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SVAZEK 21 (1976) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

STABILITY OF ITERATIVE SCHEMES FOR NONSELFADJOINT 
EQUATIONS 

MURLI M . G U P T A 

(Received April 3, 1974) 

1. INTRODUCTION 

In this paper we study the stability of a class of iterative schemes which may be 
used to obtain numerical solutions of a partial differential equation. The differential 
equation is normally replaced by a finite difference approximation at a set of mesh 
points. When the boundary conditions have been applied, one obtains a system 
of algebraic equations which is solved to give the required numerical solution. Such 
a system may be written in the form 

(1.1) Au=f, 

where A is the coefficient matrix of the algebraic system and u is the discrete solution 
vector. 

In order to solve (1.1), one frequently employs an iterative procedure of the form 

(1.2) Buim+i) = Bu(m) - T(Au(m) - /) , 

where B is matrix and T an iteration parameter, both of which are chosen in order 
to make the iterative scheme (1.2) stable and convergent. The problem of stability 
has attracted the attention of several authors. The well known Von Neumann condi
tion of stability [6], [7] can be applied to virtually every problem; however, it is 
a necessary condition and does not always guarantee stability. Kreiss [4] obtained 
a set of equivalent conditions which were shown to be sufficient for stability. These 
conditions are rather of theoretical interest and do not yield a practical stability 
criterion. One of these conditions proves the existence of a similarity transformation 
which puts A into a form easily tested for stability. Another one puts a limit on the 
growth of the resolvent. Similar shortcomings are associated with other known 
results (see [7], [12]). 
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In 1968, Samarskii [10] obtained several equivalent necessary and sufficient condi
tions of stability for the case when the matrix A is symmetric. These conditions could 
be used to ascertain the stability before starting the computations. In the case of 
a nonsymmetric matrix A, Samarskii obtained some sufficient conditions of stability 
but they require the knowledge of A~1 which is rarely known. We try to overcome 
this difficulty and obtain several sufficient conditions of stability that can be applied 
a priori. We also obtain some estimates of the rate of convergence of the iterative 
schemes and show their superiority to the existing results. 

It may be noted at this point that an iterative scheme of the form (1.2) can also 
be used to obtain the time dependent solution of the abstract Cauchy problem 

(1.3) — (x, t) = Lu(x, t) + f(x, t) ; 
dt 

u(x, 0) = u0(x) , 0 _ t = t0 

where Lis a matrix differential operator in the space variable x = (xl9 x2, ... xd) e Rd. 
In order to consider the stability of (1.2) in a general setting, we introduce a family 

of real Hilbert spaces {Hh} depending upon a parameter h which is a vector in a 
normed space (e.g. h e Rd); \h\ is the norm of the vector h. We introduce the network 

(1.4) cox = {t = mxjm = 0, 1, ..., m0; t0 = m0T} . 

Let y(t) = yhx(t), f(t) = fhx(t), etc. be abstract functions of the argument tecox 

with values in Hh; A(t) = Ahx(t), B(t) _ Bhx(t), etc., be linear operators mapping 
Hh into Hh for each t e cox. An iterative scheme of the type (1.2) can be written in the 
following operator form: 

( 1 . 5 ) Bhr(t) - - - + r)- y*® + Ahz(t) yjf) = hit), 
T 

0 = t = mx < t0 ; 

y*t(0) = yoAt e Hh ; 

where y0hx denotes the starting approximation for the iterative scheme (1.2). For the 
sake of convenience we shall sometimes drop the subscripts h and T. Note that a multi
level iteration scheme can be reduced to the form (1.5) by introducing new variables. 

Let (-,-)h and \\y\\h = (y, yfj1 be the scalar product and norm in Hh, and let E 
be the identity operator. An operator A is selfadjoint (A = A*) if (A u, v) = (u, Av) 
for all u, v e H; A is positive (A > 0) if (Au, u) > 0, u 4= 0, u e H; A is positive 
definite (A = SE) if (Au, u) = d(u, u), S > 0, u e H; A = B if (Au, u) = (Bw, u) 
for all u e H. If B = B* > 0, the square root B1/2 exists [3] and B1/2 = (B1/2)* > 0. 
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A positive operator B = B(t), dependent upon t e cox, is said to be Lipschitz conti
nuous in t [9] if 

(1.6) \(B(t) u, u) - (B(t - T) U, U)\ ^ xCl(B(t - T) U, U) , t e cox, 

where cx is a positive number independent of t, T and /i. The operator norm is defined 
as ||A I = sup || Abe||, x e H. If A is a selfadjoint operator, then ||A|| = sup |(Ax, x)|, 

11*11-1 < I I* l l - i 
x e H. If D(t) is a positive linear operator on H, then an energy norm can be defined: 

0-7) \\y\\m = (D(t)y,yy>2, 

where the lower case letter d(t) relates to the operator D(t). 

We remark here that we consider a real Hilbert space in order to study the non-
selfadjoint positive operators. 

2. STABILITY 

The initial value problem under consideration is 

(2-1) B(t)^±A^M+A{t)y{t)=f{t), 
T 

0 ^ t = rnx < t0 ; 

y(0) = yoeHh. 

This problem is properly posed [8] if there exists T0 = T0(h) such that for T ^ T0, 
a solution of (2.1) exists for arbitrary y0 e Hh and f(t) e Hh, t e a>T. The scheme (2.1) 
is stable if there are positive constants M± amd M2 , independent of t, T and h, such 
that the following inequality is satisfied for T ^ T0: 

t2-2) ||y(0||(i,r) = M i |K°) | | ( i .o) + Mi max ||/(0|(2,i-) 

where ||. ||(lsf) and ||. ||(2,t) are certain norms defined on Hh. Examples of these norms, 
which are functions of t, are the energy norms related to the operators of the scheme 
(2.1): 

(2.3) \\y(t + T ) | | ( M ) = \\y(t + T)||a(0 = (A(t) y(t + T), y(t + T))1'2 ; 

||y(* + T)||(l,0 = ||y(^ + T ) l w 

First of all we discuss the stability of (2.1) with respect to the initial data. The corres
ponding definition of stability is obtained by putting f(t) = 0 in (2.2). We assume 
that B(t) is a selfadjoint and positive operator that satisfies a Lipschitz condition 
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in t and A(t) is a positive operator. Since B(t) = B*(t) > 0, the square root B1/2(t) 
exists for each t e cOr and the equation (2A) can be written in the following form 
[2, 10]: 

(2.4) x(t + T) = S(t) x(t), 5(t) = E - T C(t) 

where 
x(ř + т) = ß l / 2 ( ŕ ) y(ř + т) , x(t) = ß1/2(f) y(r) 

and 

C(t) = B - 1/2(r) A(f) B~ 1 / 2(f), 3c(0) = x(0) ; 

|x(< + T)|| = !JB1/2(t)>'(t + T)|| = \\y(t + T) | | 6 ( 0 . 

The following lemma from [2] provides a stability criterion: 

Lemma 2.1. The initial value problem (2.1) is stable if 

(2.5) \\Shx(t)\\ ^ e w = e , tecot, 

where c0 is a real number independent of t, T and h. 

The bound (2.5) also gives a necessary condition of stability when the operator 
Sht is independent of t. In this case the condition (2.5) is similar to the stability 
condition given by Lax and Wendroff [5]. We are interested in obtaining stability 
conditions in terms of the original operators A and B. 

The rest of this section deals with the stability of (2.1) with respect to the initial 
data when A and B are independent of t. In the following section we consider the 
stability when A and B are time-dependent operators. Section 4 deals with the stabi
lity with respect to the right hand side f(t) (which includes the boundary conditions 
associated with the original partial differential equation) according to the definition 

(2-2). 
When A and B are independent of t and B = B* > 0, A > 0, the equation (2.4) 

becomes 

(2.6) x(t + T) = Shx x(t) , 0 = t = mi < t0 , x(0) = x0 e Hh , 

where 

5 = E-TC, C = B~1/2AB~1/2, x = B1/2y; 

and 

(2.7) |H| = (B"2y, Bl'2yy>2 = (By, y)1'2 = \\y\\b . 

The necessary and sufficient condition of stability becomes 

(2.8) ||Sfct|| !g Q = eCoX, c0 independent of t, T and h . 
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Samarskii [10] obtained the following equivalent necessary and sufficient conditions 
when A = A*: 

(2.9) (1 - Q) B = rA = (1 + Q) B , Q = eC0X 

with any constant c0. The following conditions were obtained when A 4= A*: 

(2.10) C1
 = (T^E^A"1

 = ( t / 2 )B _ 1 => ||S|| = 1 , 

where E is the identity operator. This condition involves the inverse operators A-1, 
B~x and C"1 which are rarely known a priori. Consequently, the condition (2A0) 
is not suitable for testing. 

If the iterative scheme (2.6) is stable, then 

(2.11) HSU ^ Q => T | C | | g 1 4- Q , O = ^0T 

which gives a necessary condition of stability. A sufficient condition is obtained as 
follows: 
Since 

HSJI = ||E - TC|| = i + r | jC | | , 

(2.12) T||C(| = Q - 1 => [[SI = O , O = e C 0 T . 

This condition, however, is restrictive but can be improved if more information 
about the operator C is available. If C is a selfadjoint positive semidefinite operator 
(C = C* ^ 0), then the condition (2.11) is also sufficient for stability. If C is a non-
selfadjoint positive definite operator (C 4- C*. C = SE, S > 0), then 

j | S x S | 2 ^ ( l - 2 T t 5 + T2 |CJj2) |x!J2 , 
and 

( 2 , 3 ) | S | S , if 0 < r S M - ^Sil±MM : L _ . 
v / ii ii — ^ — WrW2 

11° II 
Frequently the operator A, and consequently the operator C, is the sum of a self-

adjoint and a nonselfadjoint operator. In such a case further improvements can be 
carried out and a better stability range obtained: 

Theorem 2.1. Let C be a positive semidefinite operator such that 

(2.14) C = C04C1? C0 = C*=0; Cx * C\ , Cx ^ OE , 5 = 0 . 

The operator scheme (2.6) is stable (||S/,T|| _=? 1) if the iteration parameter % is chosen 
such that 

(2.15) 0 < T < T0rl (9 - 2 ( l + fc-g0) , 
V ^ 1 + 2b - e2 + a2 
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where 

a = ?o||Ci|| - b = T05 , Q0 = ||E - T0C0|| ; 

arid T0 /:5 any real number satisfying 

(2.16) O0 = 1 + b, (1 - O0)
2
 = a 2 . 

Proof. 

S = E - TC = E - TC0 - TCj = (0E - TC0) + ((1 - 0) E - TCJ , 0 = 0 = 1 . 

By the triangle inequality 

ISII = 0||E - T/0Co|| + ||(1 - 0 ) E - TCJ.II . 

We rescale T in terms of T0 and 0 by writting T = TO0, 0 = 0 = 1. Moreover, 

(2.17) ||{(1 - 0) E - TCJ x!|2 = (1 - 0)2 Hxll2 - 2T(1 - 0) (C-x, x) + 

+ ^ICixf = {(1 - 0)2 - 2T<5(1 - 0) + ^ H C J I 2 } Hxl2 . 

This is true for all x e H, so that 

||(1 - 0)E - TCil = {(1 - 0)2 - 2T5(1 - 0) + T 2 ! ^ ! ! 2 } 1 / 2 , 

and J]51| = f(0) where 

(2.18) f(0) = 0||F - T0C0|| + {(1 - 0)2 - 2T095(1 - 0) + Tgf92||c1||2}1/2 = 

= 0QO + {(1 - 0)2 - 2b0(l - 0) + a 2 0 2 } 1 / 2 , 

where a — TQ^C^, b = T0S and O0 = ||E — T0C0||. 

The value of f(0) is less than unity if 

O = 0 = 0 , 0 = 2(l + ^ g g L . 
1 + 2b - Q2

0 + a2 

The value of 0 lies in the interval [0, 1] if O0 = 1 + b and (1 — £0)2
 = a2. It follows 

that 

HSU S f(0) S 1 if 0 < T = TO0 = TO0 

where T0 is a real number satisfying (2.16). 

Sometimes the operator A and hence the operator C is the sum of a positive 
selfadjoint operator and a skew operator: 

(2.19) C = C0 + Ci , Co =- C* > 0 , C! = - C * . 
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In this case (Cxx, x) = 0 for all x e H and the corresponding stability condition is 
obtained by putting 3 = 0 in Theorem 2.1. It may be noted that the stability range 
given in (2.15) is an increasing function of S. 

The next theorem [2] obtains the value of r0 that maximizes the stability range 
(2.15). The proof is elementary and is omitted. 

Theorem 2.2. Let the operators C0 and C1 satisfy the following conditions: 

(2.20) y.E ^C0 = C*^ y2E , C^SE, ||C.|| S y3 ; 

0 ^ y. g y2 , 0 S 8 S y3 • 

T/ie stability range (2.15) /s r/ie largest when x0 = 2/(y, + y2). The computations 
defined by the iterative scheme (2.6) are stable if x is chosen such that 

(2.21) 0 < T g 2(yi + g) 2 . 
(7i + 72) (?i + 5) + (y3 - 7i) 

If we ignore the positive definiteness of Cl in (2.14) a/id assume 3 to be zero, then 
a smaller stability range is obtained in (2.21). 

Corollary 1. If C = C0 + Cx, then [JCJ| ^ y2 + y3 and a necessary condition 
of stability is obtained from (2.H) as 0 < T _̂  2/(y2 + y3). This becomes a necessary 
and sufficient condition when y3 ^ yx. When C is a self adjoint operator, then y3 = 0 
and this condition becomes 0 < T ^ 2/y2 which is equivalent to (2.9) wit/7 £ = 1. 

Corollary 2. The function f{0) of (2.18) assumes a minimum in the interval (0, fX). 
This minimum is achieved for 0 = 9 given by 

1 ; < / ( < / - e g ) 1 ' 2 

T/ie iteration parameter t for the optimum rate of convergence of the iterative 
scheme (2.6) is given by t = T 09, T0 = 2j(y1 + y2). The norm of the transition 
operator ShT satisfies 

(2.23) «S,J S , . , . °^±±>±- fel-"')'"^-^'" < , . 
d 

When 3 = 0, then b = 0 and we obtain the values of t and Q for the optimum 
convergence as obtained by Samarskii [11]. 

The value of £ given in (2.23) with b 4= 0 is smaller than that obtained by Samar
skii [11] with b = 0. Thus, the iterative scheme (2.6) has a faster rate of convergence 
if the optimum value % = TQ0 is used. These rates of convergence (with b = 0 or 
b 4= 0) are faster than that obtained by Gunn [1] who studied a class of semi-explicit 
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iterative schemes used for solving an elliptic differential equation of the second order. 
The value of f for the optimal rate of convergence is also larger than that given by 
Gunn. This would result in smaller rounding errors. Gunn proved his results in 
a complex finite dimensional inner product space and could not deal with the non-
selfadjoint operators which also may be positive. Moreover, the results obtained 
by Gunn for selfadjoint operators can be reproduced from Corollary 2 by putting 
a = b = 0 and without the assumption of finite dimensionality of the space Hh. 

The conditions of Theorem 2.2 may be verified in terms of the norms of A and B 
by using the following lemma [2]. 

The proof is trivial. 

Lemma 2.2. Let A = A0 + Ai9 A0 = A* > 0, Ai > 0 and B = B* > 0 such that 

(2.24) yxB ^ A0^y2B , oqF = B ^ a 2 E , H A J J ^ / ? , A1=ocF; 

then ylE = C0 ^ y2E, Ct ^ SE and ||Ci|| — y3 

where 5 = oc/a2, y3 = fila^ 

Lemma 2.1 implies that the sufficient condition of stability is \$hx\ = eCoX « 
« 1 + 0(T) for small T. In the results obtained above, we have used the criterion 
IISI rg 1 which may give a conservative stability range. The above results, however, 
ensure the convergence of the iterative procedure. A wider stability range is obtained 
if the condition ||s|| _ 1 + KT is satisfied, where K is constant. 

Theorem 2.3. Let the operators C0 and Ct satisfy the conditions of Theorem 2.2 
and let y3 _• yi. Let x be chosen such that 

2(1 + b + c - gp) 

1 + 2b + a2 - (c - £0)2 (2.25) o ^ t ž т o o . g - , л , ;; ; w ч,. c = ^ o , 
where T 0 = 2/(yt + y2) anJ K is a real number, independent of t, T and h such that 

(2.26) 0 g K g y3 - y. . 

5uc/z a va/lfc Of K a/ways exists. The iterative scheme (2.6) is stable and satisfies 
the condition 

(2.27) ||S fct | | _ 1 + KT = eKT. 

The proof is similar to those of Theorems 2.1 and 2.2. This result is useful if we 
can find a nonzero value of K which satisfies (2.26) and is independent of the mesh 
parameters. The stability range given in (2.25) increases with K and its maximum 
is attained when K has its maximum value, subject to the condition (2.26). 
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3. TIME-DEPENDENT OPERATORS 

In the case when the operators A(t) and B(t) are time-dependent, we assume that 
A(t) > 0, B(t) = B*(t) > 0, t G coT; and that B(t) satisfies a Lipschitz condition in t. 
The equation (2.1) withf(t) = 0 reduces to (2.4) and a sufficient condition of stability 
is given by Lemma 2.1: 

(3.1) ||5»T(0II ^ e C o r = Q, tecox, 

where c0 is a real number independent of t, T and h. 

When A(t) = A*(t), t e cox, Samarskii [10] obtained the following sufficient 
condition of stability: 

(3.2) (1 - Q) B(t) ^ T A(t) = (l + Q) B(t) , Q = eC0T, t e cox. 

When A(t) is nonselfadjoint, the analysis of Samarskii produces a condition of the 
form (2A0) which involves inverses of A(t) and B(t) and is not suitable for testing. 
However, our analysis of Theorems 2A—2.3 is valid in this case and the stability 
results (2.11) — (2.27) hold. We rewrite Theorems 2A and 2.2 for the present case while 
the other results can be extended to the case of time-dependent operator in a similar 
manner [2]. 

Theorem 3.1. Let C0(t) and Cx(t) be linear operators on Hh such that 

(3.3) C(t) = C0(t) + Ct(t) , C0(t) = C*(t) ; 

Cj(t) = 3E , S > 0 , tetox. 

Then, the corresponding initial value problem is stable (||S(0|| = -U * e wr) provided 

2(1 + b - gg) 

1 + 2b - O2 + a2 

0 = To| |^i(0| | ' b = T0S , Q0 = ||E - T0 C0(t)|| , f e coT 

and T0 is a real number satisfying the conditions 

Q0 = 1 + b , (1 - Q0)
2 < a2 . 

Theorem 3.2. Let the operators C0(t) and C^t) satisfy the conditions 

(3.5) 7lE = C0(t) = C*(t) = y2F ; Cx(t) £ SE , 

| | c i (0 | | = /3 , * e ^ T ; 

0 ^ T i ^ 2 , 0 ^ 5 = y3 • 
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In this case \\S(t)\\ = 1, t e OJX and the stability range is largest when T0 = 2j(yx + y2) 
and the parameter T satisfies the condition (2.21). 

The proofs of these theorems follow their counterparts in the case of time-inde
pendent operators. These theorems ensure the uniform boundedness of ||S/,r(/")|| for 
each t E cox which, from (3.1), proves the stability of the problem (2.1) withf(t) = 0. 

4. STABILITY WITH RESPECT TO THE RIGHT HAND SIDE 

We now discuss the stability of (2.1) with respect to the right hand sidef(t) which 
includes the boundary data for the original boundary value problem. The following 
result from [2] shows that the iterative scheme (2+) is stable with respect to the right 
hand side if the sufficient conditions of stability with respect to the initial data are 
satisfied. The estimate (4.2) proves the stability of the iterative scheme according 
to the definition (2.2). It also provides an a priori error estimate. 

Theorem 4.1. Let B(t) be a positive selfadjoint operator satisfying a Lipschitz 
condition in t. Let A(t) be a positive nonselfadjoint operator and let 

(4-1) IS„r(0! ^Q = eco\ f eco r . 

Then the solution of the problem (2.1) satisfies the estimate 

m 

(4.2) ||x* + T)!KO = em+1||Xo)lkc» + E t Qm-m'\\f(t%-Hn, 
m' = 0 

where Q = exp (C0T) , c0 — c0 + cx\2 , t' = m'x . 

Proof. Since B(t) = B*(t) > 0, B1/2(t) exists and from (2.1) we get 

B1/2(t) B1/2(t) KL±^LzJ<0 + A(t) y(t) = f(t) . 
T 

Writing x(t + T) = Blj2(t) y(t + T) and x(t) = B1/2(t) y(t) we get 

(4.3) x(t + T) = S(t) x(t) + T B~1/2(t)f(t), 

where S(t) = E - T C(t), C(t) = B~1/2(t) A(t) B~1/2(t). 

Since B(t) is Lipschitz continuous in t, it satisfies the condition (1.6) with a constant 
ct. We substitute B1/2(t — T) U = z in (1.6) and obtain 

|(B~1/2(t - T) B(t) B"1/2(t - T) Z, Z) - (z, z)( = CIT(Z, z) , ze Hh 

or 
\(B~1/2(t - T) B(t) B-1/2(t - T) Z, Z)\ = (1 + cxx) (Z, Z) = 6ClT(z, z) 
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which yields 

(4.4) |JB1/2(0 B-'/2(t - T)|| g ec'xl2 , temx. 

Now, 

3c(r) = B1/2(t)y(t) 

= B1'2(t)B'1'2(t-r)x(t). 

Using (4.4) we get 

(4.5) \\x(t)\\ __ e- /2i|x(f)!| • 

It follows that 

Ut + T)l^lS(t)\\.lx(t)\\+4B--"2(t)f(t)\\S 

^ e^ . e^'2\\x(t)l + 4f(t)\\b-Ht) = 

= e | | x ( i ) | + T| | / ( t) | | j ,_> ( f ) , t > 0 ; 

1X(T)|J ^ ||S(0)|| . ||x(0)|| + T | / ( 0 ) | 6 . 1 ( 0 ) ^ 

__ exp(c0T) |j><0)||6(0) + T|| /(0)| !„_1 ( 0 ) ^ 

_.e||X0)ll-(o) + TJ|/(o)||6_,(0). 

Using the above inequalities for t' = T, 2T, ... we get 

m 

IK* + T)|| =g e«||x(T)| + T v G—-»'||r(0lU--c.-) ^ 
m / = l 

m 

^e^+1|j-(o)|U + Tle"-m1/(OII»-"(o; 
m' = 0 

/' = m'r , t == /.IT . 

This yields the estimate (4.2) since 

1*0 + T)ll = llyO + )̂IU(o -
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Souhrn 

STABILITA ITERAČNÍHO SCHÉMATU PRO NESAMOADJUNGOVANÉ 
ROVNICE 

MURLI M. GlJPTA 

Nechť A je nesamoadjungovaný kladný operátor v reálném Hilbertově prostoru. 
V článku se zkoumá stabilita třídy iteračních schémat, užívaných při řešení operáto
rové rovnice Au = f. S použitím týchž iteračních schémat je možno řešit také odpo
vídající třídu parabolických rovnic. Dokazuje se několik postačujících podmínek 
stability, které jsou vyjádřeny pomocí známých operátorů a mohou být použity 
a priori. Výsledky lze aplikovat na problémy s proměnnými koeficienty a na smíšené 
úlohy. 
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