Aplikace matematiky

Joachim Naumann

On some unilateral boundary value problems for the vo Kármán equations. Part I: The coercive case

Aplikace matematiky, Vol. 20 (1975), No. 2, 96-125

Persistent URL: http://dml.cz/dmlcz/103574

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON SOME UNILATERAL BOUNDARY VALUE PROBLEMS FOR THE VON KÁRMÁN EQUATIONS

PART I: THE COERCIVE CASE

(Received February 7, 1974)
Joachim Naumann

Contents

1. Introduction 96
2. Setting of the unilateral boundary value problems 97
3. Notation. Variational formulation 103
4. Interpretation of the equations and the unilateral boundary conditions 108
5. Unification. Statement of the main result 112
6. Proof of the Theorem 115
7. Some limit cases 119

1. INTRODUCTION

This paper deals with the existence of equilibrium states of a thin elastic plate under penpendicular loading, where the edge of the plate is subjected partly to boundary equations of the type studied by Hlaváček and Naumann [4], and partly to certain unilateral constraints.

The present Part I is devoted to systems of boundary conditions which imply that any motion of the plate is eliminated, if the elastic energy of the plate bending and of the elastic clampings vanishes (this means that the bilinear form representing the energy of the plate bending and of the elastic clampings is coercive on the associated energy space).

In [2], Duvaut and Lions have studied the existence and uniqueness of equilibrium states of an elastic plate (linear case) under various types of unilateral conditions. These boundary value problems are restated in terms of variational inequalities to which abstract results directly apply. Unilateral boundary value problems for the nonlinear system governing the equilibrium of a thin elastic plate (formulation
in displacements) are studied by the same authors in [3]. Here only the coercive case (coerciveness with respect to the associated energy space) is considered. A method of Galerkin's type is used to solve the problems under consideration in their unified form.

In Section 2 we give the formulation of unilateral boundary value problems which we shall investigate. The following Section 3 is devoted to the preliminaries needed as well as to the variational formulation of our unilateral problems. We then show in Section 4 in which sense the equations are satisfied by a variational solution. Further, assuming appropriate regularity properties of the variational solution and using a result from [5], we are able to give an interpretation of some unilateral boundary conditions.

Section 5 presents the unification of all variational formulations introduced as well as our main existence result. The uniqueness of the variational solution can be proved in the case of sufficiently small deflections. The proof of the existence theorem which will be given in the following section, uses directly an abstract result. The last Section 7 concerns the passage to limit with respect to certain parameters. It turns out that one obtains in this way a variational solution of some types of boundary value problems discussed in [4].

2. SETTING OF THE UNILATERAL BOUNDARY VALUE PROBLEMS

Let Ω be a bounded domain in the x, y-plane (constituting the middle plane of the plate) with boundary $\Gamma .{ }^{1}$) Then the equilibrium states of a thin elastic plate subjected to a perpendicular loading are characterized by solutions of the following system of partial differential equations (the so-called von Kármán equations):

$$
\begin{align*}
& \Delta^{2} f=-[w, w] \quad \text { in } \Omega, \tag{2.1}\\
& \Delta^{2} w=[f, w]+q \text { in } \Omega . \tag{2.2}
\end{align*}
$$

Here the function $f=f(x, y)$ denotes the stress function, while $w=w(x, y)$ means the deflection of the plate. Δ^{2} is the biharmonic operator with respect to the variables x and y, and

$$
[u, v] \equiv u_{x x} v_{y y}+u_{y y} v_{x x}-2 u_{x y} v_{x y}
$$

The perpendicular load is represented by the function q.
We impose upon f the boundary conditions

$$
\begin{equation*}
f=f_{n}=0 \quad \text { on } \quad \Gamma . \tag{2.3}
\end{equation*}
$$

The subscript n denotes the derivative along the outer unit normal $n=\left(n_{x}, n_{y}\right)$ with respet to Ω.

[^0]The boundary conditions (2.3) imply, in a certain sense, that the edge of the plate is free of lateral tractions. ${ }^{1}$)

Remark 2.1. We have restricted ourselves to the homogeneous boundary conditions (2.3) only for the sake of simplicity. The inhomogeneous boundary conditions $f=g_{0}, f_{n}=g_{1}$ can be treated by applying the method of reformulation presented in [4] (if corners are permitted on Γ, certain compatibility conditions upon g_{0} and g_{1} are necessary; cf. [4] for details).

Before we turn to the formulation of the unilateral boundary conditions, we introduce the boundary operators

$$
\begin{gathered}
M(u)=\mu \Delta u+(1-\mu)\left(u_{x x} n_{x}^{2}+2 u_{x y} n_{x} n_{y}+u_{y y} n_{y}^{2}\right) \\
T(u)=-\frac{\partial}{\partial n} \Delta u+(1-\mu) \frac{\partial}{\partial s}\left[u_{x x} n_{x} n_{y}-u_{x y}\left(n_{x}^{2}-n_{y}^{2}\right)-u_{y y} n_{x} n_{y}\right]
\end{gathered}
$$

where $\mu=\mathbf{c o n s t}\left(0<\mu<\frac{1}{2}\right)$ is the Poisson ratio of the plate material, $s=\left(-n_{y}, n_{x}\right)$. . $M(w)$ may be interpreted as the bending moment of the plate along the edge Γ, while $T(w)$ may be understood as the shearing force.
2.1. Conditions with respect to a rotation on Γ. We consider the boundary condition $w=0$ on Γ, i.e., the plate is supported along Γ. If under this condition the elastic energy of the plate bending vanishes then it follows $w \equiv 0$ (cf. [4]).

Further, let us introduce the boundary condition

$$
T(w)+e_{0} w=m_{0} \quad \text { on } \quad \Gamma
$$

where

$$
\left.e_{0}, m_{0} \in L^{1}(\Gamma)^{2}\right), \quad e_{0} \geqq 0 \quad \text { a.e. on } \Gamma .
$$

This condition corresponds to a plate whose edge is elastically supported and loaded by the transversal force m_{0} (cf. [4]). The inequality $e_{0} \geqq 0$ is based on the fact that the deformation energy of the elastic supports cannot be negative, i.e., $\int_{\Gamma} e_{0} w^{2} \mathrm{~d} s \geqq 0$.

In the present Part I, the above boundary condition will be considered under the following additional assumption:

[^1](*) $\quad \int_{\Gamma} e_{0} p_{1}^{2} \mathrm{~d} s=0$ implies $p_{1} \equiv 0 \quad$ for all polynomials of the degree
$$
\leqq 1 \text { in } x \text { and } y
$$

The latter condition guarantees that if both the energy of the plate bending and that of the elastic supports vanish, then $w \equiv 0$ (cf. [4]).
1° Unilateral rotation on Γ. Let us suppose that if the plate rotates from its support, then there are no bending moments, i.e., $w_{n}>0$ implies $M(w)=0$ on Γ. On the other hand, if the bending moments are positive, then the plate is forced onto the support, i.e., $M(w)>0$ implies $w_{n}=0$.

Thus, we have the conditions

$$
\left\{\begin{array}{l}
w=0 \quad \text { on } \quad \Gamma \tag{2.4}\\
\left.w_{n}=0, \quad M(w) \geqq 0, \quad w_{n} M(w)=0 \quad \text { on } \quad \Gamma,{ }^{1}\right)
\end{array}\right.
$$

(cf. [2], [3]), on

$$
\left\{\begin{array}{l}
w_{n} \geqq 0, \quad M(w) \geqq 0, \quad w_{n} M(w)=0 \text { on } \Gamma, \tag{2.5}\\
T(w)+e_{0} w=m_{0} \text { on } \Gamma .
\end{array}\right.
$$

In the presence of corners on $\Gamma,(2.5)$ has to be completed by the conditions

$$
\begin{equation*}
H\left(w^{-}\right)=H\left(w^{+}\right)=0 \tag{+}
\end{equation*}
$$

at the corners, where

$$
H(w)=(1-\mu)\left[w_{x x} n_{x} n_{y}-w_{x y}\left(n_{x}^{2}-n_{y}^{2}\right)-w_{y y} n_{x} n_{y}\right]
$$

(see [4] for details) ${ }^{2}$) The condition (+) may be interpreted as the vanishing of the jump of the twisting moment at the corner under consideration.

Remark 2.2. We introduce the subsets

$$
\Gamma^{\prime}=\left\{(x, y) \in \Gamma: w_{n}=0\right\}, \quad \Gamma^{\prime \prime}=\left\{(x, y) \in \Gamma: w_{n}>0\right\}
$$

Thus $\Gamma=\Gamma^{\prime} \cup \Gamma^{\prime \prime}$, and one gets from (2.4)

$$
\begin{aligned}
& w=w_{n}=0 \quad \text { on } \Gamma^{\prime} \quad \text { (clamped part) } \\
& w=M(w)=0 \quad \text { on } \Gamma^{\prime \prime} \quad \text { (simply supported part) } .
\end{aligned}
$$

[^2]However, the subsets Γ^{\prime} and $\Gamma^{\prime \prime}$ are unknown in (2.4).
2° Rotation with friction. Let k be a positive constant (connected with the plate material). We assume that if the absolute value of the bending moment $M(w)$ is less than k, then there is no rotation of the points of Γ, i.e., $|M(w)|<k$ implies $w_{n}=0$ on Γ. But if $|M(w)|$ attains the value k, rotation of the plate on Γ may take place provided there is a small perturbation.

Describing the situation considereed we obtain the following conditions upon w :

$$
\left\{\begin{align*}
& w=0 \text { on } \Gamma \tag{2.6}\\
&|M(w)| \leqq k \text { on } \Gamma: \\
&|M(w)|<k \text { implies } w_{n}=0 \\
& M(w)=k \text { implies } w_{n} \leqq 0 \\
& M(w)=-k \text { implies } w_{n} \geqq 0
\end{align*}\right.
$$

(cf. [2], [3]), and

$$
\left\{\begin{array}{l}
|M(w)| \leqq k \text { on } \Gamma: \tag{2.7}\\
|M(w)|<k \text { implies } w_{n}=0, \\
M(w)=k \text { implies } w_{n} \leqq 0, \\
M(w)=-k \text { implies } w_{n} \geqq 0, \\
T(w)+e_{0} w=m_{0} \text { on } \Gamma
\end{array}\right.
$$

where in the latter system conditions of the type $(+)$ have to be included if the boundary is permitted to have corners.

It is readily verified that the system of inequalities in (2.6) (and (2.7) may be replaced equivalently by

$$
|M(w)| \leqq k, \quad w_{n} M(w)+k\left|w_{n}\right|=0 \quad \text { on } \quad \Gamma .
$$

Remark 2.3. Turning back to (2.6), we define

$$
\begin{gathered}
\Gamma^{(1)}=\left\{(x, y) \in \Gamma: w_{n}=0\right\}, \\
\Gamma^{(2)}=\left\{(x, y) \in \Gamma: w_{n}>0\right\}, \quad \Gamma^{(3)}=\left\{(x, y) \in \Gamma: w_{n}<0\right\} .
\end{gathered}
$$

Then $\Gamma=\Gamma^{(1)} \cup \Gamma^{(2)} \cup \Gamma^{(3)}$, and

$$
\begin{aligned}
& w=w_{n}=0 \quad \text { on } \Gamma^{(1)} \\
& w=0, \quad M(w)=-k \text { on } \Gamma^{(2)} \\
& w=0, \quad M(w)=k \text { on } \Gamma^{(3)}
\end{aligned}
$$

i.e., the plate is clamped on $\Gamma^{(1)}$, and supported and loaded by a moment distribution on $\Gamma^{(2)} \cup \Gamma^{(3)}$. As above, the decomposition of Γ is unknown.
2.2 Conditions with respect to a displacement on a part of Γ. In this section we also subject w to boundary conditions such that $w \equiv 0$ if the energy of the plate bending vanishes (cf. [4]).

To this end, let Γ be decomposed into two mutually disjoint (measurable) subsets Γ_{0} and Γ_{1}, i.e., $\Gamma=\Gamma_{0} \cup \Gamma_{1}$. We introduce the conditions

$$
w=w_{n}=0 \quad \text { on } \quad \Gamma_{0}, \quad M(w)+e_{1} w_{n}=m_{1} \quad \text { on } \quad \Gamma_{1},
$$

where

$$
e_{1}, m_{1} \in L^{p}\left(\Gamma_{1}\right)(1<p<\infty), \quad e_{1} \geqq 0 \quad \text { a. e. on } \Gamma_{1} .
$$

These conditions mean that the plate is clamped along Γ_{0}, while along Γ_{1} it is elastically clamped and loaded by a moment distribution m_{1}. The inequality $e_{1} \geqq 0$ is based on the fact that the deformation energy of the elastic clampings is non-negative. Moreover, we suppose that the following condition is fulfilled:

$$
\begin{equation*}
\operatorname{mes}\left(\Gamma_{0}\right)>0 \tag{**}
\end{equation*}
$$

If $\left({ }^{* *}\right)$ holds then the vanishing of the energy of the plate bending implies $w \equiv 0$.
Without further reference, in the presence of corners on Γ_{1}, the boundary condition $(+)$ is assumed to hold at the corners.

We complete the boundary condition on $\Gamma_{\mathbf{1}}$ by various unilateral conditions upon w and $T(w)$.
1° Unilateral displacement on Γ_{1}. Let the plate partially lie on a rigid support. In more detail, if the plate can move from the support then there are no shearing forces, i.e., $w>0$ implies $T(w)=0$. On the other hand, if the shearing forces become positive then the plate lies on the support, i.e., $T(w)>$ implies $w=0$.

Thus, one obtains the system of conditions

$$
\left\{\begin{array}{l}
w=w_{n}=0 \quad \text { on } \Gamma_{0}, \tag{2.8}\\
w \geqq 0, \quad T(w) \geqq 0, \quad w T(w)=0 \\
M(w)+e_{1} w_{n}=m_{1}
\end{array}\right\} \text { on } \Gamma_{1} .
$$

2° Displacement with friction on Γ_{1}, Let a positive constant g be given (depending on the friction properties of the plate material). We then assume that no motion of the plate (along Γ_{1}) takes place if the absolute value of $T(w)$ is less than g, i.e., $|T(w)|<g$ implies $w=0$. But if $|T(w)|$ attains g, a motion of the plate may occur provided there is a small perturbation on Γ_{1}.

Describing such a boundary configuration, we state the conditions.

$$
\left\{\begin{array}{c}
\mathrm{w}=w_{n}=0 \text { on } \Gamma_{0}, \tag{2.9}\\
|T(w)| \leqq g \text { on } \Gamma_{1}: \\
|T(w)|<g \text { implies } w=0, \\
T(w)=g \text { implies } w \leqq 0, \\
T(w)=-g \text { implies } w \geqq 0, \\
M(w)+e_{1} w_{n}=m_{1} \text { on } \Gamma_{1} .
\end{array}\right.
$$

The system of inequalities in (2.9) is equivalent to

$$
|T(w)| \leqq g, \quad w T(w)+g|w|=0 \quad \text { on } \quad \Gamma_{1} .
$$

3° Plate elastically constrained on Γ_{1}. We suppose that the plate can move freely on Γ_{1} if the absolute value of the deflection on Γ_{1} remains bounded by a constant, say 1 , i.e., $T(w)=0$ (no shearing forces) if $|w| \leqq 1$. Beyond the bound 1 there are elastic constraints, i.e., $T(w)=-\sigma w(1-1 /|w|)$ if $|w|>1$ (here σ is a given positive constant).

We get the system of conditions

$$
\left.\begin{array}{rl}
\mathrm{w} & =w_{n}^{\prime}=0 \quad \text { on } \Gamma_{0} \\
T(w) & =0 \text { if }|w| \leqq 1, \tag{2.10}\\
T(w) & =-\sigma w(1-1 /|w|) \text { if }|w|>1, \\
M(w) & +e_{1} w_{n}=m_{1}
\end{array}\right\} \text { on } \Gamma_{1} .
$$

The second group of the conditions in (2.10) corresponds to (13) (second line) and (19) in [3] $\left(e_{1}=m_{1}=0\right)$.

Remark 2.4. The conditions $w=w_{n}=0$ on Γ_{0} represent only one case of boundary conditions to which the edge of the plate can be subjected along Γ_{0}. Other conditions are

$$
w=0, \quad M(w)+g_{1} w_{n}=r_{1} \quad \text { on } \quad \Gamma_{0}
$$

(Γ_{0} is not a segment of a straight line),
or

$$
\begin{gathered}
M(w)+k_{1} w_{n}=t_{1}, \quad T(w)+k_{0} w=t_{0} \text { on } \Gamma_{0} \\
\int_{\Gamma_{0}} k_{0} p_{1}^{2} \mathrm{~d} s=0 \text { implies } p_{1} \equiv 0 \text { for all polymomials of the degree } \\
\leqq 1 \text { in } x \text { and } y
\end{gathered}
$$

(cf. [4]). Each of these conditions implies $w \equiv 0$ if the energy of the plate bending vanishes.

As will be seen in the following section, the variational formulation of (2.1)-(2.3), (2.8) (or 2.9), (2.10)) can be extended in a straightforward manner to the above boundary conditions.

Remark 2.5. If we are given a decomposition of Γ into disjoint parts, various mixed unilateral boundary conditions of the types stated above can be investigated. Moreover, one can combine unilateral boundary conditions with inhomogeneous boundary conditions (equations) in [4]. For example, if the decomposition $\Gamma=$ $=\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}$ is given one may introduce the conditions

$$
\left.\begin{array}{l}
w=w_{n}=0 \quad \text { on } \quad \Gamma_{1}, \\
w \geqq 0, \quad T(w) \geqq 0, \quad w T(w)=0 \\
M(w)+k_{1} w_{n}=t_{1} \\
M(w)+e_{1} w_{n}=m_{1}, \quad T(w)+e_{0} w=m_{0} \quad \text { on } \Gamma_{3} .
\end{array}\right\} \text { on } \Gamma_{2},
$$

The variational formulation of all these more general boundary value problems is included in our unified setting introduced in Section 5.

3. NOTATION. VARIATIONAL FORMULATION

Let the boundary Γ of the domain Ω be Lipschitzian (i.e., Γ is permitted to have corners). ${ }^{1}$)

We denote by $L^{p}(\Omega)(1 \leqq p<\infty)$ the space of all real functions which are integrable with power p on Ω (with respect to the Lebesgue measure $\mathrm{d} x \mathrm{~d} y$).

Using the notation

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}, \quad|\alpha|=\alpha_{1}+\alpha_{2}
$$

we define for any integer $m \geqq 1$

$$
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega) \text { for }|\alpha| \leqq m\right\}
$$

(the derivatives are taken in the sense of distributions). $W^{m, p}(\Omega)$ is a Banach space with respect to the norm

$$
\|u\|_{m, p}=\left\{\int_{\Omega}|u|^{p} \mathrm{~d} x \mathrm{~d} y+\sum_{|\alpha|=m} \int_{\Omega}\left|D^{\alpha} u\right|^{p} \mathrm{~d} x \mathrm{~d} y\right\}^{1 / p}
$$

The scalar product

$$
(u, v)_{m, 2}=\int_{\Omega} u v \mathrm{~d} x \mathrm{~d} y+\sum_{|\alpha|=m} \int_{\Omega} D^{\alpha} u D^{\alpha} v \mathrm{~d} x \mathrm{~d} y
$$

turns $W^{m, 2}(\Omega)$ a Hilbert space.
Let $\mathscr{D}(\bar{\Omega})$ denote the space of all infinitely continuously differentiable functions in Ω which together with all their derivatives can be continuously extended onto $\bar{\Omega}$.

Putting

$$
\begin{aligned}
& \mathscr{V}_{1}=\{u \in \mathscr{D}(\bar{\Omega}): u=0 \text { on } \Gamma\}, \\
& \mathscr{V}_{2}=\left\{u \in \mathscr{D}(\bar{\Omega}): u=u_{n}=0 \text { on } \Gamma_{0}\right\},
\end{aligned}
$$

where $\Gamma=\Gamma_{0} \cap \Gamma_{1}$ is the decomposition according to Section 2.2, we introduce the spaces

[^3]\[

$$
\begin{aligned}
& V_{1}=\text { closure of } \mathscr{V}_{1} \text { in } W^{2,2}(\Omega), \\
& V_{2}=\text { closure of } \mathscr{V}_{2} \text { in } W^{2,2}(\Omega) .
\end{aligned}
$$
\]

Observing the Sobolev Imbedding Theorem and the Trace Theorem, one obtains

$$
\left.\begin{array}{ll}
u=0 & \text { pointwise on } \Gamma, \quad \forall u \in V_{1}, \\
u=0 & \text { pointwise on } \Gamma_{0}, \\
u_{n}=0 & \text { a.e. on } \Gamma_{0} \text { (in the trace sense) }
\end{array}\right\} \forall u \in V_{2} .
$$

For treating the boundary value problems stated in Section 2, it is convenient to introduce another product on $V_{1}, W^{2,2}(\Omega)$ and V_{2}. To this end, we define for $u, v \in W^{2,2}(\Omega)$ the bilinear form

$$
A(u, v) \equiv \int_{\Omega}\left[u_{x x} v_{x x}+2(1-\mu) u_{x y} v_{x y}+u_{y y} v_{y y}+\mu\left(u_{x x} v_{y y}+u_{y y} v_{x x}\right)\right] \mathrm{d} x \mathrm{~d} y
$$

(recall that μ denotes the Poisson ratio of the plate material).
From [4] we obtain:
There exist constants c_{i} and $c_{i}^{\prime}(i=1,2,3)$ such that

$$
\begin{align*}
& c_{1}\|u\|_{2,2}^{2} \leqq A(u, u) \leqq c_{1}^{\prime}\|u\|_{2,2}^{2} \quad \forall u \in V_{1} ; \tag{3.1}\\
& c_{2}\|u\|_{2,2}^{2} \leqq A(u, u)+\int_{\Gamma} e_{0} u^{2} \mathrm{~d} s \leqq c_{2}^{\prime}\|u\|_{2,2}^{2} \quad \forall u \in W^{2,2}(\Omega) ; \tag{3.2}\\
& c_{3}\|u\|_{2,2}^{2} \leqq A(u, u) \leqq c_{3}^{\prime}\|u\|_{2,2}^{2} \quad \forall u \in V_{2} . \tag{3.3}
\end{align*}
$$

From (3.1) or (3.3) we conclude respectively that V_{1} and V_{2} are Hilbert spaces with respect to the scalar product $A(u, v)$. By (3.2), the scalar product $A(u, v)+$ $+\int_{\Gamma} e_{0} u v$ d s turns $W^{2,2}(\Omega)$ a Hilbert space. Henceforth, V_{1} as well as $W^{2,2}(\Omega), V_{2}$ will be understood to be furnished with the scalar product mentioned.

We denote by $\mathscr{D}(\Omega)$ the space of all infinitely continuously differentiable functions having their support in Ω. Let $W_{0}^{m, 2}(\Omega)$ be the closure of $\mathscr{D}(\Omega)$ in $W^{m, 2}(\Omega) . W_{0}^{m, 2}(\Omega)$ is a Hilbert space with respect to the scalar product

$$
(u, v)_{m, 2 ; 0}=\sum_{|\alpha|=m} \int_{\Omega} D^{\alpha} u D^{\alpha} v \mathrm{~d} x \mathrm{~d} y
$$

(cf. [8]). The norms $\|\cdot\|_{m, 2}$ and $\|\cdot\|_{m, 2 ; 0}=(\cdot, \cdot)_{m, 2 ; 0}^{1 / 2}$ are equivalent on $W_{0}^{m, 2}(\Omega)$. In particular, the equivalence of $\|\cdot\|_{2,2 ; 0}$ to $\{A(\cdot, \cdot)\}^{1 / 2}$ on the space $W_{0}^{2,2}(\Omega)$ is readily seen.

Thus, we have

$$
W_{0}^{2,2}(\Omega) \subset V_{i} \subset W^{2,2}(\Omega), \quad(i=1,2)
$$

where each injection is continuous.

For our discussion we also need the spaces $W^{s, 2}(\Gamma)(s>0$, real). However, we omitt their detailed definition, and refer to [8] (cf. also [7]).

Let $C(\bar{\Omega})$ be the space of all continuous functions in Ω which have a continuous extension onto $\bar{\Omega}$. Then by $[C(\bar{\Omega})]^{\prime}$ we denote the dual space of $C(\bar{\Omega})$ and by $\langle m, \varphi\rangle$ the dual pairing between $m \in[C(\bar{\Omega})]^{\prime}$ and $\varphi \in C(\bar{\Omega})$. Unless otherwise stated, throughout the paper we assume $q \in[C(\bar{\Omega})]^{\prime}$ (let us refer to [4] for some particular cases of q).

We introduce finally the sets

$$
\begin{aligned}
& K_{1}=\left\{u \in W^{2,2}(\Omega): u_{n} \geqq 0 \text { a.e. on } \Gamma\right\}, \\
& K_{2}=\left\{u \in W^{2,2}(\Omega): u \geqq 0 \text { on } \Gamma_{1}\right\}
\end{aligned}
$$

($\Gamma=\Gamma_{0} \cup \Gamma_{1}$ denotes the decomposition according to Section 2.2). It is readily verified that $K_{i}(i=1,2)$ is a closed convex cone in $W^{2,2}(\Omega)$.

Definition 3.1.

1° The pair $\{f, w\}$ is called a variational solution to (2.1)-(2.3), (2.4) iff $\in W^{2,2}(\Omega)$ $w \in V_{1} \cap K_{1}$, and if

$$
\begin{equation*}
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[w, w] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega) ; \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
A(w, v-w) \geqq \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\langle q, v-w\rangle \quad \forall v \in V_{1} \cap K_{1} \tag{3.4}
\end{equation*}
$$

2° The pair $\{f, w\}$ is called a variational solution to (2.1)-(2.3), (2.5) if $f \in$ $\in W_{0}^{2,2}(\Omega), w \in K_{1},\{f, w\}$ satisfies (3.4 $)$, and if

$$
\begin{gather*}
A(w, v-w)+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s \geqq \tag{3.5}\\
\geqq \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma} m_{0}(v-w) \mathrm{d} s+\langle q, v-w\rangle \quad \forall v \in K_{1} .
\end{gather*}
$$

3° The pair $\{f, w\} \in W_{0}^{2,2}(\Omega) \times V_{1}$ is called a variational solution to $(2.1)-(2.3)$, (2.6) if $\{f, w\}$ satisfies (3.4 $)$, and if

$$
\begin{align*}
& A(w, v-w)+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq \tag{3.6}\\
\geqq & \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\langle q, v-w\rangle \quad \forall v \in V_{1} .
\end{align*}
$$

4° The pair $\{f, w\} \in W_{0}^{2,2}(\Omega) \times W^{2,2}(\Omega)$ is called a variational solution to $(2.1)-$ (2.3), (2.7) if $\{f, w\}$ satisfies $\left(3.4_{0}\right)$, and if

$$
\begin{gather*}
A(w, v-w)+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq \tag{3.7}\\
\geqq \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma} m_{0}(v-w) \mathrm{d} s+\langle q, v-w\rangle \quad \forall v \in W^{2,2}(\Omega) .
\end{gather*}
$$

In order to motivate the definitions introduced let $\{f, w\}$ be a sufficiently regular solution to (2.1) - (2.3), (2.4), and let $q \in L^{1}(\Omega)$. Moreover, suppose that the boundary Γ is infinitely differentiable.

Multiplying (2.1) by the test function ψ and integrating by parts the expression $\Delta^{2} f \psi$, the integral identity (3.4_{0}) is easily obtained.
Next, $w=0$ on Γ implies $w \in V_{1}$ (see Section 4), and since $w_{n} \geqq 0$ on Γ, it holds $w \in V_{1} \cap K_{1}$. We now multiply (2.2) by $v-w$ and integrate by parts $\Delta^{2} w(v-w)$. We get

$$
\begin{gathered}
A(w, v-w)= \\
=\int_{\Omega} A^{2} w(v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s= \\
=\int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Omega} q(v-w) \mathrm{d} x \mathrm{~d} y+ \\
+\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s
\end{gathered}
$$

for arbitrary $v \in W^{2,2}(\Omega)$ (cf. [8]). By (2.4),

$$
\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s=\int_{\Gamma} M(w) v_{n} \mathrm{~d} s \geqq 0 \quad \forall v \in V_{1} \cap K_{1}
$$

and (3.4) is obtained immediately.
If $\{f, w\}$ is a sufficiently regular solution to (2.1) -(2.3), (2.5), we have
$\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s \geqq \int_{\Gamma}\left(-e_{0} w+m_{0}\right)(v-w) \mathrm{d} s \quad \forall v \in K_{1}$
which implies (3.5).
In order to obtain the inequality in (3.6) we remark that the system of inequalities in (2.6) (and (2.7)) is equivalent to

$$
\begin{gathered}
k|h|-k\left|w_{n}\right| \geqq[-M(w)]\left(h-w_{n}\right) \\
\text { a.e. on } \Gamma, \text { for any } h \in L^{2}(\Gamma)
\end{gathered}
$$

(cf. also (2.6')). Therefore, if w satisfies (2.6) one obtains
$\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s \geqq-k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s+k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \quad \forall v \in V_{1}$,
and if w satisfies (2.7),

$$
\begin{gathered}
\int_{\Gamma} T(w)(v-w) \mathrm{d} s+\int_{\Gamma} M(w)\left(v_{n}-w_{n}\right) \mathrm{d} s \geqq \\
\geqq \int_{\Gamma}\left(-e_{0} w+m_{0}\right)(v-w) \mathrm{d} s-k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s+k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \quad \forall v \in W^{2,2}(\Omega)
\end{gathered}
$$

Thus, (3.6) and (3.7) are satisfied by a sufficiently regular solution to (2.1)-(2.3) with (2.6) and (2.7)), respectively.

Definition 3.2.

1° The pair $\{f, w\}$ is called a variational solution to $(2.1)-(2.3),(2.8)$ if $f \in W_{0}^{2,2}(\Omega)$ $w \in V_{2} \cap K_{2},\{f, w\}$ satisfies (3.40), and if

$$
\begin{gather*}
A(w, v-w)+\int_{\Gamma_{1}} e_{1} w_{n}\left(v_{n}-w_{n}\right) \mathrm{d} s \geqq \tag{3.8}\\
\geqq \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma_{1}} m_{1}\left(v_{n}-w_{n}\right) \mathrm{d} s+\langle q, v-w\rangle \quad \forall v \in V_{2} \cap K_{2} .
\end{gather*}
$$

2° The pair $\{f, w\} \in W_{0}^{2,2}(\Omega) \times V_{2}$ is called a variational solution to (2.1)-(2.3), (2.9) if $\{f, w\}$ satisfies $\left(3.4_{0}\right)$, and if

$$
\begin{align*}
& A(w, v-w)+\int_{\Gamma_{1}} e_{1} w_{n}\left(v_{n}-w_{n}\right) \mathrm{d} s+g \int_{\Gamma_{1}}|v| \mathrm{d} s-g \int_{\Gamma_{1}}|w| \mathrm{d} s \geqq \tag{3.9}\\
\geqq & \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma_{1}} m_{1}\left(v_{n}-w_{n}\right) \mathrm{d} s+\langle q, v-w\rangle \quad \forall v \in V_{2} .
\end{align*}
$$

3° The pair $\{f, w\} \in W_{0}^{2,2}(\Omega) \times V_{2}$ is called a variational solution to (2.1)-(2.3), (2.10) if $\{f, w\}$ satisfies $\left(3.4_{0}\right)$, and if
(3.10) $A(w, v-w)+\int_{\Gamma_{1}} e_{1} w_{n}\left(v_{n}-w_{n}\right) \mathrm{d} s+\sigma \int_{\Gamma_{1}} j_{1}(v) \mathrm{d} s-\sigma \int_{\Gamma_{1}} j_{1}(w) \mathrm{d} s \geqq$

$$
\geqq \int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y+\int_{\Gamma_{1}} m_{1}\left(v_{n}-w_{n}\right) \mathrm{d} s+\langle q, v-w\rangle \quad \forall v \in V_{2} .
$$

In (3.10) we have used the notation

$$
j_{1}(r)=\left\{\begin{array}{lll}
r\left(\frac{1}{2} r+1\right) & \text { if } r<-1 \\
-\frac{1}{2} & \text { if }-1 \leqq r \leqq 1 \\
r\left(\frac{1}{2} r-1\right) & \text { if } r>1
\end{array}\right.
$$

The conditions upon $T(w)$ in $(2,10)$ are then equivalent to

$$
\begin{gathered}
\sigma j_{1}(v)-\sigma j_{1}(w) \geqq[-T(w)](\mathrm{v}-w) \\
\text { a.e. on } \Gamma_{1}, \text { for all } v \in L^{2}\left(\Gamma_{1}\right) .
\end{gathered}
$$

Indeed, we have

$$
-T(w)= \begin{cases}\sigma(w+1) & \text { if } \quad w<-1 \\ 0 & \text { if }-1 \leqq w \leqq 1 \\ \sigma(w-1) & \text { if } \quad w>1\end{cases}
$$

Observing that

$$
j_{1}^{\prime}(r)=\left\{\begin{array}{lll}
r+1 & \text { if } \quad r<-1 \\
0 & \text { if } & -1 \leqq r \leqq 1 \\
r-1 & \text { if } \quad r>1
\end{array}\right.
$$

and

$$
j_{1}(s)-j_{1}(r) \geqq j_{1}^{\prime}(r)(s-r) \quad \forall s, r \in R^{1},
$$

one obtains the desired assertion.
The Definitions 3.2, $1^{\circ}, 2^{\circ}, 3^{\circ}$ originate from (2.1)-(2.3) and (2.8), (2.9), (2.10), respectively, by similar considerations as above.

4. INTERPRETATION OF THE EQUATIONS AND
 THE UNILATERAL BOUNDARY CONDITIONS

In the present section, we discuss the problem in which sense the equations (2.1), (2.2) and the boundary conditions in (2.4)-(2.7) are satisfied by the corresponding variational solution.

Let $\{f, w\}$ be a variational solution to (2.1)-(2.4) (cf. Definition 3.1, 1°). Since $[u, v] \in L^{1}(\Omega)$ for any $u, v \in W^{2,2}(\Omega)$, the integral identity in (3.4 $)$ immediately yields

$$
\left.\Delta^{2} f=-[w, w] \text { in the sense of } \mathscr{D}^{\prime}(\Omega) \cdot{ }^{1}\right)
$$

Let $\varphi \in \mathscr{D}(\Omega)$ be arbitrary. It holds $v=w+\varphi \in V_{1} \cap K_{1}$, and the inequality in (3.4) implies

$$
A(w, \varphi)=\int_{\Omega}[f, w] \varphi \mathrm{d} x \mathrm{~d} y+\langle q, \varphi\rangle
$$

In virtue of $q \in[C(\bar{\Omega})]^{\prime}$ it follows

[^4]\[

$$
\begin{equation*}
\Delta^{2} w=[f, w]+q \quad \text { in the sense of } \mathscr{D}^{\prime}(\Omega) . \tag{4.1}
\end{equation*}
$$

\]

In order to proceed to the discussion of the (unstable) boundary conditions, we make the following assumptions:
(a) Γ is infinitely differentiable; ${ }^{1}$)
(b) $[f, w] \in L^{2}(\Omega), \quad q \in L^{2}(\Omega)$.

Remark 4.1. Assuming (a), the application of the elliptic regularity theory to the Dirichlet problem $\Delta^{2} f=-[w, w]$ in $\Omega, f=f_{n}=0$ on Γ (where $w \in W^{2,2}(\Omega)$) yields $f \in W^{3, r}(\Omega), 1 \leqq r<2$ (cf. [5]). This implies $D^{x} f \in L^{2 r /(2-r)}(\Omega)$ for $|\alpha|=2$, and thus $[f, w] \in L(\Omega)$.

Regularity results for the variational solution to (2.1), (2.2) in the case of the boundary conditions $w=M(w)=0$ and $M(w)=T(w)=0$ on Γ, respectively, have been obtained in [5]. In particular, $[f, w] \in L^{2}(\Omega)$ is obviously satisfied.

However, analogous regularity results for variational solutions of our unilateral problems are unknown (even in the linear case $\Delta^{2} w=q$). Therefore, to give an interpretation of the unilateral boundary conditions stated in Section 2.1, we are forced to assume the regularity property $[f, w] \in L^{2}(\Omega)$.

Let the assumptions (a), (b) be satisfied throughout the present section.
We have

$$
w \in W^{2,2}(\Omega), \quad \Delta^{2} w \in L^{2}(\Omega) .
$$

From [7, Chapter 2] one concludes that

$$
\begin{gather*}
\left.M(w) \in W^{-1 / 2,2}(\Gamma), \quad T(w) \in W^{-3 / 2,2}(\Gamma),^{2}\right) \tag{4.2}\\
A(w, v)=\int_{\Omega} \Delta^{2} w v \mathrm{~d} x \mathrm{~d} y+\langle T(w), v\rangle_{3 / 2}+\left\langle M(w), v_{n}\right\rangle_{1 / 2} \quad \forall v \in W^{2,2}(\Omega) . \tag{4.3}
\end{gather*}
$$

Remark 4.2. In order to obtain (4.2), (4.3) the proper ellipticity of Δ^{2} and the normality of the system M, T are necessary. This is verified in detail in [5].

Observing (4.1) (which in fact is true in $L^{2}(\Omega)$) one derives from (4.3)

$$
\begin{gathered}
\langle T(w), v\rangle_{3 / 2}+\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2}= \\
=A(w, v-w)-\int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y-\int_{\Omega} q(v-w) \mathrm{d} x \mathrm{~d} y
\end{gathered}
$$

[^5]for all $v \in W^{2,2}(\Omega)$. By (3.4),
$$
\left.M(w), v_{n}-q_{n}\right\rangle_{1 / 2} \geqq 0 \quad \forall v \in V_{1} \cap K_{1} .
$$

Thus,

$$
\left\{\begin{array}{l}
w=0 \quad \text { pointwise on } \Gamma, \tag{4.4}\\
w_{n} \geqq 0 \quad \text { a.e. on } \Gamma \text { (in the trace sense), } \\
\left\langle M(w), v_{n}\right\rangle_{1 / 2} \geqq 0 \quad \forall v \in V_{1} \cap K_{1}, \quad\left\langle M(w), w_{n}\right\rangle_{1 / 2}=0 .
\end{array}\right.
$$

We may consider the conditions upon $M(w)$ in (4.4) as a generalization of the corresponding conditions in (2.4) (second line). Indeed, let $M(w) \in L^{2}(\Gamma)$. We then have

$$
\int_{\Gamma} M(w) v_{n} \mathrm{~d} s \geqq 0 \quad \forall v \in V_{1} \cap K_{1}, \quad \int_{\Gamma} M(w) w_{n} \mathrm{~d} s=0 .
$$

By a standard argument one concludes that $M(w) \geqq 0$ a.e. on Γ, and that $w_{n} M(w)=0$ a.e. on Γ.

Let now $\{f, w\}$ be a variational solution to (2.1)-(2.3), (2.5) (cf. Definition 3.1, 2°). As above, (4.1) follows immediately. By virtue the assumptions (a) and (b) we have (4.2) and (4.3). Taking into account (3.5) we obtain

$$
\begin{gathered}
\langle T(w), v-w\rangle_{3 / 2}+\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2}+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s- \\
-\int_{\Gamma} m_{0}(v-w) \mathrm{d} s=\mathrm{A}(w, v-w)+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s- \\
-\int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y-\int_{\Gamma} m_{0}(v-w) \mathrm{d} s-\int_{\Omega} q(v-w) \mathrm{d} x \mathrm{~d} y \geqq 0 \quad \forall v \in K_{1} .
\end{gathered}
$$

In order to proceed further we suppose

$$
\begin{equation*}
\left.e_{0}, m_{0} \in L^{2}(\Gamma) .^{1}\right) \tag{4.5}
\end{equation*}
$$

By means of (4.5) the above inequality can be written in the form

$$
\begin{equation*}
\left\langle T(w)+e_{0} w-m_{0}, v-w\right\rangle_{3 / 2}+\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2} \geqq 0 \quad \forall v \in K_{1} . \tag{4.6}
\end{equation*}
$$

Let $h \in W^{3 / 2,2}(\Gamma)$ be arbitrarily given. By the surjectivity of the trace mapping (cf. [7]), there exists $a \bar{v} \in W^{2,2}(\Omega)$ such that $\bar{v}=h, \bar{v}_{n}=0$ on Γ. Set $v=\bar{v}+w$. Then $v \in K_{1}$, and (4.6) changes into

$$
\left\langle T(w)+e_{0} w-m_{0}, h\right\rangle_{3 / 2}=0 \quad \forall h \in W^{3 / 2,2}(\Gamma) .
$$

[^6]We obtain

$$
\begin{gathered}
w_{n} \geqq 0 \quad \text { a.e. on } \Gamma \text { (in the trace sense) }, \\
\left\langle M(w), v_{n}\right\rangle_{1 / 2} \geqq 0 \quad \forall v \in K_{1},\left\langle M(w), w_{n}\right\rangle_{1 / 2}=0, \\
T(w)+e_{0} w-m_{0}=0 \quad \text { in the sense of } \mathrm{W}^{-3 / 2,2}(\Gamma) .
\end{gathered}
$$

These conditions represent a generalization of (2.5): if $M(w) \in L^{2}(\Gamma)$ then it holds $M(w) \geqq 0, w_{n} M(w)=0$ a.e. on Γ, and if $T(w) \in L^{2}(\Gamma)$ one gets $T(w)+e_{0} w-m_{0}=0$ a.e. on Γ.

Let $\{f, w\}$ be a variational solution to (2.1)-(2.3), (2.6) (cf. Definition 3.1, 3°). We discuss the intepretation of the system of inequalities in (2.6).

By (3.6),

$$
\begin{gathered}
\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2}+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s= \\
=A(w, v-w)+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s- \\
-\int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y-\int_{\Omega} q(v-w) \mathrm{d} x \mathrm{~d} y \geqq 0 \quad \forall v \in V_{1} .
\end{gathered}
$$

Hence

$$
\begin{equation*}
k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq\left\langle-M(w), v_{n}-w_{n}\right\rangle_{1 / 2} \quad \forall v \in V_{1} . \tag{4.7}
\end{equation*}
$$

An easy calculation yields that (4.7) is equivalent to

$$
\begin{gathered}
\left|\left\langle M(w), v_{n}\right\rangle_{1 / 2}\right| \leqq k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s \quad \forall v \in V_{1}, \\
\left\langle M(w), w_{n}\right\rangle_{1 / 2}+k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s=0 .
\end{gathered}
$$

The latter may be regarded as a generalization of (2.6'). To make this clearer, let $M(w) \in L^{2}(\Gamma)$. Then (4.7) turns into

$$
k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq \int_{\Gamma}[-M(w)]\left(v_{n}-w_{n}\right) \mathrm{d} s \quad \forall v \in V_{1} .
$$

To proceed we note that

$$
\left.V_{1}=W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega) \cdot{ }^{1}\right)
$$

[^7]Since the $v_{n \mid \Gamma}$ fill the whole space $W^{1 / 2,2}(\Gamma)$ if v runs over V_{1}, and since $W^{1 / 2,2}(\Gamma)$ is dense in $L^{2}(\Gamma)$ (see [7]) we get

$$
k \int_{\Gamma}|h| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq \int_{\Gamma}[-M(w)]\left(h-w_{n}\right) \mathrm{d} s \quad \forall h \in L^{2}(\Gamma) .
$$

This is equivalent to

$$
\begin{gathered}
k|h|-k\left|w_{n}\right| \geqq[-M(w)]\left(h-w_{n}\right) \\
\text { a.e. on } \Gamma, \text { for all } h \in L^{2}(\Gamma)
\end{gathered}
$$

(cf. [1, Appendix 1]); we have an equivalent formulation (a.e. on Γ) of (2.6').
Finally, if $\{f, w\}$ is a variational solution to (2.1)-(2.3), (2.7) we derive from (3.7)

$$
\begin{gathered}
\langle T(w), v-w\rangle_{3 / 2}+\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2}+ \\
+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s-\int_{\Gamma} m_{0}(v-w) \mathrm{d} s+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s= \\
=A(w, v-w)+\int_{\Gamma} e_{0} w(v-w) \mathrm{d} s+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s- \\
-\int_{\Omega}[f, w](v-w) \mathrm{d} x \mathrm{~d} y-\int_{\Gamma} m_{0}(v-w) \mathrm{d} s-\int_{\Omega} q(v-w) \mathrm{d} x \mathrm{~d} y \geqq 0 \\
\forall v \in W^{2,2}(\Omega) .
\end{gathered}
$$

Assuming again (4.5) one finds

$$
\begin{gathered}
\left\langle T\left(w+e_{0} w-m_{0}, v-w\right\rangle_{3 / 2}+\right. \\
+\left\langle M(w), v_{n}-w_{n}\right\rangle_{1 / 2}+k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq 0 \quad \forall v \in W^{2,2}(\Omega) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
& k \int_{\Gamma}\left|v_{n}\right| \mathrm{d} s-k \int_{\Gamma}\left|w_{n}\right| \mathrm{d} s \geqq\left\langle-M(w), v_{n}-w_{n}\right\rangle_{1 / 2} \quad \forall v \in W^{2,2}(\Omega), \\
& T(w)+e_{0} w-m_{0}=0 \quad \text { in the sense of } W^{-3 / 2,2}(\Gamma) .
\end{aligned}
$$

As is readily seen by repeating our above arguments, one may consider this system a generalization of (2.7).

5. UNIFICATION. STATEMENT OF THE MAIN RESULT

We now introduce a unified variational formulation of the unilateral boundary
value problems for the system (2.1), (2.2) which are considered in Section 2. This unified setting includes also the variational formulation of the homogeneous cases of the boundary value problems studied in [4].

Suppose we are given the following data:

$$
\left\{\begin{array}{l}
\text { a bilinear boundary form } \tag{5.1}\\
a(u, v)=\int_{\Gamma} e_{0} u v \mathrm{~d} s+\int_{\Gamma} e_{1} u_{n} v_{n} \mathrm{~d} s \quad\left(u, v \in W^{2,2}(\Omega)\right) \\
\text { where } e_{0} \in L^{1}(\Gamma), \quad e_{1} \in L^{p}(\Gamma)(1<p<\infty)
\end{array}\right.
$$ $\left\{\begin{array}{l}\text { a Hilbert space } V \text { whose scalar product is defined by }(u, v)=A(u, v)+ \\ +a(u, v) \text { such that } W_{0}^{2,2}(\Omega) \subset V \subseteq W^{2,2}(\Omega) \text { where each injection is } \\ \left.\text { continuous; }{ }^{1}\right)\end{array}\right.$

a convex, lower semi-continuous functional $\Phi: V \rightarrow(-\infty,+\infty], \Phi$ 丰 $+\infty$ (Vaccording to (5.2));

We introduce
Definition 5.1. The pair $\{f, u\} \in W_{0}^{2,2}(\Omega) \times V$ is called a variational solution to the system (2.1), (2.2) under the boundary conditions (2.3) and associated with the functional Φ if

$$
\begin{gather*}
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega), \tag{5.6}\\
A(u, v-u)+a(u, v-u)+\Phi(v)-\Phi(u) \geqq \int_{\Omega_{2}}[f, u]^{\prime}(v-u) \mathrm{d} x \mathrm{~d} y+ \tag{5.7}\\
+\int_{\Gamma} m_{0}(v-u) \mathrm{d} s+\int_{\Gamma} m_{1}\left(v_{n}-u_{n}\right) \mathrm{d} s+\langle q, v-u\rangle \quad \forall v \in V .
\end{gather*}
$$

Note that (5.7) includes the following facts: The equation (2.2) is satisfied in the sense of distributions in Ω. Further, $u \in V$ implies stable boundary conditions upon u. The functional Φ involves stable and unstable unilateral boundary conditions upon u, $T(u)$ or $u_{n}, M(u)$, respectively, completed by conditions arising from the boundary form a. Inhomogeneities with respect to the unstable boundary conditions are

[^8]represented by m_{0} and m_{1}. Finally, if unstable boundary conditions are required on a part of Γ which possesses corners, the Condition (+) (Section 2.1) is assumed to hold at the corners.
Passing to the discussion of Definition 5.1, we remark first of all that it includes the basic case of Definition 3.1 in [4]. Indeed, (5.2) is fulfilled by the construction in [4]. Putting $\Phi \equiv 0,(5.7)$ turns into the equation
$$
A(u, v)+a(u, v)=\int_{\Omega}[f, u] v \mathrm{~d} x \mathrm{~d} y+\int_{\Gamma} m_{0} v \mathrm{~d} s+\int_{\Gamma} m_{1} v_{n} \mathrm{~d} s+\langle q, v\rangle
$$
which is true for all $v \in V$. Specifying e_{0}, e_{1} and m_{0}, m_{1} in an appropriate manner and integrating by parts the expression $[f, u] v$, the equivalence of the latter identity to (3.5) in [4] is easily seen. Obviously, (5.6) is equivalent to (3.6) in [4].

We are going to show that Definitions $3.1,1^{\circ}-4^{\circ}$ are included in Definition 5.1 as special cases. Clearly, it suffices to restrict the attention to (5.7).

In order to obtain (3.4) from (5.7), we specify the data (5.1) - (5.4) as follows:

$$
\text { (i) } \begin{aligned}
e_{0} & =e_{1}=0 \\
V & =V_{1} \\
\Phi & =I_{K_{1}} \\
m_{0} & =m_{1}=0 .
\end{aligned}
$$

Here we have used the notation

$$
I_{K_{1}}(u)=\left\{\begin{array}{lll}
0 & \text { if } & u \in K_{1}, \\
+\infty & \text { if } & u \notin K_{1},
\end{array}\right.
$$

where $u \in W^{2,2}(\Omega) . I_{K_{1}}$ is convex and lower semi-continuous on $W^{2,2}(\Omega)$. Clearly, (5.2) is ensured by (3.1).

By the choice (i), (5.7) changes into

$$
\begin{gathered}
A(u, v-u)+I_{K_{1}}(v)-I_{K_{1}}(u) \geqq \\
\geqq \int_{\Omega}[f, u](v-u) \mathrm{d} x \mathrm{~d} y+\langle q, v-u\rangle \quad \forall v \in V_{1} .
\end{gathered}
$$

This is equivalent to (3.4).
Next, we choose the data
(ii) $e_{0} \in L^{1}(\Gamma), e_{0}$ satisfies the Condition (*)(Section 2.1); $e_{1}=0$,
$V=W^{2,2}(\Omega)$,
$\Phi=I_{K_{1}}$,
$m_{0} \in L^{1}(\Gamma), \quad m_{1}=0$.

Here (5.2) is guaranteed by (3.2). It is readily verified that in the present case, (5.7) is equivalent to (3.5).

Set

$$
\Phi(u)=k \int_{\Gamma}\left|u_{n}\right| \mathrm{d} s \text { for } \quad u \in W^{2,2}(\Omega)
$$

($k=$ const >0; cf. Section 2.1). Φ is convex and lower semi-continuous on $W^{2,2}(\Omega)$. Preserving the remaining data in (i) and (ii), (5.7) is identical respectively with (3.6) and (3.7).

Proceeding in a similar way, it is easy to check that (3.8), (3.8) and (3.10) follow from (5.7) by specifying the data (5.1)-(5.4).

We state the main result of our paper.
Theorem. Let the data (5.1)-(5.5) be given. Moreover, suppose that

$$
\begin{equation*}
V=\text { closure of } \mathscr{V} \text { in } W^{2,2}(\Omega) \text { where } \mathscr{D}(\Omega) \subset \mathscr{V} \subseteq \mathscr{D}(\bar{\Omega}) \tag{5.8}
\end{equation*}
$$

Then the system (2.1), (2.2) under the boundary conditions (2.3) and associated with the functional Φ possesses a variational solution.

Corollary. For sufficiently small $\|u\|$, the variational solution is unique.

6. PROOF OF THE THEOREM

First, we present two estimates which are useful for our further purposes.
Let $u, v, w \in W^{2,2}(\Omega)$ be arbitrarily given. By Sobolev's Imbedding Theorem and Hölder's inequality,

$$
\begin{equation*}
\left|\int_{\Omega} u_{x y} v_{y} w_{x} \mathrm{~d} x \mathrm{~d} y\right| \leqq \text { const }\|u\|_{2,2}\|v\|_{1,4}\|w\|_{1,4} . \tag{6.1}
\end{equation*}
$$

Using again Sobolev's Imbedding Theorem, one obtains for the functions under consideration

$$
\begin{equation*}
\left|\int_{\Omega} u_{x x} v_{y y} w \mathrm{~d} x \mathrm{~d} y\right| \leqq \text { const }\|u\|_{2,2}\|v\|_{2,2}\|w\|_{C(\Omega)} \tag{6.2}
\end{equation*}
$$

Let us now consider the integral one the right hand side in (5.6). For arbitrary $u \in \mathscr{V}, v \in V$ and $\psi \in W_{0}^{2,2}(\Omega)$, we obtain by integration by parts

$$
\begin{gather*}
\int_{\Omega}[u, v] \psi \mathrm{d} x \mathrm{~d} y= \tag{6.3}\\
=\int_{\Omega}\left[\left(u_{x y} v_{y}-u_{y y} v_{x}\right) \psi_{x}+\left(u_{x y} v_{x}-u_{x x} v_{y}\right) \psi_{y}\right] \mathrm{d} x \mathrm{~d} y
\end{gather*}
$$

Due to the assumption (5.8), the estimates of the type (6.1) and (6.2) imply that (6.3) in fact is valid for any $u \in V$, and we conclude

$$
\begin{equation*}
\left|\int_{\Omega}[u, v] \psi \mathrm{d} x \mathrm{~d} y\right| \leqq\left(\text { const }\|u\|_{2,2}\|v\|_{1,4}\right)\|\psi\|_{2,2 ; 0} \tag{6.4}
\end{equation*}
$$

for all $u, v \in V, \psi \in W_{0}^{2,2}(\Omega)$. Thus, there exists a unique element $C_{1}(u, v) \in W_{0}^{2,2}(\Omega)$ such that

$$
\begin{equation*}
\left(C_{1}(u, v), \psi\right)_{2,2 ; 0}=-\int_{\Omega}[u, v] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega) \tag{6.5}
\end{equation*}
$$

The integral identity (5.6) is now equivalent to

$$
\begin{equation*}
f=C_{1}(u, u) \quad \text { in } \quad W_{0}^{2,2}(\Omega) \tag{6.6}
\end{equation*}
$$

Repeating our above argument, we get the estimate

$$
\begin{equation*}
\left.\left|\int_{\Omega}[\chi, u] v \mathrm{~d} x \mathrm{~d} y\right| \leqq\left(\text { const }\|\chi\|_{2,2}\|u\|_{1,3}\right)\|v\|^{1}\right) \tag{6.7}
\end{equation*}
$$

which is valid for arbitrary $\chi \in W_{0}^{2,2}(\Omega), u, v \in V$. One obtains the existence of a unique $C_{2}(\chi, u) \in V$ such that

$$
\begin{equation*}
\left(C_{2}(\chi, u), v\right)=\int_{\Omega}[\chi, u] v \mathrm{~d} x \mathrm{~d} y \quad \forall v \in V \tag{6.8}
\end{equation*}
$$

Finally, by Sobolev's Imbedding Theorem and the Trace Theorem, the estimate

$$
\left|\int_{\Gamma} m_{0} v \mathrm{~d} s+\int_{\Gamma} m_{1} v_{n} \mathrm{~d} s+\langle q, v\rangle\right| \leqq \text { const }\|v\|
$$

holds for all $v \in V$. This implies the existence of a unique $w_{0} \in V$ such that

$$
\begin{equation*}
\left(w_{0}, v\right)=\int_{\Gamma} m_{0} v \mathrm{~d} s+\int_{\Gamma} m_{1} v_{n} \mathrm{~d} s+\langle q, v\rangle \quad \forall v \in V \tag{6.9}
\end{equation*}
$$

We introduce the notation

$$
C(u) \equiv C_{2}\left(C_{1}(u, u), u\right) \quad \text { for } \quad u \in V
$$

Then: The determination of a variational solution to (2.1), (2.2) under the boundary conditions (2.3) and associated with the functional Φ is equivalent to the problem:

Find $u \in V$ such that

$$
\begin{equation*}
\left(u-C(u)-w_{o}, v-u\right)+\Phi(v)-\Phi(u) \geqq 0 \quad \forall v \in V \tag{6.10}
\end{equation*}
$$

[^9]Indeed, let $\{f, u\}$ be a variational solution to (2.1), (2.2) under the boundary conditions (2.3) and associated with the functional Φ. With regard to (6.8) and (6.9), the inequality in (5.7) can be written in the form

$$
\left(u-C_{2}(f, u)-w_{0}, v-u\right)+\Phi(v)-\Phi(u) \geqq 0 \quad \forall v \in V
$$

Inserting f from (6.6) one gets (6.10).
Conversely, if $u \in V$ satisfies (6.10) we set $f=C_{1}(u, u)$. Then

$$
\begin{gathered}
f=C_{1}(u, u), \\
\left(u-C_{2}(f, u)-w_{0}, v-u\right)+\Phi(v)-\Phi(u) \geqq 0 \quad \forall v \in V .
\end{gathered}
$$

But this means that $\{f, u\}$ is a variational solution to (2.1), (2.2) under the boundary conditions (2.3) and associated with the functional Φ.

To prove the existence of a $u \in V$ which satisfies (6.10), we show:
(i) It holds

$$
\frac{(u-C(u), u)+\Phi(u)}{\|u\|} \rightarrow+\infty \quad \text { as } \quad\|u\| \rightarrow \infty ;
$$

(ii) if $\left\{u_{j}\right\} \subset V$ is any sequence such that $u_{j} \rightarrow u$ weakly in V and

$$
\lim \sup \left(u_{j}-C\left(u_{j}\right), u_{j}-u\right) \leqq 0
$$

it follows

$$
(u-C(u), u-v) \leqq \lim \inf \left(u_{j}-C\left(u_{j}\right), u_{j}-v\right)
$$

for all $v \in V$.
Establishing these points, from [6, Chapter II, Theorem 8.5] we obtain the existence of a solution of (6.10).

Proof of (i). Observing the defining relations (6.5) and (6.8), one obtains, for arbitrary $\chi \in W_{0}^{2,2}(\Omega), u, v \in V$,

$$
\begin{aligned}
\left(C_{2}(\chi, u), v\right) & =\int_{\Omega}[\chi, u] v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega}[u, \chi] v \mathrm{~d} x \mathrm{~d} y= \\
& =\int_{\Omega}\left[\left(u_{x y} \chi_{y}-u_{y y} \chi_{x}\right) v_{x}+\left(u_{x y} \chi_{x}-u_{x x} \chi_{y}\right) v_{y}\right] \mathrm{d} x \mathrm{~d} y \\
& =\int_{\Omega}\left[\left(u_{x y} v_{y}-u_{y y} v_{x}\right) \chi_{x}+\left(u_{x y} v_{x}-u_{x x} v_{y}\right) \chi_{y}\right] \mathrm{d} x \mathrm{~d} y \\
& =\int_{\Omega}[u, v] \chi \mathrm{d} x \mathrm{~d} y=-\left(C_{1}(u, v), \chi\right)_{2,2 ; 0}
\end{aligned}
$$

For $v=u, \chi=C_{1}(u, u)$ it follows

$$
\begin{equation*}
(C(u), u)=-\left(C_{1}(u, u), C_{1}(u, u)\right)_{2,2 ; 0} \leqq 0 \quad \forall u \in V . \tag{6.11}
\end{equation*}
$$

By the Hahn-Banach Theorem, there exists $v_{0} \in V$ and $\alpha_{0} \in R^{1}$ such that

$$
\Phi(u) \geqq\left(v_{0}, u\right)+\alpha_{0} \quad \forall u \in V
$$

We obtain

$$
(u-C(u), u)+\Phi(u) \geqq\|u\|^{2}-\left\|v_{0}\right\|\|u\|+\alpha_{0} \quad \forall u \in V .
$$

Proof of (ii). Let $u, v \in V$ be arbitrary. The definition of C_{1} implies $C_{1}(u, v)=$ $=C_{1}(v, u)$. In virtue of this symmetry the estimates (6.4) and (6.7) yield

$$
\begin{equation*}
\|C(u)-C(v)\| \leqq \operatorname{const}\left(\|u\|^{2}+\|v\|^{2}\right)\|u-v\|_{1,4} . \tag{6.12}
\end{equation*}
$$

Let $\left\{u_{j}\right\} \subset V$ be a sequence such that $u_{j} \rightarrow u$ weakly in V and

$$
\lim \sup \left(u_{j}-C\left(u_{j}\right), u_{j}-u\right) \leqq 0
$$

Let $v \in V$. There exists a subsequence of indices $\left\{j_{k}\right\}$ such that

$$
\lim \left(-C\left(u_{j_{k}}\right), u_{j_{k}}-v\right)=\lim \inf \left(-C\left(u_{j}\right), u_{j}-v\right)
$$

By virtue of Sobolev-Kondrashov's Theorem we may select a subsequence from $\left\{u_{j_{k}}\right\}$ still denoted by $\left\{u_{j_{k}}\right\}$ such that $u_{j_{k}} \rightarrow u$ strongly in $W^{1,4}(\Omega)$ as $k \rightarrow \infty$. The estimate (6.12) implies $C\left(u_{j_{k}}\right) \rightarrow C(u)$ strongly in V as $k \rightarrow \infty$. Hence

$$
\begin{gathered}
(u-C(u), u-v)=(u, u-v)+\lim \inf \left(-C\left(u_{j}\right), u_{j}-v\right) \\
\leqq \liminf \left(u_{j}, u_{j}-v\right)+\lim \inf \left(-C\left(u_{j}\right), u_{j}-v\right) \leqq \\
\left.\leqq \liminf \left(u_{j}-C\left(u_{j}\right), u_{j}-v\right) .^{1}\right)
\end{gathered}
$$

Proof of the Corollary. Let u_{1}, u_{2} be two solutions of (6.10). Substitution $v=u_{1}$ and $v=u_{2}$ in (6.10) yields

$$
\begin{aligned}
0 & \geqq\left(u_{1}-u_{2}-\left(C\left(u_{1}\right)-C\left(u_{2}\right)\right), u_{1}-u_{2}\right) \\
& \geqq\left[1-\mathrm{const}\left(\left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2}\right)\right]\left\|u_{1}-u_{2}\right\|^{2} .
\end{aligned}
$$

Thus, $u_{1}=u_{2}$ for sufficiently small $\left\|u_{1}\right\|,\left\|u_{2}\right\|$.

[^10]
7. SOME LIMIT CASES

We turn back to the variational formulation of boundary value problem (2.1)-(2.3), (2.6). Recall that the pair $\{f, u\} \in W_{0}^{2,2}(\Omega) \times V_{1}$ is called a variational solution to the boundary problem under consideration if $\{f, u\}$ satisfies (3.40) ($u=w)$, and if

$$
\begin{gather*}
A(u, v-u)+k \int_{\Omega}\left|v_{n}\right| \mathrm{d} s-k \int_{\Omega}\left|u_{n}\right| \mathrm{d} s \geqq \tag{3.6}\\
\geqq \\
\int_{\Omega}[f, u](v-u) \mathrm{d} x \mathrm{~d} y+\langle q, v-u\rangle \quad \forall v \in V_{1} .
\end{gather*}
$$

The existence of a pair $\{f, u\}$ with the properties required follows from our general theorem presented in Section 5 by specifying the data therein.

We are going to consider the limit cases $k \rightarrow 0$ and $k \rightarrow+\infty(0<k<+\infty)$. To emphasize the dependence of the solution of (3.40), (3.6) on k, we write $f=f_{k}$, $u=u_{k}$.

A-priori estimate (I). Set $v=0$ in (3.6). Since

$$
-\int_{\Omega}\left[f_{k}, u_{k}\right] u_{k} \mathrm{~d} x \mathrm{~d} y=\left(f_{k}, f_{k}\right)_{2,2 ; 0} \geqq 0
$$

(cf. (6.11)), one concludes from (3.6)

$$
A\left(u_{k}, u_{k}\right) \leqq A\left(u_{k}, u_{k}\right)+k \int_{\Gamma}\left|u_{k, n}\right| \mathrm{d} s-\int_{\Omega}\left[f_{k}, u_{k}\right] u_{k} \mathrm{~d} x \mathrm{~d} y \leqq\left\langle q, u_{k}\right\rangle .
$$

By (3.1),

$$
\begin{equation*}
\left\|u_{k}\right\|_{2,2} \leqq \text { const } \quad \forall 0<k<+\infty \tag{7.1}
\end{equation*}
$$

The Trace Theorem yields

$$
\begin{equation*}
\int_{\Gamma}\left|u_{k, n}\right| \mathrm{d} s \leqq(\operatorname{mes}(\Gamma))^{1 / 2}\left\|u_{k, n}\right\|_{L_{2}(\Gamma)} \leqq \text { const } \quad \forall 0<k<+\infty . \tag{7.2}
\end{equation*}
$$

Let $k \rightarrow 0$. There exists a subsequence $\left\{u_{v}\right\}$ of $\left\{u_{k}\right\}$ such that $u_{v} \rightarrow u$ weakly in V_{1} as $v \rightarrow 0$. By passing to a subsequence if necessary, we have $u_{v} \rightarrow u$ strongly in $W^{1,4}(\Omega)$. Defining $f \in W_{0}^{2,2}(\Omega)$ by

$$
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega)
$$

the estimate (6.4) implies $f_{v} \rightarrow f$ strongly in $W_{0}^{2,2}(\Omega)$.

We replace v in (3.6) by $u_{v}+\varphi$, where $\varphi \in V_{1}$ is arbitrary. Taking into account (7.2) the passage to limit $v \rightarrow 0$ in (3.6) yields

$$
A(u, \varphi)=\int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\langle q, \varphi\rangle
$$

We have obtained
Proposition 7.1. Let $\left\{f_{k}, u_{k}\right\}$ be a variational solution to (2.1)-(2.3), (2.6) $(0<k<+\infty)$.

There exists a subsequence $\left\{\left\{f_{v}, u_{v}\right\}\right\}$ of $\left\{\left\{f_{k}, u_{k}\right\}\right\}$ such that: $u_{v} \rightarrow u$ weakly in V_{1}, $f_{v} \rightarrow f$ strongly in $W_{0}^{2,2}(\Omega)$ as $v \rightarrow 0$, where the pair $\{f, u\}$ satisfies the identities

$$
\begin{aligned}
& (f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega) \\
& A(u, \varphi)=\int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\langle q, \varphi\rangle \quad \forall \varphi \in V_{1} .
\end{aligned}
$$

Hence $\{f, u\}$ is a variational solution to (2.1), (2.2) under the boundary conditions

$$
f=f_{n}=0, \quad u=M(u)=0 \quad \text { on } \Gamma
$$

(cf. [4]).
A-priori estimate (II). Again putting $v=0$, (3.6) yields

$$
k \int_{\Omega}\left|u_{k, n}\right| \mathrm{d} s \leqq A\left(u_{k}, u_{k}\right)+k \int_{\Gamma}\left|u_{k, n}\right| \mathrm{d} s-\int_{\Omega}\left[f_{k}, u_{k}\right] u_{k} \mathrm{~d} x \mathrm{~d} y \leqq\left\langle q, u_{k}\right\rangle .
$$

Using the estimate (7.1) we obtain

$$
k \int_{\Gamma}\left|u_{k, n}\right| \mathrm{d} s \leqq \text { const } \quad \forall 0<k<+\infty .
$$

This implies

$$
\begin{equation*}
\int_{\Gamma}\left|u_{k, n}\right| \mathrm{d} s \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty \tag{7.3}
\end{equation*}
$$

We may select a subsequence $\left\{u_{\eta}\right\}$ from $\left\{u_{k}\right\}$ such that $u_{\eta} \rightarrow u$ weakly in V_{1} as $\eta \rightarrow+\infty$. Arguing as above, one obtains $f_{\eta} \rightarrow f$ strongly in $W_{0}^{2,2}(\Omega)$ as $\eta \rightarrow+\infty$, where $f \in W_{0}^{2,2}(\Omega)$ is defined by

$$
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega) .
$$

Further, the compactness of the trace mapping $W^{1,2}(\Omega) \rightarrow L^{2}(\Gamma)(\mathrm{cf} .[8])$ provides

$$
\int_{\Gamma}\left|u_{\eta, n}\right| \mathrm{d} s \rightarrow \int_{\Gamma}\left|u_{n}\right| \mathrm{ds} \quad \text { as } \quad \eta \rightarrow+\infty
$$

From (7.3) one concludes $\int_{\Gamma}\left|u_{n}\right| \mathrm{d} s=0$, i.e., $u_{n}=0$ a.e. on Γ, and consequently $u \in W_{0}^{2,2}(\Omega)$ (see [8]).

For arbitrary $\varphi \in W_{0}^{2,2}(\Omega)$ we set $v=u_{\eta}+\varphi$. By passing to limit $\eta \rightarrow+\infty$, (3.6) turns into

$$
A(u, \varphi)=\int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\langle q, \varphi\rangle
$$

Integrating by parts the terms in $A(\varphi, \psi)$ which involve the constant μ, we get $A(\varphi, \psi)=(\varphi, \psi)_{2,2 ; 0} \forall \varphi, \psi \in W_{0}^{2,2}(\Omega)$.

The above consideration yields
Proposition 7.2. Let $\left\{f_{k}, u_{k}\right\}$ be a variational solution to (2.1)-(2.3), (2.6) $(0<k<+\infty)$.

There exists a subsequence $\left\{\left\{f_{\eta}, u_{\eta}\right\}\right\}$ of $\left\{\left\{f_{k}, u_{k}\right\}\right\}$ such that: $u_{\eta} \rightarrow u$ weakly in V_{1}, $f_{\eta} \rightarrow f$ strongly in $\left.W_{0}^{2,2} \Omega\right)$ as $\eta \rightarrow+\infty$, where $u \in W_{0}^{2,2}(\Omega)$ and the pair $\{f, u\}$ satisfies the system of identities

$$
\begin{aligned}
& (f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega) \\
& (u, \varphi)_{2,2 ; 0}=\int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\langle q, \varphi\rangle \quad \forall \varphi \in W_{0}^{2,2}(\Omega)
\end{aligned}
$$

Remark. It is easy to see that for $\left(3.4_{0}\right),(3.7)$ the limit cases $k \rightarrow 0$ and $k \rightarrow+\infty$, respectively, can be studied in the same way as above.

Furthermore, modifying slightly the above argument, for (3.40), (3.9) the limit cases $g \rightarrow 0$ and $g \rightarrow+\infty$, respectively, can be discussed. We do not carry out the corresponding proofs; let us only note that the passage to limit $g \rightarrow 0$ leads to a variational solution to (2.1), (2.2) under the boundary conditions

$$
\begin{aligned}
& f=f_{n}=0 \quad \text { on } \Gamma, \\
& u=u_{n}=0 \quad \text { on } \Gamma_{0}, \\
& M(u)+e_{1} u_{n}=m_{1}, \quad T(u)=0 \quad \text { on } \Gamma_{1},
\end{aligned}
$$

while for the limit $g \rightarrow+\infty$ one obtains a variational solution to (2.1), (2.2) subjected to the boundary conditions

$$
\begin{aligned}
& f=f_{n}=0 \quad \text { on } \Gamma^{2}, \\
& u=u_{n}=0 \quad \text { on } \Gamma_{0}, \quad u=0, \quad M(u)+e_{1} u_{n}=m_{1} \quad \text { on } \Gamma_{1}
\end{aligned}
$$

($\Gamma=\Gamma_{0} \cup \Gamma_{1}$ denotes the decomposition according to Section 2.2).

Let us consider the system (2.1), (2.2) under the boundary conditions (2.3), and (2.10) replaced by

$$
\left\{\begin{align*}
\mathrm{w} & =w_{n}=0 \text { on } \Gamma_{0}, \\
T(w) & =0 \text { if }|w| \leqq \varepsilon, \\
T(w) & =-\sigma w\left(1-\frac{1}{|w|}\right) \text { if }|w|>\varepsilon, \\
M(w) & +e_{1} w_{n}=m_{1}
\end{align*}\right\} \text { on } \Gamma_{1},
$$

where $\varepsilon=$ const >0. Here $\Gamma=\Gamma_{0} \cup \Gamma_{1}$ is the decomposition according to Section 2.2 , and the data e_{1}, m_{1} satisfy the conditions therein.

The pair $\{f, u\} \in W_{0}^{2,2}(\Omega) \times V_{2}$ is called a variational solution to (2.1)-(2.3), $\left(2.10_{\varepsilon}\right)$ if $\{f, u\}$ satisfies $\left(3.4_{0}\right)(u=w)$, and if
$\left(3.10_{\varepsilon}\right) \quad A(u, v-u)+\int_{\Gamma_{1}} e_{1} u_{n}\left(v_{n}-u_{n}\right) \mathrm{d} s+\sigma \int_{\Gamma_{1}} j_{\varepsilon}(v) \mathrm{d} s-\sigma \int_{\Gamma_{1}} j_{\varepsilon}(u) \mathrm{d} s \geqq$

$$
\geqq \int_{\Omega}[f, u](v-u) \mathrm{d} x \mathrm{~d} y+\int_{r_{1}} m_{1}\left(v_{n}-u_{n}\right) \mathrm{d} s+\langle q, v-u\rangle \quad \forall v \in V_{2} .
$$

Here we have put

$$
j_{\ell}(r)=\left\{\begin{array}{lll}
r\left(\frac{1}{2} r+\varepsilon\right) & \text { if } r<-\varepsilon, \\
-\frac{1}{2} \varepsilon^{2} & \text { if }-\varepsilon \leqq r \leqq \varepsilon, \\
r\left(\frac{1}{2} r-\varepsilon\right) & \text { if } \quad r>\varepsilon .
\end{array}\right.
$$

A variational solution to $(2.1)-(2.3),\left(2.10_{\varepsilon}\right)$ will be denoted by $f=f_{\varepsilon}, u=u_{\varepsilon}$ to point out its dependence on ε.

We study the case $\varepsilon \rightarrow 0$. Set $v=0$ in $\left(3.10_{\varepsilon}\right)$. Using

$$
-j_{\varepsilon}(0)=\frac{1}{2} \varepsilon^{2}, \quad j_{\varepsilon}(r) \geqq-\frac{1}{2} \varepsilon^{2} \quad \forall r \in R^{1},
$$

from $\left(3.10_{\boldsymbol{\varepsilon}}\right)$ one derives

$$
\begin{gathered}
A\left(u_{\varepsilon}, u_{\varepsilon}\right) \leqq A\left(u_{\varepsilon}, u_{\varepsilon}\right)+\int_{\Gamma_{1}} e_{1} u_{\varepsilon, n}^{2} \mathrm{~d} s-\sigma \int_{\Gamma_{1}} j_{\varepsilon}(0) \mathrm{d} s+ \\
+\sigma \int_{\Gamma_{1}} j_{\varepsilon}\left(u_{\varepsilon}\right) \mathrm{d} s-\int_{\Omega}\left[f_{\varepsilon}, u_{\varepsilon}\right] u_{\varepsilon} \mathrm{d} x \mathrm{~d} y \leqq \int_{\Gamma_{1}} m_{1} u_{\varepsilon_{v}} \mathrm{~d} s+\left\langle q, u_{\varepsilon}\right\rangle .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{2,2} \leqq \text { const } \quad \forall \varepsilon>0 \tag{7.4}
\end{equation*}
$$

Thus, there exists a subsequence of $\left\{u_{\varepsilon}\right\}$ still denoted by $\left\{u_{e}\right\}$ such that

$$
u_{\varepsilon} \rightarrow u \quad \text { weakly in } V_{2}, \quad f_{\varepsilon} \rightarrow f \text { strongly in } W_{0}^{2,2}(\Omega)
$$

as $\varepsilon \rightarrow 0$, where $f \in W_{0}^{2,2}(\Omega)$ is characterized by

$$
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega)
$$

Let $v \in W^{2,2}(\Omega)$ be arbitrary but fixed. Then

$$
\begin{equation*}
\int_{\Gamma_{1}} j_{\varepsilon}\left(u_{\varepsilon}+v\right) \mathrm{d} s \rightarrow \frac{1}{2} \int_{\Gamma_{1}}(u+v)^{2} \mathrm{~d} s \quad \text { as } \quad \varepsilon \rightarrow 0 . \tag{7.5}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\int_{\Gamma_{1}} j_{\varepsilon}\left(u_{\varepsilon}+v\right) \mathrm{d} s & -\frac{1}{2} \int_{\Gamma_{1}}(u+v)^{2} \mathrm{~d} s=\int_{\Gamma_{1}}\left[j_{\varepsilon}\left(u_{\varepsilon}+v\right)-\frac{1}{2}\left(u_{\varepsilon}+v\right)^{2}\right] \mathrm{d} s+ \\
& +\frac{1}{2} \int_{\Gamma_{1}}\left(u_{\varepsilon}^{2}-u^{2}\right) \mathrm{d} s+\int_{\Gamma_{1}}\left(u_{\varepsilon}-u\right) v \mathrm{~d} s
\end{aligned}
$$

From the compactness of the imbedding $W^{1,2}(\Omega) \subset L^{2}(\Gamma)$ it is easy to see that (by passing to a subsequence if necessary) the second and the third integral on the right hand side tend to zero as $\varepsilon \rightarrow 0$.

Considering the first integral on the right hand side, set

$$
\begin{aligned}
& A_{1, \varepsilon}=\left\{(x, y) \in \Gamma_{1}: u_{\varepsilon}+v<-\varepsilon\right\}, \\
& A_{2, \varepsilon}=\left\{(x, y) \in \Gamma_{1}:-\varepsilon \leqq u_{\varepsilon}+v \leqq \varepsilon\right\}, \\
& A_{3, \varepsilon}=\left\{(x, y) \in \Gamma_{1}: u_{\varepsilon}+v>\varepsilon\right\} .
\end{aligned}
$$

One gets by virtue of (7.4)

$$
\left|\int_{\Lambda_{s, \varepsilon}}\left[j_{\varepsilon}\left(u_{\varepsilon}+v\right)-\frac{1}{2}\left(u_{\varepsilon}+v\right)^{2}\right] \mathrm{d} s\right| \leqq \varepsilon \int_{A_{s, \varepsilon}}\left|u_{\varepsilon}+v\right| \mathrm{d} s \leqq \varepsilon c
$$

where $c=$ const $>0, s=1,3$. Further,

$$
\begin{gathered}
\left|\int_{A_{2, \varepsilon}}\left[j_{\varepsilon}\left(u_{\varepsilon}+v\right)-\frac{1}{2}\left(u_{\varepsilon}+v\right)^{2}\right] \mathrm{d} s\right| \leqq \\
\leqq \frac{1}{2} \varepsilon^{2} \int_{A_{2, \varepsilon}} \mathrm{~d} s+\frac{1}{2} \int_{A_{2, \varepsilon}}\left(u_{\varepsilon}+v\right)^{2} \mathrm{~d} s \leqq \varepsilon^{2} \operatorname{mes}(\Gamma) .
\end{gathered}
$$

Our assertion is now readily seen.

Let $\varphi \in V_{2}$ be arbitrary, $\lambda>0$ arbitrary. Replacing v in (3.10 $)$ by $u_{\varepsilon}+\lambda \varphi$ and letting $\varepsilon \rightarrow 0$, one obtains by the aid of (7.5)

$$
\begin{gathered}
\lambda A(u, \varphi)+\lambda \int_{\Gamma_{1}} e_{1} u_{n} \varphi_{n} \mathrm{~d} s+\lambda \sigma \int_{\Gamma_{1}} u \varphi \mathrm{~d} s+\frac{1}{2} \lambda^{2} \sigma \int_{\Gamma_{1}} \varphi^{2} \mathrm{~d} s \geqq \\
\geqq \lambda \int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\lambda \int_{\Gamma_{1}} m_{1} \varphi_{n} \mathrm{~d} s+\lambda\langle q, \varphi\rangle .
\end{gathered}
$$

We divide by λ and let $\lambda \rightarrow 0$. Then the last inequality turns into

$$
\begin{aligned}
& A(u, \varphi)+\int_{\Gamma_{1}} e_{1} u_{n} \varphi_{n} \mathrm{~d} s+\sigma \int_{\Gamma_{1}} u \varphi \mathrm{~d} s \geqq \\
\geqq & \int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\int_{r_{1}} m_{1} \varphi_{n} \mathrm{~d} s+\langle q, \varphi\rangle
\end{aligned}
$$

which in fact is an equality since $\varphi \in V_{2}$ is arbitrary.
We summarize the last results in
Proposition 7.3. Let $\left\{f_{\varepsilon}, u_{\varepsilon}\right)$ be a variational solution to $(2.1)-(2.3)\left(2.10_{\varepsilon}\right)(\varepsilon>0)$.
There exists a subsequence $\left\{\left\{f_{\tau}, u_{\tau}\right\}\right\}$ of $\left\{\left\{f_{\varepsilon}, u_{\varepsilon}\right\}\right\}$ such that: $u_{\tau} \rightarrow u$ weakly in V_{2}. $f_{\tau} \rightarrow f$ strongly in $W_{0}^{2,2}(\Omega)$ as $\tau \rightarrow 0$, where the pair $\{f, u\}$ satisfies the system of identities

$$
\begin{gathered}
(f, \psi)_{2,2 ; 0}=-\int_{\Omega}[u, u] \psi \mathrm{d} x \mathrm{~d} y \quad \forall \psi \in W_{0}^{2,2}(\Omega), \\
A(u, \varphi)+\sigma \int_{\Gamma_{1}} u \varphi \mathrm{~d} s+\int_{\Gamma_{1}} e_{1} u_{n} \varphi_{n} \mathrm{~d} s= \\
=\int_{\Omega}[f, u] \varphi \mathrm{d} x \mathrm{~d} y+\int_{\Gamma_{1}} m_{1} \varphi_{n} \mathrm{~d} s+\langle q, \varphi\rangle \quad \forall \varphi \in V_{2} .
\end{gathered}
$$

The boundary conditions upon u which lead to the latter identity are

$$
\begin{gathered}
u=u_{n}=0 \quad \text { on } \Gamma_{0}, \\
M(u)+e_{1} u_{n}=m_{1}, \quad T(u)+\sigma u=0 \quad \text { on } \Gamma_{1}
\end{gathered}
$$

(cf. [4]). These conditions correspond to a plate whose edge is clamped along Γ_{0}, while along Γ_{1} it is elastically clamped and loaded by the moment distribution m_{1} on the one hand, and elastically supported and free of shearing forces on the other one.
The author is greatly indebted to Dr. I. Hlaváček for a number of helpful discussions when preparing the material of Section 2.

References

[1] Brézis, H.: Problèmes unilatéraux. J. Math. pures appl., 51 (1972), 1-168.
[2] Duvaut, G. et Lions, J. L.: Les inéquations en mécanique et physique. Dunod, Paris 1972.
[3] Duvaut, G. et Lions, J. L.: Problèmes unilatéraux dans la théorie de la flexion forte des plaques, (I). Les cas stationnaires. J. de Mécanique. 13 (1974), $51-74$.
[4] Hlaváček, I. and Naumann, J.: Inhomogeneous boundary value problems for the von Kármán equations, I. (to appear in Apl. Mat.).
[5] John, O. and Naumann, J.: On regularity of variational solutions of the von Kármán equations. (to appear).
[6] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Villars, Paris 1969.
[7] Lions, J. L. et Magenes, E.: Problémes aux limites non homogénes et applications, vol. I. Dunod, Paris 1968.
[8] Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.

Souhrn

O JISTÝCH JEDNOSTRANNÝCH OKRAJOVÝCH ÚLOHÁCH PRO VON KÁRMÁNOVY ROVNICE. ČÁST I: KOERCIVNÍ PŘÍPAD

Joachim Naumann

Článek pojednává o existenci rovnovážných stavů tenké pružné desky pod přičným zatížením za předpokladu, že na okraji desky jsou předepsány částečně podmínky pro pootočení a průhyby, částečně klasické okrajové podmínky ve tvaru rovností. Zkoumané okrajové problémy jsou převedeny na jistou variační nerovnost ve vhodném funkčním prostoru tak, že lze použít abstraktní existenční věty.

Author's address: Dr. Joachim Naumann, Sektion Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 108 Berlin, GDR.

[^0]: ${ }^{1}$) Precise conditions upon Γ will be stated at the beginning of the next section.

[^1]: ${ }^{1}$) In order to make this point clearer, let us consider an example of boundary conditions upon f which lead to (2.3), namely

 $$
 f_{y y} n_{x}-f_{x y} n_{y}=0, f_{x x} n_{y}-f_{x y} n_{x}=0 \quad \text { on } \Gamma,
 $$

 i.e., the lateral tractions vanish along Γ. An easy calculation yields

 $$
 f=A+B x+C y, \quad f_{n}=B n_{x}+C n_{y} \text { on } \Gamma
 $$

 where A, B, C are arbitrary real constants (cf. [4]). Putting $A=B=C=0$ one gets (2.3).
 ${ }^{2}$) We refer to the book [8] for the definition of the spaces $L^{p}(\Gamma)$.

[^2]: ${ }^{1}$) Note that the direction of the corresponding inequalities converse to that in [2], [3] is due to our different notation.
 ${ }^{2}$) It is readily seen that our existence theorem (see Section 5) still holds, with the same proof, for inhomogeneous conditions (+).

[^3]: ${ }^{1}$) Using the terminology of [8] we write: $\Omega \in \mathfrak{N}^{(0), 1}$. This is sufficient for the Sobolev Imbedding Theorem and the Trace Theorem to hold.

[^4]: ${ }^{1}$) $\mathscr{D}^{\prime}(\Omega)$ denotes the space of distributions in Ω. - Note that the equation $\Delta^{2} f=-[w, w]$ in fact holds in the subspace $W^{-2,2}(\Omega)\left(=\right.$ the dual of $\left.W_{0}^{2,2}(\Omega)\right)$ of $\mathscr{D}^{\prime}(\Omega)$. This follows from the imbedding $L^{1}(\Omega) \subset W^{-2,2}(\Omega)$.

[^5]: ${ }^{1}$) We refer to [7] for the definition. - This assumption enables us to apply results from [7].
 ${ }^{2}$) One defines $W^{-s, 2}(\Gamma)=$ dual of $W^{s, 2}(\Gamma)(s>0$, real). From [7, Chapt. 1] we conclude that $W^{s, 2}(\Gamma)$ is continuously and densely imbedded in $L^{2}(\Gamma)$. Identifying $L^{2}(\Gamma)$ with its dual we obtain $\mathrm{W}^{s, 2}(\Gamma) \subset L^{2}(\Gamma) \subset W^{-s, 2}(\Gamma)$ (where the latter imbedding is also continuous and dense). If $\langle u, v\rangle_{s}$ denotes the dual pairing between $u \in \mathrm{~W}^{-s, 2}(\Gamma)$ and $v \in W^{s, 2}(\Gamma)$ it holds $\langle h, v\rangle_{s}=$ $\int_{\Gamma} h v \mathrm{~d} s$ for all $h \in L^{2}(\Gamma), v \in W^{s, 2}(\Gamma)$.

[^6]: ${ }^{1}$) Since $w \in C(\Omega)$ it holds $e_{0} w \in L^{2}(\Gamma)$. Therefore, $e_{0} w$ and m_{0} may be identified with an element in $W^{-3 / 2,2}(\Gamma)$.

[^7]: ${ }^{1}$) Ladyženskaja O. A. and Uraltseva, N. N.: Linear and quasilinear equations of elliptic type (Russian), $2^{\text {nd }}$ ed., Moscow 1973; p. 218.

[^8]: ${ }^{1}$) $A(u, v)$ denotes the bilinear form (cf. Section 3)

 $$
 A(u, v) \doteq \int_{\Omega}\left[u_{x x} v_{x x}+2(1-\mu) u_{x y} v_{x y}+u_{y y} v_{y y}+\mu\left(u_{x x} v_{y y}+u_{y y} v_{x x}\right)\right] \mathrm{d} x \mathrm{~d} y
 $$

[^9]: ${ }^{1}$) Note that in deriving this estimate we have used the density of $\mathscr{D}(\Omega)$ in $W_{0}^{2,2}(\Omega)$ and the continuity of the imbedding $V \subseteq W^{2,2}(\Omega)(\mathrm{cf} .(5.2)) ;\|\cdot\|=(., .)^{1 / 2}$.

[^10]: ${ }^{1}$) Note that the assumption lim $\sup \left(u_{j}-C\left(u_{j}\right), u_{j}-u\right) \leqq 0$ is not used.

