
Aplikace matematiky

Věra Dufková; František Zítek
On a class of queue disciplines

Aplikace matematiky, Vol. 20 (1975), No. 5, 345–358

Persistent URL: http://dml.cz/dmlcz/103600

Terms of use:
© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103600
http://dml.cz


SVAZEK 20 (1975) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON A CLASS OF QUEUE DISCIPLINES 

VERA DUFKOVA, FRANTISEK ZLTEK 

(Received May 16, 1974)*) 

1. It is a rather well known fact that FIFO and LIFO can be considered extremal 
cases of queue disciplines. It was proved in [2] and [3] that, in a very general class 
of queue disciplines, the steady state waiting time variance is minimal with the FIFO 
and maximal with the LIFO discipline. 

In [4] a general pattern of random selection of customers from the queue1) was 
introduced and analogous inequalities for the waiting time variance in an MJMJn 
queueing system in equilibrium were derived. 

In this paper we shall investigate a rather special one-parametric class of queue 
disciplines of the general type described in [4]. As usual, we shall be interested in the 
corresponding waiting time distribution as well as in the outtaking of customers 
during the waiting time (see [5], [7]). Like the so-called "mixed" discipline (see [5]* 
[6], [7]), the disciplines belonging to our class can be regarded as mixtures of the 
FIFO and the LIFO disciplines. Although the mixing operation seems to be different> 

we shall see that the final results are essentially the same for our class and for the 
mixed discipline (see also [8]). Anyway, the useful random walk methods we apply 
here again are interesting since they allow a unified approach to the problems. 

2. The queue disciplines dealt with in the present paper can be described as follows: 
Customers waiting for service form a simple queue. Newly arriving customers 

join the queue at its end; there is no balking nor reneging. Whenever a server becomes 
free and there are some customers waiting, either thefrst customer in the queue or the 
last one is chosen to be served as the next. The choice is made at random, with 
fixed probabilities d for the first and 1 — d for the last customer: S is a given real 
number, 0 rg S = l . 2) The successive choices are independent of each other. 

When S = 1 we get the FIFO discipline; when S = 0 we get the LIFO discipline. 
The other cases, 0 < S < 1, form a continuous transition between these two extremes^ 

*) The paper resumes the main results established in a thesis written by the first author under 
the supervision of the other at Charles University, Prague, in 1973 — 74. 

1 ) It embraces the FIFO and the LIFO as well as the classical random queueing disciplines. 
2 ) If there is only one customer waiting, the choice is made as well, but the result is of course 

always the same: the only waiting customer is taken to be served. 
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3. We shall start by considering a queueing system M/M/l with an input rate A, 
0 < A < oo, and a mean service time JI'1, 0 < \i < oo. Since we are interested only 
in the steady state behaviour of the system, we shall always suppose that X < /L, 
so that Q = X\\i < 1. 

The probabilities pk (k = 0, 1, 2, ...) of finding exactly k customers in the system 
(in equilibrium) are well known to be (see e.g. [1]) 

( 0 Pk = (1 - e ) o f e , k = 0 , 1 , 2 , . . . 

This also means that an arriving customer begins his waiting at the k-th place in the 
queue with the probability pk; the place zero is to be interpreted as the situation 
of a customer admitted to service. 

While the probabilities pk are not affected by the queue discipline adopted in our 
system, the waiting time distribution clearly depends on 3. Our first aim will be to 
find this distribution. 

4. We shall proceed by the method we have already found useful in the case of the 
mixed queue discipline (see [5], ]6] , [7]): we shall track the successive positions 
in the queue of a waiting customer ^ . The position of the customer will be character
ized this time by a pair of non-negative integers, say [k, m], indicating that our 
customer c€ is just at the k-th place in the queue when counted from the top of the 
queue and, simultaneously, at the m-th place when counted from the end of the 
queue. There are then just k + m — 1 customers waiting.3) 

While waiting in the queue, our customer ^ changes his position from time to time. 
When a new customer arrives and joins the queue, the position of c€ changes from 
[k, m] to [k, m + 1]. When the server becomes free and a customer leaves the 
queue in order to be served, the position of ^ can change from [k, m] either to 
[k — 1, m] — if the first customer in the queue is chosen — or to [k, m — 1] — if 
the last customer is taken. If, moreover, k = 1 in the former case or m = 1 in the 
latter, then it is just our customer ^ who happens to be selected to be served as the 
next; his waiting time stops at this moment and no further changes of position can 
occur. Formally we shall write this as a (final) step from [1, m] to [0, m], or from 
[k, 1] to [k, 0]. Thus the positions [k, m] with km = 04) will be interpreted as 
describing the situation of a customer that has already reached the service. 

The time intervals separating the successive moments at which such changes of 
position occur are independent and exponentially distributed random variables 
with the mean value (JJL + A)"1. Moreover, X(jx + A) - 1 and II(JI + A)"1 are the 
probabilities that the next change will be caused by an arrival or by a departure, 
respectively. It is then easy to see that the process of successive changes of position 
of our customer ^ is a two-dimensional Markov process with possible states [k, m], 

) Since our customer ^ is really waiting, we can never have k + m = 0. 
4) As we have already seen, the pair [0,0] will never appear as an actual position of a customer. 
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k = 0, 1, 2, ...5 m = 0, 1, 2, ...; k + m > 0, The states with km = 0 are absorbing. 
The transition intensities are 

A from [k, m] to [k, m + 1] , 

Ofi from [k, m] to [k — 1, m] , 

(1 — <5)/i from [k, m] to [k, m — 1] , 

(provided the corresponding transition leads to a possible state). 

5. Let cpkm(s) be the characteristic function of the remaining waiting time of 
a customer whose actual position is [k, m], k = 0, m = 0, k + m > 0. Since every 
customer starts in a position [k, 1] with the probability pk, k = 0, 1,2,... , the 
characteristic function <pw(s) of the total waiting time W of an arbitrary customer 
("chosen at random") will be 

00 00 

(2) (pw(s) = YPk f̂ciC5) = (1 - Q) E Qk ^fci(5) • 
fc=0 fc=0 

We have of course (p0m(s) = 1, (pk0(s) = 1 for all m = 1, k = 1; the interpretation 
is clear: the waiting time of a customer that has already reached the service is almost 
surely zero. 

Given the Markov character of the process, the functions (pkm(s) satisfy the follow
ing system of linear equations (see also (5.22) in [5] or (3.1) in [6]) 

M \x + A f A , v , O> , v (1 - 5) JK ( v l 
<Pfcm(V) = " - ^ - r 1 : ^fcm+lW + ; (Pk-lm(s) + " 7 ~ ft»-l(«)> > 

jti + A — i s ( | x + A w. + A ft + A J 

or 

(3) (M + A - is) <pfcm(s) = A <pfcm+i(s) + O> <pk-im(s) + (\ - 8)ix (pkm-x(s) , 

for all k = 1, m = 1. 

In order to solve the system (3) we shall use the generating functions 

00 

-?m(w, s) = E w* <P*m(s), m = 0, 1, 2, ... 
fc=l 

H(z, w,s)=t zm Fm(w, s) = J | zmw* <p,m(s) . 
m = 1 m = 1 f c = 1 

Since |<pfeTO(s)| = 1 for all k = 0, m _ 0, k + m > 0, and all real s, the functions 
Fm(w,s), m = 0 , 1 , 2 , . . . are analytic in the domain |w| < 1; also H(z, w, s) is 
analytic for |w| < 1, |z| < 1. 

From (3) we obtain, after a tedious but straightforward calculation, the equation 

H(z, w, s) = A z F i(w ' s) ~ ^ w z 2 ( 1 ~ 2 ) _ 1 ~ (1 ~ ^ W t 1 ~ w)"1
 > 

(1 — <5) jtiz2 — (p. + X — dfiw — is) z + X 
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Since O < 1, we may put w = O; this value is important because of (2). Hence 

(4) H(z, Q, s) = XZ Fl(g' s) " ,31z2(l - -V1 - (1 ~ g) M 1 ~ g)"1 . 
(1 — <5) /xz2 — (n + A — 5X — is) z + A 

The denominator of (4) has always one root, say a, in the domain |z| < 1. For 
S = 1 this root is a = A(jU — is)"1 , for 5 + 1 it is 

, v _ A* + A - <5A - is - {(/x + A - 5X - is)2 - 4A /i(l - <S)}1/2 

U a ~ 2^(1 - 5) 

Since H(z, O, s) is analytic in |z| < 1, a must be a zero of the numerator of (4), too. 
We have therefore 

Flie,s) = -^- + iL^h 
1 — a 1 — O 

or 

Fi(Q,s)==-^-+ ^ 
1 - O A(l - O) (1 - a) 

Now (2) shows that 

(pw(s) = 1 - O + (1 - O) Fi(e, s), 

i.e. 

(6) Ms) = 1-e + e[1 + i(r-T)]; 

this is the characteristic function of the waiting time distribution desired. 

If a customer arrives when the system is empty, he is served at once, without 
waiting. This event occurs with the probability 

P{W=0} = p0 = l - e . 

We see then from (6) that 

(7) ^ =l + irrh 
A(l — a) 

is the characteristic function of the conditional distribution of W, provided W > 0. 

6. Starting from (6) we can easily obtain expressions for the first two moments 
of the waiting time W. First, we find that 

E [ W ] = - i ^ ( 0 ) = O^(/i~A)-1, 

348 



which is not very interesting, because it is well known that the mean waiting time 

does not depend on the queue discipline. The other result 

E [ > 2 ] = -<f>'U0) = 

L J W (n-Xf{n-X + SX) 

shows that the second moment of W, and therefore also its variance 

2X Q2 (8) D 2 [W ] = 
(џ - X)2 (џ - X + ÔX) (џ - X) 2 ' 

are decreasing functions of the parameter S. The extreme values of the variance are 

Q(2 - Q) (/X - X)~2 for S = 1 (FIFO) and X(Q2 - Q + 2) (ju - A)"3 for (5 = 0 

(LIFO). 

7. Hitherto we have assumed that there is only one server in the system. In order 

to extend our results to the more general case of systems MJMJn some slight altera

tions are necessary in our formulae. 

The random walk of the waiting customers on different positions in the queue, and 

hence also the equations (3), are affected only formally: we just write n\L instead 

of \x everywhere. The expression for Fx(O, s) remains formally unchanged, but of 

course Q is now X\n\i (we still suppose Q < 1). Instead of (5) we have now 

_ nfi + X - SX - is - {(n/j. + X - SX - is)2 - An\iX{\ - <5)}1/2 

2n\x(\ - S) 

However, the presence of n servers in the system affects the probabilities pk as well. 

Instead of the simple geometric distribution (1) we have now (see e.g. [ l ] ) 

Xk 

Pk = Po 7 — r for 0 ^ k S n , 
k\ [iK 

Pk = PnQk~n for n ^ k , 
with 

n - l nfc n oo 

P O - ^ I - ^ + ^ - L V . 

fc=o k\ pc n\ k=n 

The probability of immediate service without waiting is now 
n— 1 oo 

P { W = o} = YPk = i - lpk = - - pn(i - Q)'1 • 
fc=0 k=n 

Instead of (2) we get for the characteristic function <Pw(s) of the waiting time distribu

tion 

1 - Q 1 - Q I A(l - a)J 
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we see that the function \j/(s) of (7) is formally the same as with n = 1; only a has 
changed. 

By differentiation we obtain again 

E[JF]=-.^(0) = - ^ _ — L -
1 — 0 72/Z — A 

and 

D2[W1 = Pn 2 ^ M " A) " "W" " A(1 Z g) v1 Z g) 
1 - Q (npt - X)2(nfi- X + 5X) (1 - Q) 

8. As we have just seen, the extension from M/M/l to MJMjn is rather straight
forward. We now come back to the simpler case of systems with one server; also 
in the sequel we shall deal with the system M/M/l only. 

With our queue discipline a waiting customer can leave the queue in two different 
ways: either from the first place or from the last place in the queue, i.e. either from 
a position [1, m], with m ^ 1, or from a position [k, 1], with k ^ 1. There is perhaps 
some ambiguity in the situation of a customer that leaves the queue from position [1,1] 
— he is both the first and the last customer in the queue. For the sake of simplicity, 
it is assumed that even in this case the customer to be served as the next is chosen 
at random5): with the probability 5 the leaving customer is considered the first and 
with the probability 1 — 8 the last customer in the queue. 

We shall now be interested in the probability f that an arbitrary customer ("chosen 
at random") will leave the queue from the first place. We remind that with probability 
1 — Q an arriving customer finds the system empty and is therefore served immediately 
without waiting. If he joins the queue — this occurs with the probability Q — he 
starts in a position [k, 1], k = 1, 2, 3, ..,, the probability of his doing so is pk = 

Let us denote by fkm the probability with which a customer, now waiting in a posi
tion [k, m], k ^ 1, m ^ 1, will finally leave the queue from the first place. We have 
then 

00 00 

(8) / = E - ( l - j J S ^ i . 
fc=l fc=l 

On the other hand, taking into consideration the random walk of the customers 
on the positions in the queue, we can see that the probabilities fkm fulfil 

(10) (A* + X)fkm = Xfkm + 1 -f 5fifk„lm + (1 - d)rfkm-i 

for k = 1, m ^ 1, with boundary conditions 

fom = 1 for all m ^ 1 , 

ffe0 = 0 for all k ^ 0 . 

5) See footnote2). 
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Here again we shall use the standard tool of generating functions. We put 

00 

Fm(w) = £ wkfkm , m = 1, 2, 3, ... 

for |w| < 1 and 
00 

H(z,w) = 1£zmFm(w) 
m=l 

for |w| < 1, |z| < 1; (10) then implies 

H(z w) = ^ j M z ^ W Z 2 ( 1 - z ) - 1 

V ' ; ix(\ - S) z2 - (fl + I - O>w) z + X ' 

The denominator vanishes for w = O, z = O; since O < 1, the numerator must 
vanish as well. Thus we have 

Fi(O) = <5O(1 - O ) " 1 . 

On the other hand, (9) shows thatf = (1 — O) Fi(O) so that finally 

(11) f=dQ. 

Analogously we could find that the probability with which an arbitrary customer 
will wait and finally leave the queue from the last place is (1 — <5) O. 

9. When investigating the mixed queue discipline in [5] and [7] we were also 
interested in the outtaking of customers during the waiting time.6) We shall now 
study the same problems for our class of queue disciplines. 

Given an arbitrary customer # let us denote by X the number of customers that 
had entered in the system earlier than # (we shall call them older than ^ ) but are 
still waiting when # leaves the queue; by Ywe denote the number of customers that 
arrived later than # (we shall call them younger than <&) but left the queue before c€. 
As # is arbitrary (chosen at random) X and Y are two random variables; we may 
ask for their probability distributions.7) 

We shall start with the variable X, this case being a bit easier to deal with (see 
also [7]). 

Once more we shall take advantage of the random walk of waiting customers 
on the different positions in the queue. Let us suppose that the actual position of the 
customer # is [k, m], with some k = 1, m = 1. This means that there are precisely 
k — 1 older customers waiting before ^ (and m — 1 younger customers behind c€). 

6) We remind that a customer ^x outtakes a customer ^ 2 if ^x arrives in the system later 
than # 2 but leaves the queue earlier than ^2 . 

7) In [5], Xwas called the number of active outtakings and Ythe number of passive outtakings 
of customer ^; in [7] they were called respectively active and passive inversions. 
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Since no more older customer can arrive, the conditional distribution of X, given 
the actual position [k, m] of # , is restricted to the values 0, 1, 2, . . . , k — 1. Let this 
distribution be 

Pkm(x) = P{X = x | [k, m]} , x ^ 0 integer ; 

we see that 
pkm(x) = 0 for x ^ k . 

If we add, by convention, the formal probabilities 

POw(0) = 1 , P0w(x) = 0 for all m = V x > 0 , 

and 

Pko(x) = 1 f ° r x = k — 1 , 

= 0 otherwise, 

then taking into consideration the usual random walk of # in the queue we see that 
the probabilities Pkm(x) satisfy the equations 

(12) Qi + X) Pkm(x) = X Pkm+l(x) + 8fi Pk.lm(x) + (1 - 5) pi Pkm-X(x). 

As usual, we write 

Fm(x,w) = f > f c P , w ( x ) , m = 0 , 1 , 2 , . . . 
fc=i 

for |w| < 1; the boundary conditions give 

F0(x, w) = wx + 1 . 

Putting then 

tf(x,z,vv) = £z m E m (x ,vv) 
m = l 

for |z| < 1, Ivv| < 1, we obtain from (12) 

(13) H(x, z, w) = A z Fi(x> w) - (1 - (5) A-Z2^+1 - Sfiwz G0(x, z) ^ 

(1 — S) fiz2 — (fi + X — Sfiw) z + X 

where 

G0(x, z) = £ zm P0 m(x) . 
m = l 

The denominator in (13) vanishes for w = Q, Z = O, and the usual argument yields 

F 1 (x , e ) = (l ~$)QX+1 +SG0(X,Q). 

This implies that the unconditional probabilities 

Pac,(x) = P{X = x} 
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are on the one hand (for x = 0) 

00 

(14) p.ct(o) = i - e + £ Pk pkl(o) = l - e + (l - (?) F.(O, e) = 
fc=l 

= 1 - Q + <5O + (1 - 5) Q(1 - O) = 1 - e2(l - 8), 

and on the other hand (for x > 0) 

(15) pcct(x) = £ A Pfcl(x) = (l - e ) FX(X, Q) = (I- S) (l - (?) Q*+1 . 
fe=l 

The equality (14) can be interpreted as follows: In order that an (arbitrary) customer 
^ may not outtake any older customer, he must either arrive when the system is 
empty (probability 1 — O) or wait and then leave the queue from the first place 
(the probability is SQ as we have seen in the preceding section), or else wait and leave 
the queue as the last customer, provided he is then alone in the queue (he leaves from 
the position [1, 1]) — the corresponding probability is (1 — O) Q(1 ~ <5). 

10. We shall now examine the probability distribution of Y. Let Rkm(y), k = 1, 
m = 1, y = 0, integer, denote the probability of the following event: there are ex
actly y customers younger than ^ that leave the queue before ^ , the actual position 
of <g being [k, m].8) 

The natural boundary values of Rkm(y) are 

(16) R0m(0) = 1 , R0m(y) = 0 for all m = 1 , y > 0 , 

Rk0(0) = 1 , Rk0(y) = 0 for all k = 1 , y > 0 . 

We shall first consider the particular case of y = 0. The usual random walk 
argument leads to the equations 

(17) (n + X) Rkl(0) = X Rk2(0) + dnRk^ t(0) + (1 - <5) /* 

and 

(18) (/i + X) Rkm(0) = X Rkm + 1(0) + 5n Rk_, m(0), m > 1 . 

Then for 

F°m(w) = t*k lW°) - m = 1, 2, 3, ...; |w| < 1 , 
fc=l 

(16) and (17) yield 

(19) (fi + X) F?(w) = X F°2(w) + Sfiw F?(w) + O>w + (1 - 3) fiw(l - w)"1 , 

8) It is not supposed that all the younger customers are already in the system; they may arrive 
while ^ is still waiting. On the other hand, younger customers that had already left the queue are 
not counted here. 
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while (18) implies 

(20) (n + X) F°m(w) = X F°m+1(w) + Sfxw F°m(w) + Sfiw, m > 1 . 

Putting as usual 

H°(z,w) = t z"Fm(w) 
m = l 

for \z\ < 1, |w| < 1, we obtain from (19) and (20) 

(21) H°(z, w) = ^IM ~ W ( l " z ) " ' - C1 ~ * W ( 1 ~ w ) ~ l . 
A — z(/i + A — dfiw) 

Since A < |/i + A — O7^w| for all |w| < 1, 0 ^ O* ^ 1, we conclude further by the 

usual argument 

(22) E?(w) = -*?- + ( 1 ~ ^ w , 
1 — <5w (1 — w) (1 + O — <3w) 

whence 

(23) fl°(z, w) ^ + (l^hl . 
V (1 - Sw) (1 - z) (1 - w) (1 + <? - Sw) 

For the particular value w = Q (23) gives 

(24) H°(z, Q) = ^ + (LzJ!* 
V ^ V U ( l - ^ ) ( l - z ) ( l - e ) ( l + e - ^ ) ' 

we shall make use of it later. 

The probability Ppas(0) = P{Y = 0} clearly equals 

00 

1 - Q + lPkRki(0) = 1 - Q + (1 - Q)F°1(Q), 

I.Є. 

(25) Ppa5(0) = 1-Q + - i n i l * . + A = l % = 
1 — O£ 1 + O — OO 

- 1 o l l - ^ - ^ 2 + ^ V _ 1 ( l - ^ ) g 2 

( l _ 5 e ) ( l + e _ 5 e ) (i _ ô(?) (i + e _ 5 e) • 

Now the case of y > 0. The equations for Rkm(y) are 

(26) (M + A)Rn00 = AR1200, 

(M + X) Rkl(y) = X Rk2(y) + en ViiOO , lc> 1 , 
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and for m > 1 

(27) (fi + A) Rlm(y) = A Rlm+1(y) + (1 - 5) fi Rlm^(y - 1), 

(/L + A) R,w(j;) = A Rkm+1(y) + O> K,_lm(y) + (1 - 5) fi Rhm-X(y - 1), fc > 1. 

If we write 
00 

Fy

m(w) = YJ»
kRkm(y) 

fc=l 

for |w| < 1, (26) gives 

(28) (fi + A) F?(w) = A Fy

2(w) + O>w F?(w), 

and (27) implies 

(29) (fi + A) Fw(w) = A Fm + 1(w) + O^w Fw(w) + (1 - O) M Fm-\(w) , m > 1 . 

For 

JJ'(z,iv) = f z w F w (w), |z| < 1, 
ro=l 

it follows from (28) and (29) that 

Xz F\(w) - (1 - 8) fiz2 IP-tjz, w) 
(30) (z, w) 

X — z(џ + X — ðџw) 

Since we know already H°(z, w) from (23), we can find successively all the functions 

Hy(z, w), y = 1, 2, 3,. . . , in the usual way: the denominator in (30) vanishes for 

z = A(/z + A — OTiw)-1, etc. Moreover, we can restrict ourselves to w = O, because 

we are mainly interested in the probabilities 

oo 

Ppa.(y) = P(Y = y) = £ ft Rfcl(>>) = (1 - Q) F{(Q) , y = 1, 2, 3 , . . . 
fc=l 

We take then 

(31) fl>(z, j ) = A z ^ ( g ) - ( l - ^ ) / i z » y ( z , g ) 
A — (jti + A — <5z) z 

instead of (30) and (24) instead of (23). We can further write 

00 

G(v,z) = ]>VH*(z,e) 
y=l 

and 
oo 

K(V) = YIVF\(Q), 
y=l 
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then it follows from (31) that 

(32) G(v z) = ^K(V)-(1-S)HVZ2H°(Z,Q) 
J (1 - S) iivz2 -(\i + X- bX)z + X 

The denominator of (32) has one root, say a, in the domain |z| < 1; it is 

a = a(v) - M + X ~ SX " ^ + X ~ 3X)2 ~ 4 1 / i ^ 1 ~ 5W2 

2/j.v(l - 3) 

Hence 

(33) K(v) = (1-3) va2 

+ l(í-ðQ)(í-a) (í-в)(l + ô-ðв)У 

and we get Fi(O) for y = 1, 2, 3, ... by differentiating K(v) (with respect to v) y-times 
and then putting v = 0. 

Anyway, we shall not do that explicitly. We only notice that a(l) = Q and 

(34) P{Y> 0} = (1 - Q)K(i) = 7 - - 4 \ " ^ 2 ; 

(1 - SQ) (1 + Q - SQ) 

this together with (25) makes 1 as it ought to. 

11. For the reasons we have already given in [5], p. 363, the variables X and Y 
must have the same mean values. For X we find from (15) 

E[X_ = (i-s)(i- Q) Q2 f_ x<r' = (l - s)Q2(I -e)->. 
x=l 

For Ywe get the same result from (33); since 

a(l) = ,, a'(l) = f = 4 £ 
1 - Q + OQ 

we have indeed 

E [ 7 ] = (i - Q)K'(1) = (1 - 5) e
2(l - e)-1 . 

12. As we have already announced in the introduction, the main results we have 
derived here for our class of queue disciplines are essentially the same as the results 
established for the mixed queue discipline. In .fact, it suffices only to write 1 — $ 
instead of 8 in our formulae to obtain the corresponding formulae of [5] or [6]. 

Let us consider e.g. the outtaking probabilities: changing suitably the notation 

in our formulae (14) and (15) we get the expressions for Pakt(^) anc* -°akt(0) given 
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on p. 379 in [5]; analogously, our formula (25) becomes formula (6A9) of [5], It 
would be perhaps a bit tedious to verify that (33) is the generating function for the 
probabilities (6.18) of [5], but it is easy to see that our expression for E[Y] is in 
accordance with the results quoted on p. 380 in [5], and in the special case of 
# = l (c3 = 0) — i.e. for the LIFO discipline — we have 

(35) K(v) = va2(v)(l -Q2)-1 

with 
a(v) = (ll2V){l+e-[(l+ey-4QVy>}, 

which corresponds to (6.4) of [5]. 
A similar equality holds for the waiting time distribution: our formulae (6) and (5) 

become — again with 1 — $ instead of S — the corresponding formulae given on 
pp. 199-200 in [6] (for r = 1, of course). 

These coincidences may look rather surprising so far as we have not found any 
natural explication based on an intuitive interpretation of the mixing operations 
involved in the disciplines of the two classes. However, we shall come back to this 
problem elsewhere (see also [8]). 
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Souhrn 

O JEDNÉ TŘÍDĚ FRONTOVÝCH REŽIMŮ 

VĚRA DUFKOVÁ, FRANTIŠEK ZÍTEK 

V článku se podrobně vyšetřují systémy hromadné obsluhy typu MJMJn, v nichž 
se při uvolnění obsluhové linky vybere do obsluhy s danou pravděpodobností první, 
resp. poslední zákazník z fronty. S využitím metody vytvořujících funkcí se odvozuje 
stacionární rozložení doby čekání, pravděpodobnosti opuštění fronty z prvního, 
resp. posledního místa a rozložení počtu aktivních a pasivních předstihů zákazníků 
ve stabilisováném systému. Ukazuje se, že některé výsledky se shodují s výsledky 
odvozenými již dříve pro tzv. smíšený frontový režim, v němž si zákazníci analogic
kým způsobem vybírají místo při zařazování do fronty. 
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