )(x) | . Then there exists a constant K (depending only on the 
matrices 8, C, D) such that 

(3.3) \Li(y(x)l h)\ ^KYhp+1 

for i = 1, . . . , k and for any x e (a, b) for which L(y(x); h) has sense. 

Proo f follows directly from Taylor's formula. 

Since we are dealing with the multistep method it can be expected that the con
vergence will not be guaranteed by the single assumption that the local error is small 
but that some other conditions similar to Dahlquist's stability conditions will have 
to be fulfilled (cf, for example, Henrici [1962]). In order to be able to formulate them 
let us introduce some further notation. 
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Let the method (2.3) be given and let firstly / ^ s. Define the matrix R by the 
equation 

(3.4) R = [o,,_„ /„ o/Jk_ J 

where Omn is m x n null matrix1) and fj is the unit matrix of order I. Further, define 
the matrix £ by the equation 

(3.5) £ = -RB. 

Secondly, let / > s and define the matrx S by 

(3.6) 

Further, let 

(3.7) 

construct the matrix 

(3.8) 

5 = [/„ O.Д.J 

i = [~] >2) 

-» ( 1 ) = [ O M , + 1 ) , _ „ B ] 

and divide the matrix SB(1) into i + 1 square blocks in such a way that 

(3.9) SB'1) = [_.„,...,_./]. 

Finally, construct the matrix 

(3.10) £ = o,.s /s ^S,S 

'.-. 

o S ) S -

õ,.s 

ó S ) S os л 
ßo -ß,- 1 

After introducing the matrix £ we are able to define the stability of the overimplicit 
method (2.3). 

x) If some index of the matrix Omn is zero then Omn does not occur in (3.4) at all. 
2) The symbol [a] denotes the integral part of the number a. 
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Definition 3.4. The overimplicit method (2.3) is said to be stable if there exists 
a constant F such that for n = 0, 1,... 

(3.11) ||E"|| ^ F 3 ) 

where £ is defined for I __ s by (3.5) and for I > s by (3.10). 

R e m a r k 3.1. The condition (3.11) can be expressed alternatively in such a way 
that the spectral radius of £ is less than or equal to 1 and that only linear elementary 
divisors correspond to eigenvalues of magnitude 1. 

Let us note that only the matrix B and the parameter s are concerned in Definition 
3.4. 

Now we can formulate the basic theorems concerning the convergence of over-
implicit methods. 

Theorem 3.1. A stable and consistent overimplicit method is convergent.4) 

Before proving this theorem, we remind a useful lemma omitting its easy proof (cf., 
for example, Babuska, Prager, Vitasek [1966]). 

Lemma 3.2. Let cp(v)9 rl/(v), x(v) be defined for v = 0,..., n and let #(v) _± 0 for 
v = 0,..., n. Further, let 

(3.12) 

Then 

v - 1 

ę(v) ѓ ф(v) + £ x(џ) ę(џ) for v = 0,..., n . 
џ = 0 

(3A3) q>(v) fg tfv) + V £ X(») m Iff (- + *(s)) f°r v = 0 , . . . , n . 
H = 0 s = fi+l 

Proof of Theorem 3.L Let e,- = ys — y(xj). Then we have for n = rs + / — 1, 
r = 0, 1 , . . . according to (3.2) 

(3.14) Єn + Í + ß Єn - l + 1 = ҺC 

_Єn+k_ J" 

f(Xn + l,Уn + l) ~f(Xn+l,У(Xn+l)) 

f(xn+k> Уn+k) - f(Xn + к, У(Xn+k)) . 

+ ҺD f(Xn-l+l> yn-Z+l) ~ f(Xn-l+l> У(Xn-l + l)) 

f(Xn, Уn) - f(xn, У(xn)) 

- L(y(xя); h) 

3 ) Here one can take an arbitrary norm of the matrix as a linear mapping; for the definiteness 
let us consider the spectral norm. 

4 ) The convergence is understood in the usual sense, cf., for example, Henrici [1962]. 
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or 

(3-15) 

where 

(3.16) 

+ B en-l+l hC$n% \+hD*ill+1 Єn-l + ì. L(y(xn); h) 

cn+k\ en + k 

фW = 0 . . . . 0 

''••.'••..'o 

. . . . 0 ű .+fc-L 

with 

(317) 

so that 

(3.18) 

gr 

,f(xr,Уr) -f(xnУ(xr)) 

Єr 

0 

Ы й L 

for er Ф 0 

for er = 0 or for r < 0 

where L is the Lipschitz constant of the right-hand term of the given differential 
equation. 

Our first task now is to find a bound of the norm of the vector L. The solution y(x) 
of (2.1) and (2.2) has in <a, b> continuous derivative so that we can define the 
function 

(3-19) 

and it holds 

(3.20) 

co(e) = sup \y'(x) - y'(x*)\ 
\x-x*\^e 
x,x*e<a,b> 

lim co(e) = 0 

Obviously, there exist constants 0j£j, 6n
2J, 9n

3] and 0j£j smaller than or equal to 1 in the 
absolute value such that 

y(xn+j) = y(x„) + jh y'(x„) + jh6n)] co(jh), 

y(x„_(1_y)) = y(xn) -(I- j) h y'(xn) -(I- j) hdn
2} co((l - j) h) , 

y'(xn+j) = y'(x„) + en
3] a>(jh), 

/(*.•-<,-,,) = y'(xn) + enyco((l-j) h) 
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and, consequently, by (3.2) we have 

Lt(y(xn); h) = (1 + I b„) y(xn) + 
1 = 1 

fe 

+ Һ[І - 1 (/ -./) *y - 1 c-v - X dмЗ /(*») + 
J=l 1=1 i ' 1 

+ iftøw> co(ih) - A í (/ - j) C i « ( ( ' ~ !') Ä) Ьo- " 

- * I Ci «0'*) dj - * E C u((l - I)ft) ^1 • 
j=l 1=1 

Owing to the consistency, the coefficients at y(xn) and y'(xn) vanish. Thus there exists 

a constant M (depending only on the given method) such that 

(3.21) \Lt(y(xn); h)\ ^ Mhco(h max (k, I - 1)) 

for i — 1,..., k and n == / — 1,. . . 

Further, let for any integer r 

(3.22) e r = (e( r -i) 5 +i,. . . , £(r~i)s+i+ft-i) 

equating the components with negative indices, if any, to zeros. Analogously, let for 
r = l , 2 , . . . 

(3.23) t r = (~L i (y (x ( r - 1 ) s + l - i ) ; h),..., -I*(j<X(r-i)f+i-i); ^))T • 

In further considerations two cases must be already distinguished: I ^ 5 and / > 5. 

Let firstly / <; s. Let us define the vector e<2) in this case by the equation 

(3.24) e<
2> = Rer 

where R is the matrix defined by (3.4). Using this notation, it is possible to rewrite 
(3.15) in the form 

(3.25) e r + 1 + Be<2> = hC0%+ler+l + hD*$ep + t r + 1 , r = 0, 1, . . . 

Since the matrix / - AC#JJ>+| Js obviously regular for 

(3.26) h i K < ^ 

it follows immediately from (3.25) that 

(3.27) erk + 1 = - (/ - * C * « , ) - - Ber
2> + fc(| - hC^,)"1 D4><j>e<2> + 

+ ( f - h C $ « I ) - 1 t r + 1 
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for h ̂  h0 and r = 0, 1 , . . . Hence the error in a given step depends, as it can be 
expected, only on the component e r

2) of the error in the preceding step. Therefore, 
we shall be interested only in the behaviour of this component. From (3.27) we 
obtain 

(3.28) e<2>, = -R(l - hG/e,)-1 Be<2> + 

+ hR(l - ftC*« j )" 1 D<f><s>e<2> + R(l - hG&w,)-1 t r + 1 

or 

(3.29) e<2>. + RBe<2> = R(l - (/ - hOP^,)"1) Be<2> + 

+ hR(/ - hC<P<*+ , ) " - D#<5>e<2> + R(/ - hC^,)-1 t r + 1 , r = 0 , 1 , . . . 

With the help of (3.5), the last equation can be rewritten in the form 

(3.30) er
2

+\ = £er
2> + vr, r = 0 , l , . . . 

where 

(3.31) v, = R[(/ - (/ - hOpW,)-1) B + h(/ - hC^,,)"1 D<P<S>] e<2> + 

+ R( /-hC</»< s>+ ,)-1 t r + 1 . 

Now realizing that the inequalities 

(l + v)"1NrAuií' I' - (' + v)_1« = 
- - m " i - m 

are obviously true for any matrix V with ||V|| < 1 and using (3.21) we conclude from 
(3.31) for h ̂  h0 that 

(3.32) ||vr|| ^ haj|er
2)|| + Mh/JcoQi max (k, / - 1)) 

where 

(3.33) « - H H ± l-l t . <, ' 
1 - M.||C|| 1 - *L|C| | 

From (3.30) it follows 

(3.34) p/^E'e^ + xV'-X, r = 0,l,.,. 
v = 0 

Since the method under consideration is stable, we get from (3.34) 

||e<2>|| 55 r||e<2>|| + r ' f V - l l . ' = 0 , 1 , . . . 
v = 0 
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(1 + Гhoc)r - 1 

Гa 

or, using (3.32), 

(3.35) | e ( 2 >| | = r\\e^\\ + r te£ | |e< a>| + rTMh^(h max (k, I - 1)) . 

v = 0 

Further, using this inequality and Lemma 3.2, we get 

(3.36) | |e ( 2 ) | | S rj|e (
0

2) | | + rFMhj?co(h max (k, I - 1)) + 
r - l 

+ F/zaX [F | |e0
2) | | + vrMhpco(h max (k, / - 1))] (1 + rha)r~l-

v = 0 

or, after an elementary modification 

(3.37) | |e ( 2 ) | | ^ F(l + Fhcx)r | |e0
2) | | + rM$co(h m a x ( k , I - 1)) 

Finally, with respect to obvious inequalities 

(1 + rhoc)r < er*rh, i1 + FhCC)r ~ l £ rher*rh , 
v ' ~ ra 

we have from (3.37) 

(3.38) | |e ( 2 ) | | ^ Fera,*ft||e0
2)|| + rMPrher*rhco(h max (k, / - 1) ) . 

Choosing now the initial conditions so that | |e0
2) | | -> 0 for h -* 0 and using (3.20) 

and (3.27), we get from (3.38) the assertion of our theorem in the case Z g 5. 
Consider now the case I > 5. Let us define in this case the vector e ( 1 ) by 

(3.39) e ( 1 ) = Ser 

where the matrix S is defined by (3.6). Now (3.15) can be rewritten in the form 

(3.40) e r + 1 + ß(1> в(1>." 
sr~i 

.<-> 

hC*<& ,er+í + KD*(?)(1) в ( 1 > . 
& r — I 

„(i) 

+ *r+l 

for r = 0, 1,..., where i is defined by (3.7), 0 ( 1 ) is the matrix (3.8) and 

(3-41) (D^»)(1> = [ 0 M i + 1 ) s - „ D ^ > ] . 

Since it is obviously 

(D#rs>)<i> = Dt-^J'-V-^+i 

where 

(3-42) D(I> = [ O M ; + ] ) S ^ , D ] 
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it is possible to rewrite (3.40) in the form 

(3.43) e r + 1 + B(1> 

_(*) 

= ftCФ<*>+/er+1 + ftD<1>Ф<<L+

řL
)f)s+ 

e_<D 

+ t н 

or, for h satisfying (3.26), 

(3.44) e r + 1 = - (I - ftGpW,)-1 B<*> Л1) 

a(-) 

+ 

+ h(l - ҺCФ«lгyІ ÐC^ФJÍLVJîUi __(-)" 

• d ) 

+ (i - лcФ«+ ł)-ч+i, 

r=-0,l,.__ 

The error depends therefore only on the component e ( 1 ) of the vector e and so we 
shall study only the behaviour of this component as we did in the preceding case. 
From (3.44) we have 

(3.45) e<+>1 = -S(/-ňC_»W+/)-1B<1> «-(-). 

«_(!) 

+ 

+ ftS(/ - ftC^w,)"1 D^^LY j íU e ( 1 >.' 
**r — l 

_d> 

+ s(/-ftCФ<s'+/)-ч+1 

or 

(3.46) e ^ + Sß(1) 

.(-) 

= S[í-(/-ftC<í>«+/)-1]B<1> ted)' 

_d) 

+ 

+ ftS(/ - ftCФ*,)-1 D<1>Ф«_У-)Í)
>,+, _(D 

_d> 

+ S ( / - f t C Ф « + / ) - 1 t r + 1 

Using now (3.9), we can write 

(3.47) •<»?. + B0_.<_>, + ... + Bte?> = v r, r = 0, 1,... 
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where 

(3.48) vr = S[/-(/-hCФ«и)-1]B<1> e d) 
-* r — i 

.d) 

+ 

+ hs(/-hcФ«0-1D(1Mí-V-)f)s+i 
в ( 1 >." 

a (D 

+ S ( í - h C Ф ^ + / ) " 1 t r + 1 

If we put 

(3.49) Пv = *<D 

a ( i ) . 
-v+i 

W v 

for v = — i, — i + 1,..., we can rewrite (3.48) in the form 

(3.50) ifv+1 = Eifv + w v , v = - i , - i + 1,... 

where £ is defined by (3.10), or 

(3.51) -|, = E v + , 9- i+ I ^ " ' " X ' v = - i , - i + 1,... 

Using the conditions of stability, we have from (3.51) 

(3-52) | V , | s r\n.\ + r ]£ K l . 
/ i = - i 

It is obviously 

(3.53) || w j ^ ha||^|| + Mh£co(h max (fc, / - 1)) 

where a and /? are defined by (3.33). Hence we get from (3.52) after the same ar
rangement as in the case / ^ s the inequality 

(3.54) ||iyv|| ^ re r-S ( v + l )*| |». l | | + FM£(v + i) her*(v+)hco(h max(k , / - 1)) . 

Using now the obvious inequality \\e(
r
l)\\ ^ \\tlr\\ we get immediately the assertion of 

our theorem even in the case / > s. The proof of Theorem 3.1 is complete. 

R e m a r k 3.2. Using the standard procedure consisting in the investigation of 
special differential equations it can be proved that the conditions of Theorem 3.1 are 
also necessary. 
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Theorem 3.2. Let a stable overimplicit method of order p _> 1 be given. Let the 
solution of the problem (2.1), (2.2) have continuous derivatives up to order p + 1. 
Finally, let the initial conditions by which the approximate solution is determined 
be given with the accuracy of order 0(hp). Then the discretization error is also of 
order 0(hp). 

Proof. The proof of this theorem is a trivial modification of that of Theorem 3A 
with the use of Lemma 3.L 

4. A-STABILITY OF OVERIMPLICIT METHODS 

The main goal of this section is to prove that there exist _A-stable methods of 
arbitrarily high order in the class of overimplicit multistep methods. First of all, let 
us remind the definition of Dahlquist's A-stability (Dahlquist [1936]). 

Definition 4.1. Let a be a complex constant with negative real part. A numerical 
method for solving initial-value problems for ordinary differential equations is 
said to be A-stable if any solution of the difference equation which arises by aplying 
the given method to the differential equation y' = ay converges to zero for n -> oo. 

In order to facilitate our task, we will seek A-stable methods of arbitrarily high 
orders in the subset of the class of overimplicit methods for which I = 1 and B = 
= ( — 1 , . . . , — 1)T (which are consequently stable) and which are of order at least k. 
Thus, in what follows we shall deal only with the formulae of the form 

(4.1) Уn+l 

Уn + k 

+ ҺC Jn+1 

Jn + k 

+ hfnd 

where C is a square matrix of order k and d is a k-dimensional vector. Moreover, 
C and d are such that 

(4.2) 'y(x + Һ) ' - ~y(x) + ҺC 

y(x + кh) y(x)_ 

'ÿ(x + h) ' 

У'(x + кh) 

+ hÿ(x)d+ 0(hp+1) 

holds for any sufficiently smooth function y(x) and for some P — k. Since these 
formulae do not need any starting procedures and since they are of order at least k 

we shall call them selfstarting overimplicit almost optimal methods. 
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We show first of all that the above class is not empty. If we recall the basic idea of 
the multistep methods of Adams type we are led naturally to the subset of the class 
of selfstarting methods of the form 

(4.3) 
ŕxn+i 

Уn + i ~ Уn = P(x)áx, i = 1, .. . , 
J Xn 

where P(x) is the interpolating polynomial of degree k which has the values fn + i at 
the points xn+i, i = 0,..., k. These methods will be called the selfstarting methods 
of Adams type. They can be obviously rewritten in the form 

(4.4) 

where 

(4.5) 

УП+І - Уn = h £ Уijf(xn+P yn+j), i = 1,..., k 
1 = 0 

Уu (\{t)dt 

and lj(t) is the elementary Lagrange interpolating polynomial for the points t = 
= 0,..., k, i.e., the polynomial of degree k which has the value 0 at the points 
t = 0,..., fc, t 4= j and the value 1 at the point t = j . It is obvious that a selfstarting 
formula of Adams type is even of order H I . 

Selfstarting overimplicit almost optimal methods are defined as methods of the 
form (4.1) whose order is at least k. Let us examine the conditions on C and d which 
guarantee that the corresponding method will be of order k. If we substitute I = 1 
and bn = — 1, dn = dt (d = (du ..., dk)

T) into (3.1) we get 

(4.6) Z c*7 + di = i, i = l,...,k, 
i = i 

1=i 

If we introduce the notation 

1, ..., k , v = 2, ..., k . 

(4.7) e = M 

we can rewrite (4.6) in the form 

(4.8) Ce + d = Me 

2CMe = M2e 

kCMkle = Mke. 
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Thus, the equations (4.8) are necessary and sufficient conditions for the formula (4A) 
to express a selfstarting overimplicit almost optimal method. 

Now, let us examine the A-stability of the formula (4.1). If we use this formula for 
solving the differential equation y' = ay, where a is a (complex) constant, we get 

(4.9) 

where 

(4-10) 

(I - zC) yя+l 

Уn + k 

= yn(e + zd) 

ah 

Since only the value yn+s where 5 is an integer, 1 ^ s ^ k, is used as the initial value 
in the following step of the method we are actually interested only in the values yrs, 
r = 0, 1,.. . By Cramer's rule we obtain immediately 

(4.11) 

where 

(4-12) 

У(r+t» = Җyrs, r = 0,l, . . . 
ß(z) 

ß(z) = d e t ( / - z C ) 

and Ps(z) is the determinant of the matrix which arises from the matrix / — zC by 
replacing its s-th column by the vector e + zd. Hence we can formulate 

Theorem 4.1. The necessary and sufficient condition for the A-stahility of the 
formula (4.1) is that 

(4-13) 

for any z with Re z < 0. 

PSU 
ß(Z) 

< 1 

Proof. The statement is obvious and it follows immediately from Definition 4A 
and from (4.11). 

We can see that the A-stability of the given selfstarting overimplicit almost optimal 
method depends on the behaviour of the polynomials Ps(z), Q(z) and, consequently, 
in order to attain our main aim it will be substantial to be able to construct a self-
starting overimplicit almost optimal method with det (/ — zC) equal to any given 
polynomial. Thus, the following theorem will be of basic importance in the further 
investigation. 
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Theorem 4.2. To every polynomial Q(z) with the coefficient 1 at z° there exists 
one and only one self starting overimplicit almost optimal method, for which (4.12) 
holds.5) 

Proof. First of all let us study the structure of the class of selfstarting overimplicit 
almost optimal methods in more detail. Let us note that if such a method is given and 
if a vector t is defined by 

(4.14) t = 
1 Mfe+1e - CA1fce, 

k + 1 

then the corresponding matrix C and the vector d satisfy 

(4.15) Mve = vCMv~1e, v = 2,. . . , k, 

and 

(4.16) 

Mk+1e = (fe + 1) CMke + (k + 1) t 

d = Me — Ce. 

Conversely, let an arbitrary vector t be given. Let us define the matrix C by (4.15). 
This is possible because the system (4A5) can be rewritten in the form 

(4.17) M2V = CMV(I + M) + [0, ..., 0, (k + 1) t] 

where Vis the Vandermonde matrix for numbers 1, 2,. . . , k, i.e., 

(4.18) V= [~1° l1 . . . I*"1" 
2° 21 . . . 2fc_1 

k° k1 . . . k*"1 

and the matrix MV(l + M) is therefore regular. Further, let us define the vector d 
by (4.16). Then the matrix C and the vector d define obviously a selfstarting over-
implicit almost optimal method. Thus, we have found that there exists a one-to-one 
correspondence between the class of selfstarting overimplicit almost optimal methods 
and the k-dimensional vector space. 

5) The words "one and only one" refer here to the matrix C and the vector d from (4.1). 
Because an overimplicit method is given not only by C and d but also by the parameter s, there 
exist in fact exactly k methods having the property of Theorem 4.2 and differing only by the value 
of the parameter s. 
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Further, let be given a selfstarting overimplicit almost optimal method again and 

Y^z1 = det(l - zC). 

let 

(4.19) 

Then the polynomial Yjak-ft *s obviously the characteristic polynomial of the 
*=o 

matrix C and by Cayley-Hamilton theorem one has 

(4.20) Zв_-iC'-=o 

and, consequently, after multiplying by Me, 

(4.21) V> k _ г C'УИe-0. 

From (4.8), since C satisfies (4.8), we have 

1 
(4.22) C'/Иe 

0 + 1)! 

Using (4.22) we can rewrite (4.21) in the form 

M' + 1 e , i = 0,..., fc - 1 

(4.23) _ > * - i 7 7 
І=O (i + 1)! 

M i + 1 e = I t 
fe! 

where t is defined by (4A4). It is easy to verify that (4.23) can be rewritten in the 
form 

(4.24) MVN 4 1 1 
= __ t M*+1e 

fe! (fe + 1)! 

where V is defined by (4.18) and N is given by 

(4.25) N = 0 . . . 0 
1! • . 

0 •. • 

. . • 0 

• 1 
0 . . . 0 

fe! 
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Since the matrix MVN is obviously regular we can verify conversely that ak,..., a[ 
solving (4.24) (with a given t) and a'0 = 1 satisfy 

(4.26) X a'^ = det (I - zC) 

where C is the matrix of the selfstarting overimplicit almost optimal method given 
by t. 

Now the proof of Theorem 4.2 is already easy. To a given polynomial Q(z) = 
k 

= £ atz
l with a0 = 1, it is sufficient to compute the vector t by (4.23) and then with 

i = 0 

this t to compute C from (4.17) and d from (4.16). The above argument guarantees 
that C and d obtained in this way will give the required selfstarting overimplicit 
almost optimal method. 

R e m a r k 4.1. Let us note that for the selfstarting method of Adams type the vector t 
defined by (4.14) is the null vector because the method is of order k + 1. 

If the selfstarting overimplicit almost optimal method is given by a polynomial Q(z) 
in the sense of Theorem 4.2 it will be useful in what follows to express the coefficients 
of the polynomials Ps(z) from (4.11) by the coefficients of Q(z). This is the contents 
of the following theorem. 

Theorem 4.3. Let a polynomial Q(z) = J] atz
l with a0 = 1 be given. Then for the 

i = 0 
polynomials Ps(z) defined by (4.11) it holds 

(4.26) pM^zM^^Azl, s = i , . . . ,k . 
i=o V=o (j - i)! / 

Proof. By Cramer's rule, the vector (yn + l9..., y„+k)
T defined by (4.9) satisfies 

(4.27) ß(-) yn+1 

Lyn + fc 

Уn >i(-У 

Я(z) 

However, yn+i is the approximate solution of the differential equation y' = ay by 
the overimplicit method of order k and, consequently, for any solution y(x) of this 
differential equation 

(4.28) ß(-) 'y(x + h) ' 

y(x + kh) 

y(x) > l ( - ) " 

Ä(-). 

= 0(hk + 1). 
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In particular, for a = 1 

(4.29) Q(h) esh - Ps(h) = 0(hk + 1), s = 1, ..., k . 

Comparing the coefficients at the same powers of h on the left- and the right-hand 
sides of (4.29) we obtain (4.26) immediately. 

Since by means of Theorem 4.2 we are able to construct a self-starting overimplicit 
almost optimal method such that the polynomial Q(z) given by (4.12) is an arbitrary 
polynomial given in advance, the further course of our study will be to choose this 
polynomial to have some convenient properties. The choice of this polynomial will 
be closely connected with the Pade approximation of the exponential function. 

Thus, let 

(4.30) R(z) = Y r{z
{ 

i = 0 

where 

(4.31) r.- = -* . 
V ; i !(fc- i)\(2k)\ 

Then Iv(z)/R( —z) is the Pade approximation of ez, i.e., it holds 

(4.32) ez = - ^ - + 0(z2k+1) for z -> 0 v J R(-z) ' 

cf., for example, Varga [1962]). From (4.32) it can be easily obtained 

( « 3 ) i ^ f = 0 , I=0,...,fc, 
i = o (j - i)\ 

k (-lYr. 
z y - ^ 5 = o, j = fc + i,...,2fc. 
i=o (j - i)l 

The following lemmas will be useful in the proof of the basic statement of this 
section. 

Lemma 4.1. All the zeros of the polynomial R(z) given by (4.30) and (4.31) have 
negative real parts (cf. Birkhoff, Varga [1965]). 

Proof. To prove this lemma the so-called Routh criterion will be used. We shall 
formulate it for our purpose in this way (cf. Gantmacher [1966]): 
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Routh criterion. Let a polynomial S(z) = ]T stz
l with real coefficients be given. 

i = 0 

Let us define the polynomials Si(z) and S2(z) by 

[*/2] 

(4.34) S.(-)=- T (-i)J h-2jzk-2j , 

j = 0 

[Oc-l)/2] 

s2(z)= z (-lys^j^z"-2^. 
j = 0 

Further, let us suppose that there exist nonzero polynomials S3(z), ..., Sk + l(z) 
with decreasing degrees and numbers ai? i = 1, ..., fc such that 

(4.35) St(z) = a,z Si + 1(z) - Si+2(z) , i = 1, ..., fc - 1 , 

Sfc(z) = a fczS fc+1(z). 

Finally, let all och i = 1, ..., fc /iave the same signs. Then all the zeros of the poly
nomial S(z) have negative real parts. 

In the p r o o f of our lemma we shall investigate the polynomial 

(4.36) S(z) = (-|)lz*R(J 

instead of R(z) so that Sj = (fc + j)lj(jl (k - I)!). We shall show that a/s and the 
polynomials St(z) from the Routh criterion are given by 

(4.37) at = 2(2i - 1 ) , i = 1, ..., fc 

and 

(4.38) 

s(z) J (*-£1) /2} lV(2fc-2/)l (j + . - 1)! ( f c - j - . + !)! z , .2 ,_ j + 1 

'V j A V ^ (fc - ])l (2] + 2i- 2)1 jl (k-2j-i+ 1)! 

respectively. Indeed, Sk(z) = a^z Sk + l(z) and for i < k 

(4.39) a i Z S i + 1 ( z ) - S i + 2(z) = 

= V ^ - i V & l ^ iL+--L ( f c - J - 0 ! V2I - 1) -*-"-«+* -
fio K ' (k - ])\ (2] + 2i)\ j \ (k - 2] - i)\ 

[(fc-i-p/2] (2fc - 2])\ (j + i + 1)! (fc - j - i - 1)! 

jh K ' Jk - j)\ (2j + 2. + 2)!;! (fc - 2] - i - \)\ 
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Substituting j — 1 forj into the second sum in (4.39) we get 

(4.40) atz Si+1(z) - Si + 2(z) = & ~ 2(2/ - 1) z'"i + 1 + 
k! (2i)\ 

+
Ukyi)m

( i y ( 2 f c - 2 / ) l (j + i)! (k~j-i)\ 

A ' (k - j)\ (2/ + 2i)\ (j - 1)! (k - 2) - i)\ ' 

2(2/ - 1) + 2(2fc - 2/ + 1 ) \ fc_2J-i+1 + ff 

j fc - 2/ - i + \) 

where cr is equal to zero for fc — / even and equal to ( — l)(fc-i + 1)/2 for fc — / odd. But 
now it is already easy to see that the right-hand term of (4.40) is exactly St(z). 

Lemma 4.2. Let U(z) be a polynomial with real coefficients and of degree at least 
one. Further, let all the zeros of U(z) have positive real parts. Then 

(4.41) 
U(-z) 

< 1 
U(z) 

for any complex z such that Re z < 0. 

Proof. The statement is obvious when one realizes that \(z + Zi)/(Z — zi)| < 1 
for Re zx > 0 and Re z < 0 and that U(z) has real coefficients. 

Now we have all ready for the proof of the basic theorem of this section. 

Theorem 4.4. In the class of overimplicit methods there exist A-stable methods of 
arbitrarily high orders. 

Proof. Let be given an integer k, k ^ 1, and an integer s, 1 ;g s ^ k. Let 

(4.42) Q(z) = R(-sz) = X ( - 1 ) 1 r^z1 

where R(z) is defined by (4.30). By Theorem 4.2 construct for this polynomial Q(z) 
the corresponding selfstarting overimplicit almost optimal method, which is con
sequently of order k. We shall prove that with s given above this method is A-stable. 
To show this let us compute the corresponding polynomial Ps(z) (cf. (4.11)). By 
Theorem 4.3 and by (4.33), the coefficients pj of Ps(z) satisfy 

(4.43) Pj = t ^ - (-1)' sV, = SJ t t i ) ^ ; - s \ 
i = 0 (j - l)\ i = 0 (j - l)\ 

for j = 0 , . . . , k and, consequently, 

(4.44) Ps(z) = R(sz)=Q(-z). 
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However, (4.44), Lemmas 4A and 4.2 and Theorem 4A imply our statement im
mediately. Theorem 4.4 is proved. 

It can be seen from the proof of Theorem 4.4 that the selfstarting overimplicit 
almost optimal method constructed gives in the case of linear differential equation 
with constant coefficients the Pade approximation of the corresponding exponential 
function with the numerator and denominator of degree k and thus a much more 
accurate approximation of this function than it was guaranteed apriori by the cor
responding method. On the other hand, the selfstarting methods of Adams type are 
of order k + 1 and therefore they are optimal in the class of selfstarting overimplicit 
methods from the point of view of asymptotic accuracy. From this reason it is natural 
to be interested in their A-stability, too. We shall study this problem only in the case 
s = k. 

Theorem 4.5. In order that a selfstarting method of Adams type with s = k may 
be A-stable, it is necessary and sufficient for all roots of the polynomial Q(z) = 
= det (/ — zC) where C = {yf.} and ytj are defined by (4.5) tO have positive real 
parts. 

k k 

Proof. Let Q(z) = £ (Lz1 (#o = -0 anc* let Pk(z) = ]T p{z
{ be the polynomials 

1 = 0 i = 0 

from (4.H). Then with respect to Theorem 4.1 and Lemma 4.2 it is obviously suf
ficient to prove only that Ps(z) = Q( — z), or 

(4.45) p. = ( _ i y ^ , j = 0 , . . . , k 

where 

(4.46) Pj = t JJJ qt 
i = o (j - i)\ 

as it follows from Theorem 4.3. Hence p0 = 1 and (4.45) is true for j = 0. From 
Theorem 4.2 and Remark 4.1 we can see that C is uniquely determined by the choice 
t = 0. The coefficients ql9 ..., qk are, consequently, determined uniquely by the 
system 

k-l j+l k+i 

(4.47) £ ^ . ^ ^ _ ^ _ ^ ^ , v = 1 , . . . , k 
1=o (j + 1)! (k + 1)! 

(cf. the proof of Theorem 4.2). Therefore, if we prove that 

k-l j+l fc+l 

(4.48) I ( - i ) W ^ _ . ^ ^ ^ _ 
i=o (j + 1)! (k + 1)! 

for v = 1, . . . , k where pj are defined by (4.46), the validity of (4.45) will be proved 
even for j = 1, . . . , k since the matrix of the system (4.47) is regular. In order to prove 
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(4.48) let us investigate the sum 

k j + 1 fc vk+l-j j uj-i 

(4.49) z(-iy-jPk_.^^. = Z ( - i ) ' , ,, I -
J=O 0 + 1)! І = OV (fc + 1 - / ) ! i-o ( j - i)! 

k k ,j-i k+i-J 

E Í . І ( - - У 
І = O І = І ( j - ř) !(fc+ 1 - j ) ! 

^ j + i-fc^fc+l-J 

= Zqfc-i I ( " " ^ r : ^ 
i=o j=k-i (j + t - fe)!(fe + 1 - 7 ) ! 

fc i kV+1~1 

= £ft-«z(-iy+t- ,*J1 , , -
i = o j = o j!(i + 1 — j ) ! 

= (-ir iZ~=fr:Z(-l) i + 1- ;f + 1)fcV^-^ = 
i=o (( + 1)! j = o \ J J 

= (-irlz7^fk[(fc-vri-fci+1]-
i = o (1 + 1)! 

It follows from (4.47) that the last term is equal to zero for v = 1, . . . , fc. From this 
statement and with regard to p0 = 1 we obtain (4.48), Theorem 4.5 is proved. 

Theorem 4.5 enables us to determine whether a particular method of Adams type 
is A-stable or not. It has been shown by direct computation that the Adams methods 
up to fe = 8 are A-stable, for fe = 9, 10 they are not A-stable, but we have not yet 
the general result for general fe. 

Finally, we should like to mention that the problems presented above are far from 
exhausting all aspects of the overimplicit methods. Many problems remain open, for 
example, the properties of the overimplicit methods whose local errors in different 
lines are different, the above mentioned general discussion of A-stability of Adams-
type methods etc It is also clear that the overimplicit methods will prove very useful 
in the construction of numerical methods for solving partial differential equations of 
parabolic type which are of arbitrarily high order of accuracy with respect to time 
mesh-size. As a matter of fact, when solving a parabolic equation by transforming it 
to a system of ordinary differential equations (discretizating only the space variables) 
the resulting system of ordinary differential equations is the stiffer the finer is the space 
mesh (cf. Taufer [1972]). 
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S o u h r n 

SILNĚ IMPLICITNÍ MNOHOKROKOVÉ METODY 

MILAN PRÁGER, JIŘÍ TAUFER, EMIL VITÁSEK 

Článek se zabývá numerickým řešením obyčejných diferenciálních rovnic pomocí 
nové třídy metod nazvaných silně implicitní mnohokrokové metody. Základní 
myšlenka těchto metod spočívá v tom, že ze známých hodnot řešení v l bodech se 
podle předpisu (2.3) vypočítává k hodnot nových najednou. Asi polovina práce je 
věnována podrobnému studiu konvergence těchto silně implicitních metod. 

Zbývající část práce je věnována studiu A-stability zavedených metod (viz definice 
4A). V této Části je ukázáno, že ve třídě silně implicitních mnohokrokových metod 
existují A-stabilní metody libovolně vysokého řádu. Tím je vlastně ukázána vhodnost 
použití této nové třídy pro řešení diferenciálních rovnic se silným tlumením a možnost 
aplikací na rovnice parabolického typu. 

Authors' addresses: Dr. Milan Práger CSc, Dr. Jiří Taufer CSc, Dr. Emil Vitásek CSc, 
Matematický ústav ČSAV v Praze, Žitná 25, 115 67 Praha 1. 

421 


		webmaster@dml.cz
	2020-07-02T01:51:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




