Aplikace matematiky

Helena Růžičková

Boundary value problems for the mildly non-linear ordinary differential equation of the fourth order

Aplikace matematiky, Vol. 19 (1974), No. 4, 216-231

Persistent URL: http://dml.cz/dmlcz/103536

Terms of use:

© Institute of Mathematics AS CR, 1974
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

BOUNDARY VALUE PROBLEMS FOR THE MILDLY NON-LINEAR ORDINARY DIFFERENTIAL EQUATION OF THE FOURTH ORDER

Helena Růžičková

(Received March 21, 1973)

1. INTRODUCTION

In this paper, the finite difference method is applied to a boundary value problem for the mildly non-linear ordinary differential equation of the fourth order. The existence of a unique solution of both the differential and the difference problems is proved and an $0\left(h^{2}\right)$ estimate of the discretization error and its first difference quotient is derived. Some numerical examples are given.

The same method has been used in [9] for linear and in [4] for mildly non-linear boundary value problems of the second order. The linear boundary value problem of the fourth order have been considered in [1], [3], [7]. In [7] an approach similar to that used in this paper has been briefly mentioned. [1] have used the estimate of the discrete Dirichlet formula in somewhat different way. [3] deals in addition with discontinuous coefficients, using the discrete Green function for the error estimate.

The present paper is a part of the author's thesis [6].

2. DIFFERENTIAL EQUATION

Let us consider the mildly non-linear boundary value problem of the fourth order

$$
\begin{equation*}
L y \equiv\left(p(x) y^{\prime \prime}(x)\right)^{\prime \prime}-\left(q(x) y^{\prime}(x)\right)^{\prime}+r(x) y(x)=f(x, y(x)), \quad x \in\langle a, b\rangle \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y(a)=y^{\prime}(a)=y(b)=y^{\prime}(b)=0 \tag{2}
\end{equation*}
$$

under the following assumptions:

$$
\begin{equation*}
p(x) \geqq m>0, \quad q(x) \geqq 0, \quad r(x) \geqq 0, \quad x \in\langle a, b\rangle, \tag{3}
\end{equation*}
$$

(4) $p^{\prime \prime \prime}(x), q^{\prime \prime}(x), r^{\prime}(x)$ satisfy Lipschitz condition in $\langle a, b\rangle$,
(5) $f(x, y(x))$ has continuous partial derivatives up to the second order inclusive for $x \in\langle a, b\rangle, y \in(-\infty, \infty)$,
(6) $f_{y}(x, y(x)) \leqq \alpha<\lambda_{1}$ for $x \in\langle a, b\rangle, y \in(-\infty, \infty)$ where λ_{1} is the smallest eigenvalue of $L y(x)=\lambda y(x)$ with boundary conditions (2).

Denote

$$
\begin{aligned}
\|y\|_{L_{2}}^{2} & =\int_{a}^{b} y^{2}(x) \mathrm{d} x, \\
\|y\|_{2}^{2} & =\int_{a}^{b}\left[y^{\prime \prime 2}(x)+y^{\prime 2}(x)+y^{2}(x)\right] \mathrm{d} x .
\end{aligned}
$$

For any sufficiently smooth function $y(x)$ satisfying (2) it holds

$$
\begin{equation*}
\int_{a}^{b} y^{\prime \prime 2}(x) \mathrm{d} x \geqq K_{1}^{-1}\|y\|_{2}^{2} \tag{7}
\end{equation*}
$$

where

$$
K_{1}=1+\frac{1}{2}(b-a)^{2}\left(1+\frac{1}{2}(b-a)^{2}\right)
$$

and, further,

$$
\begin{align*}
& \max _{a \leqq x \leqq b}|y(x)| \leqq \sqrt{ }(b-a)\|y\|_{2}, \tag{8}\\
& \max _{a \leqq x \leqq b}\left|y^{\prime}(x)\right| \leqq \sqrt{ }(b-a)\|y\|_{2} . \tag{9}
\end{align*}
$$

Inequalities (8), (9) are inequalities of Sobolev type. They can be proved in a similar way as their discrete analogues introduced later.

Denote $f_{0}(x)=f(x, 0)$. From the mean value theorem, it follows

$$
f(x, y(x))=f(x, y)-f_{0}(x)+f_{0}(x)=y(x) \int_{0}^{1} f_{y}(x, \xi y) \mathrm{d} \xi+f_{0}(x) .
$$

We substitute it into (1), multiply the equation by $y(x)$ and integrate. From (6) and Schwarz inequality we get

$$
\begin{aligned}
\int_{a}^{b} y(x) L y(x) \mathrm{d} x & =\int_{a}^{b} y^{2}(x) \int_{0}^{1} f_{y}(x, \xi y) \mathrm{d} \xi \mathrm{~d} x+\int_{a}^{b} f_{0}(x) y(x) \mathrm{d} x \leqq \\
& \leqq \alpha \int_{a}^{b} y^{2}(x) \mathrm{d} x+\left\|f_{0}\right\|_{L_{2}}\|y\|_{L_{2}} .
\end{aligned}
$$

If $y(x)$ is a solution of (1), (2) and λ_{1} the smallest eigenvalue of $L y=\lambda y$ and (2), then

$$
\lambda_{1} \leqq \frac{\int_{a}^{b} y(x) L y(x) \mathrm{d} x}{\int_{a}^{b} y^{2}(x) \mathrm{d} x}
$$

hence

$$
\left(1-\frac{\alpha}{\lambda_{1}}\right) \int_{a}^{b} y(x) L y(x) \mathrm{d} x \leqq\left\|f_{0}\right\|_{L_{2}}\|y\|_{L_{2}} \leqq\left\|f_{0}\right\|_{L_{2}}\|y\|_{2}
$$

Integrating by parts and using (3) we get on the other hand

$$
\begin{gathered}
\int_{a}^{b} y(x) L y(x) \mathrm{d} x=\int_{a}^{b}\left(p(x) y^{\prime \prime 2}(x)+q(x) y^{\prime 2}(x)+r(x) y^{2}(x)\right) \mathrm{d} x \geqq \\
\geqq m \int_{a}^{b} y^{\prime \prime 2}(x) \mathrm{d} x .
\end{gathered}
$$

From the last two inequalities and from (7) it follows

$$
\left(1-\frac{\alpha}{\lambda_{1}}\right) m K_{1}^{-1}\|y\|_{2}^{2} \leqq\left(1-\frac{\alpha}{\lambda_{1}}\right) \int_{a}^{b} y(x) L y(x) \mathrm{d} x \leqq\left\|f_{0}\right\|_{L_{2}}\|y\|_{2}
$$

which gives

$$
\begin{equation*}
\|y\|_{2} \leqq K_{1} /\left(m\left(1-\alpha / \lambda_{1}\right)\right)\left\|f_{0}\right\|_{L_{2}} . \tag{10}
\end{equation*}
$$

From (8), (9), (10) we get

$$
\begin{equation*}
\max _{a \leqq x \leqq b}|y(x)| \leqq K_{2}\left\|f_{0}\right\|_{L_{2}}, \quad \max _{a \leqq x \leqq b}\left|y^{\prime}(x)\right| \leqq K_{2}\left\|f_{0}\right\|_{L_{2}} \tag{11}
\end{equation*}
$$

where

$$
K_{2}=K_{1} \sqrt{ }(b-a) /\left(m\left(1-\alpha / \lambda_{1}\right)\right) .
$$

Let us suppose that there exist two solutions $y_{1}(x), y_{2}(x)$ of the problem (1), (2). Then their difference $z(x)=y_{1}(x)-y_{2}(x)$ is a solution of a similar problem

$$
L z=f\left(x, y_{1}(x)\right)-f\left(x, y_{2}(x)\right), \quad z(a)=z^{\prime}(a)=z(b)=z^{\prime}(b)=0 .
$$

By the mean value theorem,

$$
f\left(x, y_{1}(x)\right)-f\left(x, y_{2}(x)\right)=f_{y}\left(x, \xi y_{1}+(1-\xi) y_{2}\right)\left(y_{1}-y_{2}^{\prime}\right)=F(x, z(x))
$$

and $F_{0}(x)=F(x, 0)=0$. According to (11) it holds

$$
\max _{a \leqq x \leqq b}|z(x)| \leqq K_{2}\left\|F_{0}\right\|_{L_{2}}=0,
$$

i.e., problem (1), (2) has at most one solution.

In [8], certain necessary conditions for the existence of a solution of mildly non-linear elliptic boundary value problems are stated. As the problem (1), (2) fulfils these conditions, there exists the unique solution $y(x)$. Assumptions (4), (5) imply that $y^{(5)}(x)$ satisfies Lipschitz condition in $\langle a, b\rangle$.

3. FINITE DIFFERENCE APPROXIMATION

Let N be an integer, $h=(b-a) / N, x_{i}=a+i h, i$ integer, $g_{i}=g\left(x_{i}\right), g_{x}\left(x_{i}\right)=$ $=\left(g_{i+1}-g_{i}\right) / h, g_{\bar{x}}\left(x_{i}\right)=\left(g_{i}-g_{i-1}\right) / h, g_{x \bar{x}}\left(x_{i}\right)=\left(g_{i+1}-2 g_{i}+g_{i-1}\right) / h^{2}, g_{\bar{x}}\left(x_{i}\right)=$ $=\left(g_{i+1}-g_{i-1}\right) /(2 h)$ for any function $g(x)$.

Define $\|\cdot\|_{2, h}$ by

$$
\begin{equation*}
\|Y\|_{2, h}^{2}=h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{i}\right)+h \sum_{i=0}^{N-1} Y_{x}^{2}\left(x_{i}\right)+h \sum_{i=0}^{N} Y_{i}^{2} . \tag{12}
\end{equation*}
$$

In the sequel the index h will be omitted, if no misunderstanding can arise.
Lemma. If $Y_{0}=Y_{N}=0$, then

$$
\begin{gather*}
\sum_{i=1}^{N-1} Y_{x x}\left(x_{i}\right) \geqq K_{3}\|Y\|_{2}^{2}+K_{4} \frac{Y_{1}^{2}+Y_{N-1}^{2}}{h^{2}}, \tag{13}\\
\max _{0 \leqq i \leqq N}\left|Y_{i}\right| \leqq \sqrt{ }(b-a)\|Y\|_{2}, \tag{14}\\
\max _{0 \leqq i \leqq N}\left|Y_{x}\left(x_{i}\right)\right| \leqq \sqrt{ }(b-a)\|Y\|_{2}+h^{-1} Y_{1}, \tag{15}
\end{gather*}
$$

where

$$
K_{3}=\frac{1}{2}\left(1+3(b-a)^{2}\left(1+\frac{1}{2}(b-a)^{2}\right)\right)^{-1}, \quad K_{4}=\frac{1}{4}(b-a)^{-1}
$$

are positive constants independent of h.
Proof. As $Y_{i}=h \sum_{j=0}^{i-1} Y_{x}\left(x_{j}\right)+Y_{0}$ for $i=1,2, \ldots, N$, it follows by Schwarz inequality

$$
Y_{i}^{2}=\left(h \sum_{j=0}^{i-1} Y_{x}\left(x_{j}\right)\right)^{2} \leqq h \sum_{j=0}^{i-1} 1^{2} h \sum_{j=0}^{i-1} Y_{x}^{2}\left(x_{j}\right) \leqq i h \sum_{j=0}^{N-1} Y_{x}^{2}\left(x_{j}\right) .
$$

Multiplying by h and adding we obtain

$$
\begin{gather*}
h \sum_{i=0}^{N} Y_{i}^{2} \leqq h \sum_{i=1}^{N-1} i h^{2} \sum_{j=0}^{N-1} Y_{x}^{2}\left(x_{j}\right)=h^{2} \cdot \frac{1}{2} N(N-1) h \sum_{i=0}^{N-1} Y_{x}^{2}\left(x_{j}\right) \leqq \tag{16}\\
\leqq \frac{1}{2}(b-a)^{2} h \sum_{j=0}^{N-1} Y_{x}^{2}\left(x_{i}\right) .
\end{gather*}
$$

Similarly, from

$$
Y_{x}\left(x_{i}\right)=h \sum_{j=1}^{i} Y_{x \bar{x}}\left(x_{j}\right)+Y_{x}\left(x_{0}\right)
$$

and

$$
Y_{x}\left(x_{i}\right)=-h \sum_{j=i+1}^{N-1} Y_{x \overline{\mathrm{l}}}\left(x_{j}\right)+Y_{x}\left(x_{N-1}\right)
$$

using the obvious inequality $(c \pm d)^{2} \leqq 2\left(c^{2}+d^{2}\right)$, we get

$$
\begin{gathered}
Y_{x}^{2}\left(x_{i}\right) \leqq 2\left(h \sum_{j=1}^{i} Y_{x x}\left(x_{j}\right)\right)^{2}+2 h^{-2} Y_{1}^{2}, \\
Y_{x}^{2}\left(x_{i}\right) \leqq 2\left(h \sum_{j=i+1}^{N-1} Y_{x x}\left(x_{j}\right)\right)^{2}+2 h^{-2} Y_{N-1}^{2} .
\end{gathered}
$$

Adding and using Schwarz inequality we further get

$$
\begin{gathered}
Y_{x}^{2}\left(x_{i}\right) \leqq h \sum_{j=1}^{i} Y_{x x}^{2}\left(x_{j}\right) h \sum_{j=1}^{i} 1+h \sum_{j=i+1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{j}\right) h \sum_{j=i+1}^{N-1} 1+\frac{1}{h^{2}}\left(Y_{1}^{2}+Y_{N-1}^{2}\right) \leqq \\
\leqq(b-a) h \sum_{j=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{j}\right)+\frac{1}{h^{2}}\left(Y_{1}^{2}+Y_{N-1}^{2}\right)
\end{gathered}
$$

and from here

$$
\begin{equation*}
h \sum_{i=1}^{N-1} Y_{x}^{2}\left(x_{i}\right) \leqq(b-a)^{2} h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{i}\right)+(b-a) \frac{1}{h^{2}}\left(Y_{1}^{2}+Y_{N-1}^{2}\right) . \tag{17}
\end{equation*}
$$

We use also the identities

$$
\frac{Y_{1}}{h}=h \sum_{i=1}^{N-1} \frac{i-N}{N} Y_{x \bar{x}}\left(x_{i}\right), \frac{Y_{N-1}}{h}=-h \sum_{i=1}^{N-1} \frac{i}{N} Y_{x \bar{x}}\left(x_{i}\right)
$$

valid for $Y_{0}=Y_{N}=0$. From here it follows by Schwarz inequality

$$
\begin{gathered}
\frac{Y_{1}^{2}}{h^{2}}=\left(h \sum_{i=1}^{N-1} \frac{i-N}{N} Y_{x x}\left(x_{i}\right)\right)^{2} \leqq h \sum_{i=1}^{N-1}\left(\frac{i-N}{N}\right)^{2} h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{i}\right) \leqq \\
\leqq(b-a) h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{i}\right)
\end{gathered}
$$

which together with the similar inequality for Y_{N-1}^{2} / h^{2} yields

$$
\begin{equation*}
\frac{Y_{1}^{2}}{h^{2}}+\frac{Y_{N-1}^{2}}{h^{2}} \leqq 2(b-a) h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(x_{i}\right) \tag{18}
\end{equation*}
$$

From (16)-(18) we have

$$
\|Y\|_{2}^{2} \leqq\left(1+3(b-a)^{2}\left(\frac{1}{2}(b-a)^{2}+1\right)\right) h \sum_{i=1}^{N-1} Y_{x x}^{2}\left(x_{i}\right)
$$

and from here and (18) it follows (13).
The inequalities (14), (15) follow by Schwarz inequality from

$$
Y_{i}=h \sum_{j=1}^{i-1} Y_{x}\left(x_{j}\right)+Y_{0} \quad \text { and } \quad Y_{x}\left(x_{i}\right)=h \sum_{j=1}^{i} Y_{x \bar{x}}\left(x_{j}\right)+Y_{x}\left(x_{0}\right),
$$

respectively.
Let us define the linear difference operator L_{h} by

$$
\begin{aligned}
L_{h} Y_{i} & =\left(p_{i} Y_{x \bar{x}}\left(x_{i}\right)\right)_{x \bar{x}}-\frac{1}{2}\left(q_{i} Y_{x}\left(x_{i}\right)\right)_{\bar{x}}-\frac{1}{2}\left(q_{i} Y_{\bar{x}}\left(x_{i}\right)\right)_{x}+r_{i} Y_{i}= \\
& =h^{-4}\left(p_{i-1} Y_{i-2}-2\left(p_{i-1}+p_{i}\right) Y_{i-1}+\left(p_{i-1}+4 p_{i}+p_{i+1}\right) Y_{i}-\right. \\
& \left.-2\left(p_{i}+p_{i+1}\right) Y_{i+1}+p_{i+1} Y_{i+2}\right)+h^{-2}\left(-\frac{1}{2}\left(q_{i-1}+q_{i}\right) Y_{i-1}+\right. \\
& \left.+\left(\frac{1}{2} q_{i-1}+q_{i}+\frac{1}{2} q_{i+1}\right) Y_{i}-\frac{1}{2}\left(q_{i}+q_{i+1}\right) Y_{i+1}\right)+r_{i} Y_{i} .
\end{aligned}
$$

We approximate the differential problem (1), (2) by the system of non-linear difference equations

$$
\begin{gather*}
L_{h} Y_{i}=f\left(x_{i}, Y_{i}\right), \quad i=1,2, \ldots, N-1, \tag{19}\\
Y_{0}=0, \quad Y_{-1}=3 Y_{1}-\frac{1}{2} Y_{2}, \quad Y_{N}=0, \quad Y_{N+1}=3 Y_{N-1}-\frac{1}{2} Y_{N-2} . \tag{20}
\end{gather*}
$$

We first prove the existence of a unique solution of (19) and (20).
We multiply $L_{h} Y_{i}, i=1,2, \ldots, N-1$ by Y_{i} and by h and add. By Green's difference formulas

$$
\begin{aligned}
& h \sum_{i=1}^{N-1} U_{i} V_{x}\left(x_{i}\right)=-h \sum_{i=1}^{N-1} U_{\bar{x}}\left(x_{i}\right) V_{i}-U_{0} V_{1}+U_{N-1} V_{N}, \\
& h \sum_{i=1}^{N-1} U_{i} V_{\bar{x}}\left(x_{i}\right)=-h \sum_{i=1}^{N-1} U_{x}\left(x_{i}\right) V_{i}-U_{1} V_{0}+U_{N} V_{N-1}, \\
& h \sum_{i=1}^{N-1} U_{i} V_{x \bar{x}}\left(x_{i}\right)=h \sum_{i=1}^{N-1} U_{x \bar{x}}\left(x_{i}\right) V_{i}+h^{-1}\left(U_{1} V_{0}-U_{0} V_{1}+U_{N-1} V_{N}-U_{N} V_{N-1}\right)
\end{aligned}
$$

we get (with respect to (20))

$$
\begin{aligned}
& h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i}=h \sum_{i=1}^{N-1}\left(p_{i} Y_{x x}^{2}\left(x_{i}\right)+\frac{1}{2} q_{i} Y_{x}^{2}\left(x_{i}\right)+\frac{1}{2} q_{i} Y_{\bar{x}}^{2}\left(x_{i}\right)+r_{i} Y_{i}^{2}\right)+ \\
& \quad+h^{-3}\left(p_{0} Y_{1}\left(4 Y_{1}-\frac{1}{2} Y_{2}\right)+p_{N} Y_{N-1}\left(4 Y_{N-1}-\frac{1}{2} Y_{N-2}\right)\right)+ \\
& \quad+(2 h)^{-1}\left(q_{0} Y_{1}^{2}+q_{N} Y_{N-1}^{2}\right) .
\end{aligned}
$$

There exists $h_{0}>0$ such that for $h \leqq h_{0}$ it holds

$$
\begin{aligned}
& h \cdot \frac{1}{2} p_{1} Y_{x x}^{2}\left(x_{1}\right)+h^{-3} p_{0} Y_{1}\left(4 Y_{1}-\frac{1}{2} Y_{2}\right)=h^{-3}\left(p_{0}\left(\frac{1}{2}\left(\frac{5}{2} Y_{1}-Y_{2}\right)^{2}+\frac{15}{8} Y_{1}^{2}\right)+\right. \\
& \left.\quad+\frac{1}{2} h p^{\prime}\left(x_{0}+\Theta_{1} h\right)\left(Y_{2}-2 Y_{1}\right)^{2}\right) \geqq 0, \\
& h^{-3}\left(p_{N}\left(\frac{1}{2}\left(\frac{5}{2} Y_{N-1}-Y_{N-2}\right)^{2}+\frac{15}{8} Y_{N-1}^{2}\right)-\frac{1}{2} h p^{\prime}\left(x_{N}-\Theta_{2} h\left(Y_{N-2}-Y_{N-1}\right)^{2}\right) \geqq 0\right.
\end{aligned}
$$

where $0<\Theta_{1}, \Theta_{2}<1$.
Omitting the non-negative terms containing q_{i}, r_{i} and taking account of $p_{i} \geqq m$ we get the estimate of $h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i}$ from below

$$
\begin{equation*}
h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i} \geqq \frac{1}{2} m h \sum_{i=1}^{N-1} Y_{x \bar{x}}^{2}\left(\dot{x}_{i}\right)+m h^{-3}\left(Y_{1}^{2}+Y_{N-1}^{2}\right) . \tag{21}
\end{equation*}
$$

If the right-hand side of (19) does not depend on Y_{1} then (19), (20) is a system of linear equations the matrix of which is, according to (21), positive definite and therefore (19), (20) has a unique solution.

In the non-linear case we can again write

$$
f\left(x_{i}, Y_{i}\right)=Y_{i} \int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}\right) \mathrm{d} \xi+f_{0}\left(x_{i}\right) .
$$

Let Λ_{1} be the smailest eigenvalue of the matrix eigenvalue problem $L_{h} U_{i}=\Lambda U_{i}$, $i=1, \ldots, N-1$ and (20). If Y is a solution of (19), (20), then

$$
\Lambda_{1} \leqq h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i} \mid\left(h \sum_{i=1}^{N-1} Y_{i}^{2}\right) .
$$

It can be proved (see [2], [5], [6]) that for $h>0$ sufficiently small it holds

$$
\begin{equation*}
\left|\lambda_{1}-\Lambda_{1}\right|=\Theta\left(h^{2}\right) \tag{22}
\end{equation*}
$$

and so we may again assume $\Lambda_{1}<\alpha$.
Let us multiply (19) by h and Y_{i} and add.
We obtain

$$
\begin{aligned}
h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i}= & h \sum_{i=1}^{N-1} Y_{i} f\left(x_{i}, Y_{i}\right)=h \sum_{i=1}^{N-1} Y_{i}^{2} \int_{0}^{1} f_{y}(x, \xi Y) \mathrm{d} \xi+h \sum_{i=1}^{N-1} Y_{i} f_{0}\left(x_{i}\right) \leqq \\
\leqq & \alpha h \sum_{i=1}^{N-1} Y_{i}^{2}+h \sum_{i=1}^{N-1} Y_{i} f_{0}\left(x_{i}\right) \leqq \alpha \mid \Lambda_{1} h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i}+ \\
& +\max _{1 \leqq i \leqq N-1}\left|f_{0}\left(x_{i}\right)\right|\left(h \sum_{i=1}^{N-1} 1\right)^{1 / 2}\left(h \sum_{i=1}^{N-1} Y_{i}^{2}\right)^{1 / 2},
\end{aligned}
$$

i.e.,

$$
\left(1-\alpha \mid \Lambda_{1}\right) h \sum_{i=1}^{N-1} Y_{i} L_{h} Y_{i} \leqq \max _{1 \leqq i \leqq N-1}\left|f_{0}\left(x_{i}\right)\right| \sqrt{ }(b-a)\|Y\|_{2},
$$

which leads together with (21) and (13) to the estimate

$$
\|Y\|_{2} \leqq K_{5}(b-a)^{-1 / 2} \max _{1 \leqq i \leqq N-1}\left|f_{0}\left(x_{i}\right)\right| .
$$

Further, by (14) we have

$$
\begin{equation*}
\max _{0 \leqq i \leqq N}\left|Y_{i}\right| \leqq K_{5} \max _{1 \leqq i \leqq N-1}\left|f_{0}\left(x_{i}\right)\right| \tag{23}
\end{equation*}
$$

where $K_{5}=2 m^{-1} K_{3}^{-1}\left(1-\alpha \mid \Lambda_{1}\right)^{-1}(b-a)$ is a positive constant independent of h.
If (19), (20) has two solutions Y^{1}, Y^{2}, their difference $Y^{1}-Y^{2}$ would be a solution of the system of difference equations of the same type. Its right-hand side is

$$
\begin{aligned}
& F\left(x_{i}, Y_{i}^{1}-Y_{i}^{2}\right)=f\left(x_{i}, Y_{i}^{1}\right)-f\left(x_{i}, Y_{i}^{2}\right)= \\
&=f_{y}\left(x_{i}, \xi_{i} Y_{i}^{1}+\left(1-\xi_{i}\right) Y_{i}^{2}\right)\left(Y_{i}^{1}-Y_{i}^{2}\right), \\
& i=1,2, \ldots, N-1, \xi_{i} \in\langle 0,1\rangle,
\end{aligned}
$$

i.e., $F_{0}(x)=0$ and therefore it follows from (23) that $Y^{i} \equiv Y^{2}$, i.e., (19), (20) has at most one solution.

Let Ω be the domain of all mesh functions Y satisfying (20) such that

$$
\max _{0 \leqq i \leqq N}\left|Y_{i}\right|=K_{6}, \quad K_{6}=K_{5} \max _{1 \leqq i \leqq N-1}\left|f_{0}\left(x_{i}\right)\right| .
$$

Let T be the mapping defined in Ω by $T Y=V$, where V is a solution of the system of linear difference equations

$$
L_{h} V_{i}=V_{i} \int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}\right) \mathrm{d} \xi+f_{0}\left(x_{i}\right), \quad i=1,2, \ldots, N-1
$$

satisfying the boundary conditions (20). From the estimates of $h \sum_{i=1}^{N-1} V_{i} L_{h} V_{i}$ it can be deduced that the matrix of this system is positive definite, so it has just one solution V and it holds

$$
\max _{0 \leqq i \leqq N}\left|V_{i}\right|=\max _{0 \leqq i \leqq N}\left|(T Y)_{i}\right| \leqq K_{6},
$$

i.e., T maps Ω into itself.

For any $\varepsilon>0$ there exists $\delta>0$ such that for any two mesh functions $Y^{1}, Y^{2} \in \Omega$ such that $\max _{0 \leqq i \leqq N}\left|Y_{i}^{1}-Y_{i}^{2}\right|<\delta$ it holds

$$
\left|\int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}^{1}\right) \mathrm{d} \xi-\int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}^{2}\right) \mathrm{d} \xi\right|<\varepsilon\left(K_{5} K_{6}\right)^{-1}
$$

Let $V=V^{1}-V^{2}$ be the solution of the equation

$$
\begin{aligned}
& L_{h} V_{i}=L_{h} V_{i}^{1}-L_{h} V_{i}^{2}=V_{i}^{1} \int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}^{1}\right) \mathrm{d} \xi+f_{0}\left(x_{i}\right)-V_{i}^{2} \int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}^{2}\right) \mathrm{d} \xi-f_{0}(x)= \\
& \quad=\left(V_{i}^{1}-V_{i}^{2}\right) \int_{0}^{1} f_{y}\left(x_{i}, \xi Y_{i}^{1}\right) \mathrm{d} \xi+V_{i}^{2} \int_{0}^{1}\left(f_{y}\left(x_{i}, \xi Y_{i}^{1}\right)-f_{y}\left(x_{i}, \xi Y_{i}^{2}\right)\right) \mathrm{d} \xi \\
& i=1,2, \ldots, N-1, \text { satisfying (20). }
\end{aligned}
$$

By (23) we get

$$
\begin{aligned}
\max _{0 \leqq i \leqq N}\left|V_{i}\right| & \leqq K_{5} \max _{0 \leqq i \leqq N}\left|V_{i}^{2} \int_{0}^{1}\left(f_{y}\left(x_{i}, \xi Y_{i}^{1}\right)-f_{y}\left(x_{i}, \xi Y_{i}^{2}\right)\right) \mathrm{d} \xi\right|< \\
& <K_{5} \varepsilon K_{5}^{-1} K_{6}^{-1} \max _{0 \leqq i \leqq N}\left|V_{i}^{2}\right| \leqq \varepsilon K_{6}^{-1} K_{6}=\varepsilon .
\end{aligned}
$$

i.e., $\max _{0 \leqq i \leqq N}\left|\left(T Y^{1}\right)_{i}-\left(T Y^{2}\right)_{i}\right|<\varepsilon$, i.e., the mapping T is continuous.

By Brouwer fixed point theorem there exists $Y \in \Omega$ such that $T Y=Y$. According to the definition of T, Y is a solution of (19), (20).

4. DISCRETIZATION ERROR

Theorem. Let $y(x)$ be the solution of (1), (2), $Y_{i}, i=-1,0, \ldots, N+1$ the solution of (19), (20) and let the assumptions (3)-(6) be fulfilled. Then for a sufficiently small $h>0$ it holds

$$
\begin{gather*}
\max _{0 \leqq i \leqq N}\left|y\left(x_{i}\right)-Y_{i}\right| \leqq K_{7} h^{2}, \tag{24}\\
\max _{0 \leqq i \leqq N}\left|y^{\prime}\left(x_{i}\right)-\frac{Y_{i+1}-Y_{i-1}}{2 h}\right| \leqq K_{8} h^{2}, \tag{25}
\end{gather*}
$$

where K_{7}, K_{8} are positive constants independent of h.
Proof. Set $y_{-1}=3 y_{1}-\frac{1}{2} y_{2}, y_{N+1}=3 y_{N-1}-\frac{1}{2} y_{N-2}$. Then $L_{h} y_{i}-L y_{i}=R_{i}$, where $R_{i}=O\left(h^{2}\right)$ for $i=2,3, \ldots, N-2, R_{1}=O(1), R_{N-1}=O(1)$ as it can be easily seen by Taylor expansion at the points x_{i} if $i=2, \ldots, N-2$, at x_{0} if $i=1$ and at x_{N} if $i=N-1$. The mesh function $E_{i}=y_{i}-Y_{i}, i=-1,0, \ldots, N+1$ is a solution of the system of non-linear difference equations

$$
\begin{gather*}
L_{h} E_{i}=R_{i}+f_{y}\left(x_{i}, \xi_{i} y_{i}+\left(1-\xi_{i}\right) Y_{i}\right) E_{i}, \quad i=1, \ldots, N-1, \xi_{i} \in\langle 0,1\rangle, \tag{26}\\
E_{0}=0, \quad E_{-1}=3 E_{1}-\frac{1}{2} E_{2}, \quad E_{N}=0, \quad E_{N+1}=3 E_{N-1}-\frac{1}{2} E_{N-2} \tag{27}
\end{gather*}
$$

as it holds

$$
L_{h} E_{i}=L_{h} y_{i}-L_{h} Y_{i}=L_{h} y_{i}-L y_{i}+L y_{i}-L_{h} Y_{i}=R_{i}+f\left(x_{i}, y_{i}\right)-f\left(x_{i}, Y_{i}\right)
$$

for $i=1,2, \ldots, N-1$.
We now estimate the expression $h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i}$. In the same way as (21) we get

$$
h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i} \geqq \frac{1}{2} m h \sum_{i=1}^{N-1} E_{x \bar{x}}^{2}\left(x_{i}\right)+m h^{-3}\left(E_{1}^{2}+E_{N-1}^{2}\right)
$$

and further, with respect to (13)

$$
\begin{equation*}
h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i} \geqq \frac{1}{2} m K_{3}\|E\|_{2}^{2}+\left(\frac{m}{h}+K_{4}\right) \frac{E_{1}^{2}+E_{N-1}^{2}}{h^{2}} . \tag{28}
\end{equation*}
$$

On the other hand, we have

$$
\begin{gathered}
h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i}=h \sum_{i=1}^{N-1} E_{i} R_{i}+h \sum_{i=1}^{N-1} E_{i}^{2} f_{y}\left(x_{i}, \xi_{i} y_{i}+\left(1-\xi_{i}\right) Y_{i}\right) \leqq \\
\leqq h \sum_{i=1}^{N-1} E_{i} R_{i}+h \alpha \sum_{i=1}^{N-1} E_{i}^{2} \leqq h \sum_{i=1}^{N-1} E_{i} R_{i}+\frac{\alpha}{\Lambda_{1}} h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i} .
\end{gathered}
$$

By the inequality $\varphi \psi \leqq \frac{1}{2} \varepsilon \varphi^{2}+\frac{1}{2} \varepsilon^{-1} \psi^{2}$ valid for any φ, ψ and any $\varepsilon>0$ we get from here

$$
\begin{aligned}
& \left(1-\frac{\alpha}{\Lambda_{1}}\right) h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i} \leqq \frac{E_{1}}{h} O\left(h^{2}\right)+\frac{E_{N-1}}{h} O\left(h^{2}\right)+h \sum_{i=2}^{N-2} E_{i} O\left(h^{2}\right) \leqq \\
& \quad \leqq \frac{\varepsilon}{2 h^{2}}\left(E_{1}^{2}+E_{N-1}^{2}\right)+\frac{1}{2 \varepsilon} O\left(h^{4}\right)+\frac{\varepsilon}{2} h \sum_{i=2}^{N-2} E_{i}^{2}+\frac{1}{2 \varepsilon} h \sum_{i=2}^{N-2} O\left(h^{4}\right)
\end{aligned}
$$

which together with (28) gives

$$
\begin{equation*}
A\|E\|_{2}^{2}+B \frac{E_{1}^{2}+E_{N-1}^{2}}{h^{2}} \leqq \frac{1}{2 \varepsilon} O\left(h^{4}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{1}{2}\left(\left(1-\alpha \mid \Lambda_{1}\right) m K_{3}-\varepsilon\right) \\
& B=\left(1-\alpha \mid \Lambda_{1}\right) m\left(h^{-1}+K_{4}\right)-\frac{1}{2} \varepsilon
\end{aligned}
$$

We can choose $\varepsilon>0$ independent of h such that A, B are positive and independent of h. Therefore (29) implies

$$
\begin{equation*}
\|E\|_{2}=O\left(h^{2}\right), \quad E_{1}=O\left(h^{3}\right), \quad E_{N-1}=O\left(h^{3}\right) \tag{30}
\end{equation*}
$$

and from here by (14) and (15)

$$
\begin{gathered}
\max _{0 \leqq i \leqq N}\left|E_{i}\right|=\max _{0 \leqq i \leqq N}\left|y_{i}-Y_{i}\right|=O\left(h^{2}\right), \\
\max _{0 \leqq i \leqq N}\left|E_{x}\left(x_{i}\right)\right|=\max _{0 \leqq i \leqq N}\left|y_{x}\left(x_{i}\right)-Y_{x}\left(x_{i}\right)\right|=O\left(h^{2}\right) .
\end{gathered}
$$

As $y^{\prime}\left(x_{i}\right)-y_{\dot{x}}\left(x_{i}\right)=O\left(h^{2}\right)$, we have

$$
\begin{aligned}
y^{\prime}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right) & =y^{\prime}\left(x_{i}\right)-y_{\dot{x}}\left(x_{i}\right)+y_{\tilde{x}}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right)= \\
& =O\left(h^{2}\right)+\frac{1}{2} E_{x}\left(x_{i}\right)+\frac{1}{2} E_{\bar{x}}\left(x_{i}\right)=O\left(h^{2}\right)
\end{aligned}
$$

and therefore also

$$
\max _{0 \leqq i \leqq N}\left|y^{\prime}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right)\right|=O\left(h^{2}\right) .
$$

Remark 1. Let the boundary conditions be

$$
y(a)=y(b)=0, \quad y^{\prime \prime}(a)=\gamma y^{\prime}(a), \quad y^{\prime \prime}(b)=-\beta y^{\prime}(b), \quad \gamma \geqq 0, \beta \geqq 0 .
$$

Denote by $\left(6^{\prime}\right)$ the assumption (6) in which (2) is replaced by $\left(2^{\prime}\right)$. Let the approximation of $\left(2^{\prime}\right)$ be chosen in the following way:

$$
\begin{align*}
Y_{0} & =Y_{N}=0, \quad Y_{-1}=Y_{1}\left(-1+\gamma h-\frac{1}{2} \gamma^{2} h^{2}\right), \quad Y_{N+1}= \tag{20}\\
& =Y_{N-1}\left(-1+\beta h-\frac{1}{2} \beta^{2} h^{2}\right) .
\end{align*}
$$

Then the problem (1), (2') under the assumptions (3)-(6') has just one solution $y(x)$, the problem (19), (20') has just one solution Y and their difference $y(x)-Y$ can be estimated by (24), (25) with possibly different constants, i.e., it again holds

$$
\max _{0 \leqq i \leqq N}\left|y_{i}-Y_{i}\right|=O\left(h^{2}\right), \max _{0 \leqq i \leqq N}\left|y^{\prime}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right)\right|=O\left(h^{2}\right) .
$$

The verification of these assertions is almost the same as the above analysis of the problem (1), (2) and its approximation (19), (20).

Remark 2. If we use instead of (20) the approximation

$$
Y_{0}=0, \quad Y_{N}=0, \quad Y_{\hat{x}}\left(x_{0}\right)=0, \quad Y_{\dot{x}}\left(x_{N}\right)=0,
$$

then $L y_{1}-L_{h} y_{1}=O\left(h^{-1}\right), L y_{N-1}-L_{h} y_{N-1}=O\left(h^{-1}\right)$ and therefore we get

$$
h \sum_{i=1}^{N-1} E_{i} L_{h} E_{i} \leqq \frac{1}{2} \varepsilon h^{-3}\left(E_{1}^{2}+E_{N-1}^{2}\right)+\frac{1}{2} \varepsilon\|E\|_{2}^{2}+\varepsilon^{-1} O\left(h^{3}\right)
$$

and from here

$$
\|E\|_{2}=O\left(h^{3 / 2}\right), \quad E_{1}=O\left(h^{5 / 2}\right), \quad E_{N-1}=O\left(h^{5 / 2}\right)
$$

and further

$$
\max _{0 \leqq i \leqq N}\left|y_{i}-Y_{i}\right|=O\left(h^{3 / 2}\right), \max _{0 \leqq i \leqq N}\left|y^{\prime}\left(x_{i}\right)-Y_{\bar{x}}\left(x_{i}\right)\right|=O\left(h^{3 / 2}\right) .
$$

These estimates are worse than those corresponding to the approximation (20). The reason may be rather in the method of estimation than in the nature of the problem as the numerical results show.

5. NUMERICAL RESULTS

Several boundary value problems chosen so that $y(x), p(x), q(x), r(x), f(x, y(x))$ are polynomials have been solved. The computations have been performed on the computer D 21 in the Computing Centre of the Technical University in Brno.

The system of non-linear difference equations has been solved by the method of successive approximations

$$
L_{h} Y_{i}^{n+1}+v Y_{i}^{n+1}=f\left(x_{i}, Y_{i}^{n}\right)+v Y_{i}^{n}, \quad i=1, \ldots, N-1, n=0,1, \ldots
$$

with the corresponding approximation of boundary conditions, which converges for any Y^{0} and for a properly chosen parameter v (see [6]). It has been sufficient to carry out 2 to 5 iterations.

The system of linear difference equations has been solved by Gauss elimination method fitted to five-diagonal matrices.

The results are given in tables, where

$$
\begin{gathered}
M E=\max _{0 \leqq i \leqq N}\left|y_{i}-Y_{i}\right|, \quad M E^{\prime}=\max _{1 \leqq i \leqq N-1}\left|y^{\prime}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right)\right|, \\
M E\left|y=\max _{0 \leqq i \leqq N}\right| y_{i}-Y_{i}\left|/ \max _{a \leqq x \leqq b}\right| y(x) \mid, \\
M E^{\prime}\left|y^{\prime}=\max _{1 \leqq i \leqq N-1}\right| y^{\prime}\left(x_{i}\right)-Y_{\dot{x}}\left(x_{i}\right)\left|/ \max _{a \leqq x \leqq b}\right| y^{\prime}(x) \mid .
\end{gathered}
$$

The last two quantities are given in percents. $A B$ denotes the type of approximation of boundary conditions. If $y(a)=y^{\prime}(a)=0$, then $A B=1$ corresponds to $Y_{0}=0$, $Y_{-1}=3 Y_{1}-\frac{1}{2} Y_{2}, A B=2$ to $Y_{0}=0, Y_{\dot{x}}\left(x_{0}\right)=0, A B=5$ to $Y_{0}=Y_{x}\left(x_{0}\right)=0$, $A B=6$ to $Y_{1}=0, Y_{x}\left(x_{0}\right)-\frac{1}{2} h Y_{x x}\left(x_{0}\right)=0$ and $A B=3$ corresponds to $Y_{0}=$ $=Y_{x \bar{x}}\left(x_{0}\right)=0$ for $y(a)=y^{\prime \prime}(a)=0$. The situation at $x=b$ is similar.

EXAMPLE 1:

The function $y(x)=x^{2}(x-1)^{2}$ is the exact solution of the linear problem

$$
\begin{align*}
& y^{\mathbf{v I}}=24 \tag{A}\\
& y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0 .
\end{align*}
$$

The same $y(x)$ is also the solution of the non-linear problem
(B) $y^{\text {IV }}+x^{4} y=-y^{3}+x^{12}-6 x^{11}+15 x^{10}-20 x^{9}+16 x^{8}-8 x^{7}+2 x^{6}+24$ $y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0$.

Another polynomial of the 4th degree $y(x)=(x-1)^{2}(x+1)^{2}$ is the solution of the problem
(C)

$$
\begin{aligned}
& y^{\text {IV }}+y=x^{4}-2 x^{2}+25 \\
& y(-1)=y^{\prime}(-1)=y(1)=y^{\prime}(1)=0 .
\end{aligned}
$$

EXAMPLE 2:
The function

$$
y(x)=(x-1)^{2}\left(x-\frac{1}{2}\right)\left(x-\frac{1}{4}\right)\left(x+\frac{1}{4}\right)\left(x+\frac{1}{2}\right)(x+1)^{2}
$$

is the exact solution of the non-linear equations (D), (E)

$$
\begin{equation*}
4 y^{\text {IV }}-y^{\prime \prime}+8 y=-y^{3}+P_{1}(x) \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
\left(\left(x^{4}+0.01\right) y^{\prime \prime}\right)^{\prime \prime}-\left(x^{2} y^{\prime}\right)^{\prime}+\left(x^{2}+8\right) y=-y^{3}+P_{2}(x) \tag{E}
\end{equation*}
$$

where $P_{1}(x), P_{2}(x)$ are certain polynomials of 24th degree in x. The above $y(x)$ is also the solution of the linear equations (F), (G), (H)

$$
\begin{equation*}
4 y^{\text {IV }}-y^{\prime \prime}+8 y=8 x^{8}-74 \cdot 5 x^{6}+6802 \cdot 5 x^{4}-3352 \cdot 4375 x^{2}+158 \cdot 3125 \tag{F}
\end{equation*}
$$

$$
\begin{equation*}
\left(\left(x^{4}+0.01\right) y^{\prime \prime}\right)^{\prime \prime}-\left(x^{2} y^{\prime}\right)^{\prime}+\left(x^{2}+8\right) y=P_{3}(x) \tag{G}
\end{equation*}
$$

where $P_{3}(x)$ is a polynomial of the 10 th degree in x,

$$
\begin{equation*}
y^{\mathrm{IV}}=1680 x^{4}-832 \cdot 5 x^{2}+39 \cdot 375 \tag{H}
\end{equation*}
$$

The boundary conditions are always

$$
y(-1)=y^{\prime}(-1)=y(1)=y^{\prime}(1)=0 .
$$

EXAMPLE 3:

The function

$$
y(x)=2 x^{7}-7 x^{6}+6 x^{5}+3 x^{4}-5 x^{3}+x
$$

is the exact solution of the problem
(I) $y^{\text {IV }}+4 y=8 x^{7}-28 x^{6}+24 x^{5}+12 x^{4}+1660 x^{3}-2520 x^{2}+724 x+72$

$$
y(0)=y^{\prime \prime}(0)=y(1)=y^{\prime \prime}(1)=0 .
$$

The first column in the tables denotes the problem considered.

Table 1

	h	ME	ME/y	$M E^{\prime}$	$M E^{\prime} / y^{\prime}$	$h \Sigma E_{x \bar{x}}^{2}$	$A B$
A	$\cdot 10$	$.50 \times 10^{-3}$	$.80 \times 10^{0}$	$.14 \times 10^{-1}$	$.74 \times 10^{1}$	$.14 \times 10^{-4}$	1
	. 01	$.47 \times 10^{-6}$	$.72 \times 10^{-3}$	$\cdot 19 \times 10^{-3}$	$.10 \times 10^{0}$	$.16 \times 10^{-10}$	1
	. 01	$.50 \times 10^{-4}$	$.80 \times 10^{-1}$	$\cdot 12 \times 10^{-6}$	$.63 \times 10^{-4}$	$.16 \times 10^{-6}$	2
B	- 10	$.50 \times 10^{-3}$	$.80 \times 10^{0}$	$.14 \times 10^{-1}$	$.74 \times 10^{1}$	$\cdot 14 \times 10^{-4}$	1
	. 05	$.62 \times 10^{-4}$. 99×10^{-1}	$.43 \times 10^{-2}$	$.23 \times 10^{1}$	$.24 \times 10^{-6}$	1
	. 025	$.78 \times 10^{-5}$	$.12 \times 10^{-1}$	$\cdot 11 \times 10^{-2}$	$.58 \times 10^{0}$	$.38 \times 10^{-8}$	1
C	. 01	$.44 \times 10^{-5}$	$.44 \times 10^{-3}$	$.39 \times 10^{-3}$	$.26 \times 10^{-1}$	$.30 \times 10^{-9}$	1
	. 01	$.20 \times 10^{-3}$	$.20 \times 10^{-1}$	$.72 \times 10^{-5}$. 48×10^{-3}	$.32 \times 10^{-6}$	2

Table 2

	h	ME	ME/y	$M E^{\prime}$	$M E^{\prime} / y^{\prime}$	$h \Sigma E_{x \bar{x}}^{2}$	$A B$
D	. 02	$.23 \times 10^{-2}$	$.76 \times 10^{1}$	$.58 \times 10^{-2}$	$.28 \times 10^{1}$	$.35 \times 10^{-3}$	1
	. 01	$.61 \times 10^{-3}$. 20×10^{1}	$\cdot 15 \times 10^{-2}$	$.73 \times 10^{0}$	$.23 \times 10^{-4}$	1
	. 01	$\cdot 12 \times 10^{-3}$	$.40 \times 10^{0}$	$\cdot 11 \times 10^{-4}$	$.54 \times 10^{-2}$	$.31 \times 10^{-4}$	2
	. 004	$.97 \times 10^{-4}$	$.32 \times 10^{0}$	$.25 \times 10^{-3}$	$\cdot 12 \times 10^{0}$	$.59 \times 10^{-6}$	1
E	. 01	$.55 \times 10^{-3}$	$.18 \times 10^{1}$	$\cdot 18 \times 10^{-2}$	$.88 \times 10^{0}$	$.70 \times 10^{-4}$	1
F	. 01	$.36 \times 10^{-1}$	$.12 \times 10^{3}$	$.85 \times 10^{-1}$	$.41 \times 10^{2}$	$.12 \times 10^{0}$	1
	. 02	$.23 \times 10^{-2}$	$.76 \times 10^{1}$	$.58 \times 10^{-2}$	$.28 \times 10^{1}$	$.35 \times 10^{-3}$	1
	. 02	$.49 \times 10^{-3}$	$.16 \times 10^{1}$	$.44 \times 10^{-4}$	$.21 \times 10^{-1}$	$.46 \times 10^{-3}$	2
	. 01	$.61 \times 10^{-3}$	$.20 \times 10^{1}$	$\cdot 15 \times 10^{-2}$. 73×10^{0}	$.23 \times 10^{-4}$	1
	. 01	$.12 \times 10^{-3}$	$.40 \times 10^{0}$	$\cdot 11 \times 10^{-4}$	$.54 \times 10^{-2}$	$.31 \times 10^{-4}$	2
	. 01	$.36 \times 10^{-3}$	$.12 \times 10^{1}$	$\cdot 15 \times 10^{-2}$	$.73 \times 10^{0}$	$.29 \times 10^{-4}$	$\begin{aligned} & \text { right } 2 \\ & \text { left } \quad 1 \end{aligned}$
	. 01	$.13 \times 10^{-1}$	$.43 \times 10^{2}$	$.28 \times 10^{-1}$	$\cdot 14 \times 10^{2}$	$\cdot 14 \times 10^{-2}$	5
	. 01	$.22 \times 10^{-2}$	$.73 \times 10^{1}$	$\cdot 16 \times 10^{-1}$	$.78 \times 10^{1}$	$.11 \times 10^{0}$	6
	. 005	$.15 \times 10^{-3}$	$.50 \times 10^{0}$	$.40 \times 10^{-3}$	$.20 \times 10^{0}$	$\cdot 15 \times 10^{-5}$	1
	. 005	$.31 \times 10^{-4}$	$\cdot 10 \times 10^{0}$	$.31 \times 10^{-5}$	$.15 \times 10^{-2}$	$\cdot 19 \times 10^{-5}$	2
G	. 01	$.55 \times 10^{-3}$	$.18 \times 10^{1}$	$\cdot 18 \times 10^{-2}$	$.88 \times 10^{0}$	$.69 \times 10^{-4}$	1
	. 01	$.28 \times 10^{-3}$. 93×10^{0}	$\cdot 10 \times 10^{-2}$	$.49 \times 10^{0}$	$.62 \times 10^{-4}$	2
	. 005	$.14 \times 10^{-3}$	$.46 \times 10^{0}$	$.45 \times 10^{-3}$	$.22 \times 10^{0}$	$.45 \times 10^{-5}$	1
H	. 01	$.67 \times 10^{-3}$	$.22 \times 10^{1}$	$\cdot 15 \times 10^{-2}$	$.73 \times 10^{0}$	$.26 \times 10^{-4}$	1
	. 01	$.12 \times 10^{-3}$	$.40 \times 10^{0}$	$.22 \times 10^{-6}$	$.11 \times 10^{-3}$	$.31 \times 10^{-4}$	2

Table 3

	h	$M E$	$M E / y$	$M E^{\prime}$	$M E^{\prime} / y^{\prime}$	$h \Sigma_{x \bar{x}}^{2}$	$A B$	
	$\cdot 10$	$.50 \times 10^{-2}$	$.25 \times 10^{1}$	$.83 \times 10^{-2}$	$.83 \times 10^{0}$	$.14 \times 10^{-1}$	3	
	$\cdot 05$	$.13 \times 10^{-2}$	$.65 \times 10^{0}$	$.27 \times 10^{-2}$	$.27 \times 10^{0}$	$.91 \times 10^{-3}$	3	
	.02	$.20 \times 10^{-3}$	$.10 \times 10^{0}$	$.50 \times 10^{-3}$	$.50 \times 10^{-1}$	$.24 \times 10^{-4}$	3	
	.01	$.50 \times 10^{-4}$	$.25 \times 10^{-1}$	$.13 \times 10^{-3}$	$.13 \times 10^{-1}$	$.15 \times 10^{-5}$	3	
	.005	$.16 \times 10^{-4}$	$.80 \times 10^{-2}$	$.70 \times 10^{-4}$	$.70 \times 10^{-2}$	$.91 \times 10^{-7}$	3	

The smallest error appears in three problems of Example 1. This could be expected because $y(x)$ is a polynomial of the 4th degree and therefore it holds $L_{h} y=L y$ and the discretization error is caused only by the approximation of boundary conditions. Better results in Example 3 than in Example 2 are probably a consequence of the fact that the polynomial from Example 3 has inside the interval (a, b) no roots while the polynomial from example 2 has in (a, b) four roots.

If we compare the results for different approximations of the boundary conditions for the same h, we can see that for max $\left|y_{i}-Y_{i}\right|$ the approximation $A B=1$ is much better than $A B=2$ in Example 1, but in Example 2 is $A B=1$ almost like $A B=2$. For max $\left|y^{\prime}\left(x_{i}\right)-Y_{\tilde{x}}\left(x_{i}\right)\right|, A B=2$ is surprisingly better in all cases. On the other hand, the sum $h \sum_{i=1} E_{x \bar{x}}^{2}\left(x_{i}\right)$ is always better for $A B=1$. The "inner" approximations $A B=5$ and $A B=6$ were used only once and they gave rather bad results.

References

[1] Babuška, I., Práger, M., Vitásek, E.: Numerical Processes in Differential Equations. Publishers of Technical Literature, Prague and Interscience Publishers, a Division of John Wiley \& Sons, London-New York-Sydney 1966.
[2] Gary, J.: Computing Eigenvalues of Ordinary Differential Equations by Finite Differences. Mathematics of Computation, 19, No 91, (1965), p. 365-379.
[3] Хао-IIIоу: Однородные разностные схемы для уравнения четвертого порядка с разрывными коэффициентами. Ж. вычисл. матем. и матем. физ., 3, № 5, (1963), p. 841-860.
[4] Lees, M.: Discrete Methods for Nonlinear two-point Boundary Value Problems. Numerical Solution of Partial Differential Equations, (J. H. Bramble, editor), p. 59-72, New York, Academic Press, 1966.
[5] Marek, I.: On Approximate Methods in Eigenvalue Problems, Čas. pro pěst. mat., 92 (1967), p. 89-104.
[6] Rǔžičková, H.: Boundary Value Problems for Ordinary Differential Equations of the 4th Order (Czech). (Unpublished), CSc Thesis, VUT Brno, 1971.
[7] Самарский, А. А.: Априорные оценки для разностных уравнений. Ж. вычисл. матем. и мат. физ., 1, № 6, (1961), p. 972-1000.
[8] Zlámal, M.: On Mildly Nonlinear Elliptic Boundary Value Problems, Information Processing 68, p. 179-182, North-Holland Publ. Comp. - Amsterdam 1969.
[9] Zlámal, M.: Discretization and Error Estimates for Boundary Value Problems of the Second Order, Estrato da Calcolo, Vol. 4, fasc. 3, (1967), p. 541-550.

Souhrn

OKRAJOVÉ PROBLÉMY PRO MÍRNĚ NELINEÁRNÍ OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE 4. ŘÁDU

Helena Růžičková

Práce se zabývá metodou sítí pro řešení okrajových problémů pro mírně nelineární obyčejnou diferenciální rovnici 4. řádu. Je dokázána existence a jednoznačnost řešení diferenciálního a diferenčního problému. Pro diskretizační chybu a její první diferenci je dokázán odhad $O\left(h^{2}\right)$. Dále je uvedeno několik numerických příkladů.

Author's address: RNDr Helena Rủžičková, CSc., Laboratoř počítacích strojů, VUT Brno, tř. Obránců míru 21, 60200 Brno.

