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SVAZEK 20 (1975) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON THE CONVERGENCE OF MODIFIED RELAXATION METHODS 
FOR EXTREMUM PROBLEMS 

MlROSLAV KRIZEK 

(Received May 30, 1974) 

1. INTRODUCTION 

In recent numerical praxis, various relaxation methods were applied to certain 
nonlinear problems although their convergence were not proved as yet. Some pro
blems of this kind are, for example, studied in works of S. SCHECHTER [5], [6]. This 
paper is concerned with the convergence of modified relaxation methods for non
linear problems which are described in section 2 in detail. The modified relaxation 
is considered as an extension of the so-called overrelaxation. The results which are 
reached in this paper contain, as special cases, many important results already 
known for linear problems [4], [7], [1], [2], [3]. 

2. NOTATIONS AND DEFINITIONS 

Let n be a fixed positive integer. Let En denote the n-dimensional Euclidean space. 
This space will be also interpreted as a normed space over the field of all real numbers 
and its points as n-dimensional column vectors. Let / :En =D D(f) -> E be a finite 
real function, twice continuously differentiable, where the domain D(f) off is a non
empty open subset of En. Let G be a nonempty subset of D(/). Then the problem 
Ji(f^ G) is defined as the problem of seeking a vector x e G of the global minimum 
of/ in G, i.e. the seeking a vector x such that it holds: if x e G, then /(x) ^ /(&). 

Let r(x) denote the gradient of/ at the point x, i.e. the column n-vector (//(x))i6Z, 
where// denotes the partial derivative of/ with respect to the i-th coordinate and Z 
the set of the positive integers {1,2, 3,..., n}. Let H(x) denote the Hessian of/ 
at the point x, i.e. the n x n-matrix (/f,/(x))i,yez-

Let {QjJfcLo be a sequence of n x n real matrices and {gfc},T=o a sequence of subsets 
of Z. We denote by Q'k = Qk[gk \ gk] the principal submatrix of the matrix Qk with 
respect to the multiindex gk, i.e. the submatrix (qtj)iJegk of the matrix Qk = (q-j) i J e Z. 
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Similarly Hfe(x) = H(x) \qk | gk~\ denotes the principal submatrix of H(x). Analogously 
for every vector u e F w e denote by ufe= u[afe] the subvector of u with respect to the 
multiindex gk and similarly ufe = u[Z — gk~\. Let x0 e G. We define the sequence 
{xk}k=0 by the relations 

(2.1) x f e + 1 = xfe - c fe, k = 0, 1,2, . . . , p - 1 , 

where 

(2.2) Hk(xk) cfe = Qferfe(xfe), 

(2.3) 4 = 0 , 

and p denotes a positive integer or the symbol co. 

Then the recursive construction of the sequence {xfc}£=0 by (2.1), (2.2), (2.3) is 
called the modified relaxation method for solving the problem Ji(f, G) correspond
ing to the relaxation process {x0, Qk, gk}™=0. This relaxation method will be called 
convergent if and only if the sequence {xfe}fe

aL0 converges to the solution of M(f, G). 
It should be noticed here that we put Hfe = Hfe(xfe), rfe = rfe(xfe) in what follows. 

Our further considerations will be based on 

Theorem 2.1. Let G c D(f) be a convex set and let the Hessian H(x) o f / be 
a positive definite matrix at every point x e G. Let a point xeGbe such that r(x) = 0. 
Then x is the unique solution of the problem Ji(f, G). 

3. LEMMA ON THE MONOTONICITY 

For all following considerations we introduce lev (/(u)) = {x e D(f) : f(x) ^ /(u)} 
and suppose that the following assumptions are satisfied: 

(a) The function / satisfies all of the assumptions of section 2. 

(b) The Hessian H(x) of / is a positive definite matrix for every x e G cz D(f), 
where G is a convex set. 

(c) lev (/(x0)) is a subset of G. 

(d) Let X(W), resp. A(W) denote the smallest, resp. the greatest proper value 
of any real matrix Wand ||...|| the euklidean vector norm. Let 

(3-1) b = 2 sup |r(x)|| (A(H(x)) (l(H(x)))-*y<2 , 

where the supremum is taken over all x e lev (/(x0)). Then the set B = {x : there 
exists a w e lev(/(x0)) such that ||x — w|| ^ b} is contained in G. 

We shall use the following notation in our considerations. Let xfe e G be the k-th 
member of a sequence {xfe}£=0 constructed by the relaxation process {x0, Qk, gk}™=0. 
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We denote by |w|fc, resp. | W\k the Hfc
_1-norm of the vector w, resp. H^-norm of the 

matrix W, which is subordinated of the vector Hfc
_1-norm. Then |w|fc = (w | Hfc

_1w)1/2 

where (... | ...) denotes the scalar product of vectors. The index k will be omitted 
if the ambiguity is excluded. 

We set 

Yk = {u e D(f) : \u'k - xk\ g 2\Hk
l\ \r'k\9 uk = *£} , 

Xk= Y,nlev(f(x,)) 
and 

ock = sup \fk - H'k(u) Hk
x\ , u G Yk, 

a°k = sup |I; - Hk(n) Hk
l\, ueXk, 

where Hk(u) = H(u) \gk | gk~\ and l'k = l[gk | gfc], I denoting the n x n unit matrix. 
It holds that xk e Xk. 

We can easily prove the following 

Lemma 3.1. Let xk e lev (f(x0)) and \Qk\ = 2. Then (a) Yfc c. B; (b) for every S, 
0 ^ 9 ^ 1 it holds that w = &xk+1 + (1 — 9)xke Yk, where xk+1 is defined by 
(2.1), (2.2), (2.3). 

Further we prove 

Lemma 3.2. Let xk be the k-th member of the sequence {xfc}£=0 constructed by 
the relaxation process {x0, Qk, gk}k=0. Let lev(f(xfc)) c lev(f(x0)). Let xfe be a real 
number satisfying the following conditions of monotocity: 

(i) 0 ^ xfe g 1 , 

0 0 |I; - Gi| ^ (1 - **) 1 / 2 > 

(m) |&K / 2 = **1/2. 

Then (he (k + l)-th member of the sequence {xk}l=0 is well defined and it holds 

Yk^B, 

lev(/(x t+1))c: lev (/(*,)) 

and 

(3.2) / ( x t + 1 ) - / W = -iA|r£|2_aO, 

where ft = x t - otf|Qi|2 ^ 0. 

Proof. In accordance with the assumption xfc e lev (/(x^)) c £)(/) and ifj. is 
a nonsingular matrix. Then the vector xk+1 is defined by the relations (2.1), (2.2), 
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(2.3). Lemma 3.1 implies x/c + 1 e D ( f ) . By means of Taylor's formula we obtain 
from (2.2) 

(3.3) f(xk+1) - f(xk) = - (rfc | ci) + i(c* | H'k(wk) 4), 

where wk = 9kxk + i + (l — 3k) xk9 0 < Sk < 1 and wk e Yk by the lemma 3.L 
It follows from (3.3) and (2.1) that 

(3.4) 2(f(xk+1) - f(xk)) = (\rk - Q'k\
2 - 1 + \Q'k\

2 \l'k - H'k(wk) Hk
l\) \r>\2 . 

Since wk e Yk9 we obtain from (3.4), from the definition a/c and the condition of 
monotonicity (ii) that 

2 (3.5) 2(f(xk+1) - f(xk)) <; (\Q'k\
2 ak - xk) |rj| 

It follows from the condition of monotonicity (iii) that 

(3.6) f(xk+1)^f(xk) 

and therefore x k + 1 e lev (f(x/c)), x k + 1 eXk and lev(f(x /c+1)) cz lev(f(xk)). 
Now we prove that wk e Xk. Since we have proved above that the segment with 

the endpoints xk and wk is contained in Yk cz B, we obtain by using Taylor's formula 
that 

(3.7) f(wk) - f(xk) = -Sk(r'k | eQ + i(ci | Hk(vk) cj) , 

where vk = tkQkxk+1 + (l — tk9k) xk, 0 < tk < 1. From (3.7) we obtain thatf(wk) = 

= f(xk). Therefore we have wk e lev (f(xk)). 
Since wk e Xk, it follows from the conditions (ii), (iii) and from the definition 

of pk that (3.2) holds. 

Now we prove a lemma on the monotonicity of the sequences {f(xk)}k=0 and 

{lev(/(xft))K=0. 

Lemma 3.3. Let {xk}k=0 be a sequence constructed by the relaxation process 
{xo> Qk> 9kik=o- Let a sequence {xft}^°=0 exist satisfying the following conditions 
of the monotonicity: if xk is a member of the sequence {xk}kzs0, then 

(i) 0 5J xk ^ 1 , 

00 \l'k ~ Q'k\ = (1 - xkf'
2 , 

(iii) \Q'k\a^^4/2. 

Then the sequence {xk}k = 0 is infinite, i.e. p = oo and it holds 

(a) lev(f(xk+1))<=lev(f(xk))<=B, 

(b) Yk cz B , 

(c) f(xk+1) - f(xk) ^ -Wk\r'k\
2 

for every k = 0 , 1 , 2 , . . . . where Pk = xk - a°|g^|2 ;> 0. 
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Proof . By the definition of B we have lev (/(x0)) c B. The matrix H0 is nonsingular 
since H(x) is a positive definite matrix for every xe B. Therefore lemma 3.3 holds 
for fc = 0 in compliance with lemma 3.2. To finish the proof, the principle of ma
thematical induction should be applied. 

4. RESIDUALLY ORDERED RELAXATION METHOD 

Let {Tifc^o be the sequence of the coverings of the set Z, i.e. nk = {hy°}J_i is 

a sequence of the subsets hf} of Z such that U hf} = Z for every fc = 0, 1, 2, .. . . 
7 = 1 

Let a positive integer v exist such that 1 = v fc = v holds for every fc = 0, V 2, .... 
Let {|||...||(fc)}*_0 be a sequence of vector norms for vectors in the space En. Let 
{/i/JfcL 0 be a sequence of real numbers such that 0 ̂  /ifc ̂  1 holds for every fc = 0,1,2,... . 

Let {x0, Qfc, gfc}fc
xL0 be a relaxation process for solving the problem M(f, G) and 

let it hold : if xk is the member of the sequence {xfc}fc=0 constructed by the relaxation 
process {x0, Qk,gk}k=0 then 

(4.1) gfc = h% , 

where r(fc) is the smallest, resp. greatest element of the set 

it - |!!r(r)'i!(fc) > // max lllr(J)ill(*H 

(r . ||rk ||| = \ik max |||rfc || j 
rk

j) denoting a vector for which r (y)[/zf ] = r(xfc) [/z
(fc)] and r(/}[Z - / i f ] = 0 

for every j = 1,2, ..., vk. 
Then we call the relaxation process {x0, Qk, gk}k = o l n e residually ordered relaxa

tion process with respect to the sequences {nk}^=0, {|||...|(fc)}fc
00

=0, {jik}^=0. The relaxa
tion method corresponding to this process is called the modified residually ordered 
relaxation method. 

R e m a r k 4.1. If 8l9 S2 are such real numbers that 

0 -̂ /8 IMII2 < llvll2 <C & lilvlll2 
<, Oi X| _̂  X _• O2 X 

holds for every x e En, x 4= 0, then we call S = d1jd2 the limit quotient of the norm 

| |x| on the vector space En. 

Further we will introduce and prove a theorem on the convergence of the modified 
residually ordered relaxation method. 

Theorem 4.1. Let the function f and the vector x0 satisfy the assumptions of the 
section 3. Let {x0, Qk, gk}k=o be a residually ordered relaxation process with 
respect to the sequences {nk}k=0, {|...||(fc)}fc

x
=0, {pik}k = 0. Let a sequence {xk}k=0 

exist with these properties: 
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(a) Ifxfc is a member of the sequence {xfc}fc = 0 constructed by the relaxation process 
{x0, Qk, gk}^=0, then xk satisfies the conditions of monotonicity (i), (ii), (iii) Of lemma 
3.3. 

(b) If {O*fc}fc
00

=0 is a sequence of real numbers where dk is the limit quotient of the 
k-th member of the sequence {jj.. . |||(k)}£L0 then the series 

00 

(4-2) EAAw. 
k = 0 

is divergent. 
Then the sequence {xfc}fc

X)
=0 constructed by the relaxation process {x0, Qk, gk} 

converges to the solution x e lev (f(x0)) Of the problem Jt(f, G). 
If all assumptions introduced above are satisfied but the assumption of the diver

gence of the series is replaced by the following stronger assumption that the sequence 
of the members of (4.2) is bounded by a positive number from below, i.e. there 
exists a number y > 0 such that 

(4.3) MA ^ v 

holds for all k = 0, 1, 2, ..., then there exists a real number 

0 < n < 1 

such that 

(4.4) ||xfc - x j ^ = 0(nh) for k -> co 

holds for the sequence {xfc}fc
a)

=0 constructed by the relaxation process {x0, Qk, gk}^0 

where • *• Lo denotes the l^ norm. 

Proof . It follows from lemma 3.3 that the sequence {xfc}£=0 is infinite, i.e. p = co. 
If we denote A0 = max A(H(u)) for u e lev (f(x0)), we obtain by (3.8), (4.1) and the 
remark 4.1 that 

(4.5) f(xfc)~f(xfc+1) = 4-^A^||r42 f o r fc = 0 , 1 , 2 , . . . . 
vA0 

The sequence {/(xfc)}£l0 is nonincreasing and bounded from below; therefore it is 
convergent. From (4.5) we obtain that lim /?AMfc||

r
fcj|

2 = 0 for k -> co. The divergence 
of the series (4.2) implies the existence of a subsequence {z,}Ji0 of {xfc}fc

aL0 such that 
lim r(z|) = 0 for / -> co. 

Since lev (f(x0)) is a compact set, there exists a subsequence {u/}JL0 of { Z J J I Q 
such that lim u ; = u e lev(f(x0)) for j -> co and therefore limr(uy) = r(u) = 0 
for j -> oo. Hence u = x and limf(xfc) = f(x) for k -> co. If z is an accumulation 
point of the sequence {xfc}fc

aL0, then it follows from the continuity off on lev(/(x0)) 
that limf(xfc) =f(z) for k ~> co and therefore f(z) = f(x). In accordance with 
theorem 2.1 we obtain z = x. Hence lim xfc = x for k ~> oo. 
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If the assumptions of the second part of the theorem 4A are satisfied then it follows 
from (4.3) and from the first part of the theorem 4.1, which we have just proved, that 
the sequence {xk}£L0 converges to the solution xelev( f(x0)) of the problem 
Jt(f, G). Then there exists a k0 such that xk belongs to the closure S~ of the open ball 
S with the radius b and the centre x for every k _ k0. It holds that S~ a B. We 
obtain by means of Taylor's formula that 

(4.6) iA\\xk -x\\2_ f(xk) - f(x) _ -fX\\xk - xj|2 

for every k _ k0, where A = max A(H(u)) for u e S ~ and 1 — min X(H(u)) for 
U G S " . Further we obtain by means of Taylor's formula that 

(4-7) | K - * | g X-l\\rk\\ 

for every k _ k0. 
By (4.6), (4.7), (4.5) and (4.3) we have 

(4-8) f(xk)-f(x)_C(f(xk^)~f(xk)) 

for every k _ k0, where £ = AA0(ly)~l v > 0 . 
It follows from (4.8) 

(4.9) f(xk) - f(x) _ C(l + 0 " 1 (f(x*'-i) ~ /(*)) 

for every k _ k0. If we put n = C1/2(l + ()~ 1 / 2 , we obtain the assertion (4.4) from 
(4.9). 

5. FREELY ORDERED RELAXATION METHOD 

A relaxation process {x0, Qk, gk}k=0 is called a freely ordered relaxation process 
if and only if it has this property: for every i e Z there exists an infinite subsequence 
{hj(i)}f=0 of the sequence {g/J^o that i e hj(i) for every j = 0, 1, 2, .. . . The relaxa
tion method for solving the problem Jt(f, G) corresponding to this process is called 
the modified freely ordered relaxation method. 

We introduce and prove the following theorem on the convergence of the modified 
freely ordered relaxation method. 

Theorem 5.1. Let the function f and the vector x0 satisfy the assumptions from 
the section 3. Let the relaxation process {x0, Qk, gfc},?Lo ^e a modified freely ordered 
relaxation process. Let the following conditions be satisfied: 

(a) The members of the sequence {Qk}kLo have the lower pseudonorms uniformly 
bounded from below, i.e. there exists a real number q > 0 such that 

m(Qk) = <1 
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for every k = 0, 1, 2, . . . , where m(Q'k) is the square root of the smallest eigenvalue 

of the matrix Q^Qk, Ql being the transpose of Q'k. 

(b) There exists a sequence of real numbers {%k}k = 0 which posses this property: 
ifxk is the k-th member of the sequence {xfc}fc

x
=0 constructed by the relaxation process 

{x0, Qk, gfc}fc
aL0, then xk satisfies the conditions of monotonicity (i), (ii), (iii) Of lemma 

3.3. 

(c) The sequence {pk}™=0 from the lemma 3.3 is bounded by a positive number ft 
from below, i.e. there exists a number f$ > 0 such that 

pk^p 
for every k = 0, 1, 2, .. . . 

Then the sequence {xk}^=0 constructed by the relaxation process {x0, Qk, gk}k=0 

converges to the solution x e lev(f(x0)) Of the problem Jl(f, G). 

Proof . We only outline the proof. It follows from the assumptions of the theorem 
5.1 and (3.8) that the sequence {f(xk)}^=0 is nonincreasing. Since it is bounded from 
below it is convergent. Let z be the accumulation point of the sequence {x/£}fc

xL0. It 
holds that zelev( f(x0)) and limf(xfc) = f(z) for k -> oo. The proof that r(z) = 0 
is, to a certain extent, more difficult. Then we prove that lim xk = x for k -> oo 
using the same consideration as in the proof of the theorem 4A , where x is the solu
tion of the problem Ji(f, G). 

6. ALMOST CYCLIC RELAXATION METHOD 

A relaxation process {x0, Qk, gk}k=0 is called a s-almost cyclic relaxation process 
if and only if it possesses this property: there exists a positive integer s such that 
it holds 

k + s-l 

Zcz U 9, 
t = k 

for every k = 0, 1, 2, ..., i.e. every index from the set Z is a member of a set gt, 
when t = k or t = k + 1 o r . . . or t = k + s — 1 for every k = 0, 1, 2, .. . . The 
relaxation method for solving the problem Ji(f, G) corresponding to this process 
is called the modified s-almost cyclic relaxation method. 

Now we present and prove this theorem on the convergence of the modified 
s-almost cyclic relaxation method. 

Theorem 6.1. Let the function f and x0 satisfy the asssumptions of the section 3. 
Let for the s-almost cyclic relaxation process {x0, Qk, gk}k=0 there exists a sequence 
{xfc}jT=o with tnese properties: 
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(a) Ifxfc is a member of the sequence {xk}k=0 constructed by the relaxation process 
{x0, Qk, gk}k

xL0, then the number xk satisfies the conditions of monotonicity (i), 
(ii), (iii) Of lemma 3.3. 

(b) Let {/?k}£°=0 be the sequence from lemma 3.3. If we denote 

Xk = min {Pj} , sk ^ j ^ sk + s + 1 , 

for every k — 0, 1, 2, ..., then the series 

(6-1) Ex* 
fc = 0 

diverges. 

Then the sequence { X J ^ Q constructed by the relaxation process {x0, Qh, gk}k = 0 

converges to the solution x e lev (f(x0)) of the problem M(f, G). 
If all assumptions introduced above are satisfied but the assumption (b) is replaced 

by the assumption that the sequence {/?fc}£°=o *5 bounded by a positive number 
from below, i.e. there exists a number f$ > 0 such that 

holds for all k — 0, 1, 2, ..., then there exists a real number n 

(6.2) 0 < n < 1 

such that 

(6.3) |xk - afco = 0(nk) for k -» oo 

holds for the sequence {xk}^°=0 constructed by the relaxation process {x0, Qk, gk}™=0, 
where || || <-» denotes the l^ norm. 

Proof . We only outline the proof. It follows from the assumptions of the theorem 
6.1 and (3.8) that the sequence {/(xk)}£l0 is nonincreasing. Since it is bounded from 
below, it is convergent. By (3.8) we have 

(6-4) f(xk) - limj(x ;) £ i f pj\r'j\2 ^ 0 . 
i-*oo j~0 

oo s— 1 

It follows from (6.4) that the series YjXk( Z |rsfc+m|2) *s convergent. Since the series 
fc=0 m = 0 s ^ t 

(6.1) is divergent, there exists a subsequence { £ |-"sf+m|2}r=o of the sequence 

{"£ |4+m|2}fc°=o such that 
m = 0 

(6.5) lim *X |<,+m|2 = 0 . 
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It follows from (6.5) that 

(6.6) lim |r;,+m| = 0 for m = 0, 1, 2,.. . , s - 1 . 

From (2.3) and from the condition of monotonicity (ii) of lemma 3.3 we can prove 
that 

(6.7) l im| |x ; I + m -x s , | |w = 0 for m = 1, 2,. . . , s 
I->00 

By (6.7) and (6.6) we prove that 

(6.8) lim rs/ = 0 . 
i->00 

There exists a convergent subsequence {u^JLo of the sequence {xsjr=o- Let lim uy = u. 
j->oo 

Then u e lev (/(x0)) and r(u) = 0. Therefore u = x. The proof of the assertion that 
lim xk = x for k -> oo is the same as in the proof of the theorem 4.1. 

New we outline the proof of the second part of theorem 6.1. Assume that the 
sequence {/?fc}r=o *s bounded from below by a positive number /?. It follows from 
the first part of theorem 6.1 that the sequence {xk}k=0 converges to the solution x 
of the problem Jt(f, G). By lemma 3.3 we have 

oo 

(6-9) /(xt)-j(i)^E/3,|r;p. 
j = k 

Applying Taylor's formula, we obtain 

(6.10) f(xk) - f(x) = i((xk - i ) | H(xk) (xk - x)) 

where 
~/c = Tfct + (1 - Tk) Xk , 0 < Tk < 1 . 

LetS" c G be a closed ball of radius b, see (3A), centred at x. Let A = maxA(H(u)) 
for u e S~. Let k0 be a positive integer such that xk e S~ for every k ^ k0. It follows 
from (6.10) that 

(6.H) f(xk)-f(x)^~A\\xk-x\\(Xi 

for every k ^ k0. By (6.11) and (6.9), we have 

for every k ^ k0. Setting 
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we have 

(6.12) fl^-x^S.-^^,, k ^ k 0 . 

nA 

We can prove the following inequality: 

(6.13) ||xsfc - ±||„ = yi(ak - <rk+l) for fc = k0 , 

where yx > 0 is a constant independent of k ^ k0. We outline the proof of (6.13). 
Let I = minA(H(u)) for u e S ~ . Applying (2.2) and using (ii) of lemma 3.3, we 
obtain 

(6.14) ||xsfc+m - xjoo = 4 "s -zz (<?k - *k+i) 

for every k ^ k0. 
Now let i e Z be fixed. By (6.1) there exists an index m(k, i) such that i e gsk+m(k>i) 

for every k = 0, 1, 2 , . . . . Let M = max ((max |//'m(x)|). By means of Taylor's 
l,meZ xeS~ 

formula we obtain 

(6-15) \Tsk,i\ -S |rsfc + m(fc,0,i| + nM\\Xsk + m(k,i) — x
sfc||oo 

for every k = 0, 1, 2, 3 , . . . . 
By (6.14) and (6.15), we have 

(6.16) I r J * ^ y2(<rk - ak+l)^
2 for k = k0 

where y2 > 1. 
Applying Taylor's formula, Schwarz's inequality and using (6.16), we obtain 

||xsfe - i\\„ = j y2(afc - <rfc+1)
1/2 for k = k0 

and so (6.13) is thus proved. 
Now it follows from (6.12) and from (6.13) that 

(6-17) 

where 

öfc+l 

VII У°k for k 

1 

Л
ll ko , 

0 < ľ 
1 

yxnA 

< 1 . 

By (6.11), (6.13) and (6.17) we have 

(6.18) 0 £ / ( x * ) - / ( 4 ) £ y 3 y * , for k = k0 , 

where y3 > 0. 
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Since the sequence {/(xk)}£L0 is nonincreasing it follows from (6.17) and (6.18) 

that 

(6.19) f(xk) - f(x) = y4y
k/s, for k = sk0 

i n-s)/s 
where y4 = y3y

v 

By means of Taylor's formula we obtain 

(6.20) ||x* ~ m = I (/(-**) - / ( * ) ) , for k = k0 . 

It follows from (6.19) and (6.20) that 

K - x I L = ( y ) qs for all k = sk 0 , 

where q = y1/2s. The second part of theorem 6.1 is thus proved. 

R e m a r k 6.1. Let n° = {h/}J=i be a covering of the set Z, where v > 1. Let us 
set in the definition of the s-almost cyclic process s = v and 

9k = K, 

where T is congruent with k + 1 modulo v, that is 

T = k + l(mod v) , k = 0, 1, 2, ..., 
for 

T e Z . 

Then the relaxation process {x0, Qk, gfc}fc
xL0 is called a modified cyclic relaxation 

process with respect to the covering n°. The method corresponding to this process 
is called a modified cyclic relaxation method with respect to the covering n°. The
orem 6.1 holds for the modified cyclic relaxation method but with a slight altera
tion. The symbol s should be replaced by the symbol v. 

R e m a r k 6.2. Let the relaxation process {x0, Qk, gk}™=0 be such that gh = Z for 
every fc = 0, 1, 2 , . . . . Then we call the relaxation process {x0, Qk, gfc}fc

xL0 the modified 
Newton's relaxation process and the corresponding method the modified Newton's 
method. It is obvious that the Newton's modified method is a s-almost cyclic relaxa
tion method where s = 1. 
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S o u h r n 

O KONVERGENCI MODIFIKOVANÝCH RELAXAČNÍCH METOD 
PRO ÚLOHY O EXTRÉMU 

MIROSLAV KŘÍŽEK 

V článku je provedena dosti obecná analysa konvergence modifikovaných relaxač
ních metod pro určité nelineární problémy v prostorech konečné dimense. Modifiko
vaná relaxace je přitom uvažována jako rozšíření tzv. suprarelaxace. Je vyšetřována 
konvergence těchto metod: residuální řízené relaxační metody, volně řízené relaxační 
metody a skorocyklické relaxační metody, obsahující jako speciální případy cyklickou 
relaxační metodu a modifikovanou Newtonovu metodu. Speciální volbou funkce 
zkoumané na extrém obdržíme většinu velmi důležitých známých výsledků pro řešení 
soustav lineárních algebraických rovnic relaxačními metodami. 

Authoťs address: RNDr. Miroslav Křížek, Vysoká škola strojní a elektrotechnická, Nejedlého 
sady 14, 30158 Plzeň. 
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