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SVAZEK 22 (1977) APLIKACE MATEMATIKY CisLo 4

ON THE SOLUTION OF A PLATE WITH RIBS

JAROSLAV HASLINGER, PETR PROCHAZKA

(Received April 20, 1976)

In the present paper the problem of a plate with ribs is solved. Introducing the
functional of potential energy F(v) of the form (1.5), we may formulate the minimum
potential energy principle

F(u) = min F(v),
veV (G,n,m)
where V(G, n, m) is a Hilbert space, defined in (1.2).

For the numerical approach we use the finite element method. We prove the con-
vergence of Ritz-Galerkin approximations to the exact solution u. The main problem
consists in the fact that we know nothing about the regularity of u. This is why
we have to examine the problem of density of a space of sufficiently smooth functions
in V(G, n, m). This paper extends results of [2]. First, we study the case when the
plate is supported by a finite number of parallel ribs, then the case of two perpen-
dicular systems of ribs. In the last chapter some practical results are presented.

§ 1. FORMULATION OF THE PROBLEM

The plate in the underformed state occupies the region G = (—1,1) x (=1,1) =
< R?, and two systems of segments I = {I,}j_,, J = {J;}7,, characterizing ribs,
are defined in G in the following way:

(1.1a) I; ={[x,y]eR,, x = x, ye(-1,1)},

yipxe(—1,1)},

(1.1b) Ji={[x,y]eR’ y

where —1 < x; < x; <1, -1 <y; <y;<1fori < j, x;, y; are given real
numbers.
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In order to formulate the problem, it is necessary to introduce, for the same
reason as in [2], the following space:

(1.2) V(G,n, m) = {ue Hy(G), u'eHyI,), @’ e Hy(J,),
i=1,..,nj=1...,m}")
where ii' = @'(y) = u(x,, y), y €I, is the trace of u onl; and similarly & = i(x) =

= u(x, yj). One can show very easily that V(G, n, m) is a Hilbert space with the scalar
product

(]3) (((M, U))) ZJ‘ (uxxvxx + zuxyvxy + u,vyvyy) dx d}’ +
G

2| v dy + Y | @9 dx?)
i=1 )y, i=1),
where @ = d*a'ldy?, @ = d*@|dx?, u,, = 0%u/ox? etc. We denote by |||o]| =
= (((v, v)))'/* the corresponding norm.

The problem which is to solve, is defined as follows:

(1.4) to find u € V(G, n, m) such that
F(u) = min F(v),
veV(G,n,m)
where
(1.5) F(o) = [[o]* = 2(f. v) .

Here f e (V(G, n, m)), i.e. f is a given linear functional on V(G, n, m) and (f, v) is
the duality pairing between V(G, n, m) and (V(G, n, m))’. With the functional (1.5)
we associate the bilinear form a(u, v):

(1.6) a(u, v) = (((u, v))) .
Using (1.4), (1.6) we can give an equivalent formulation of the problem (1.4):
(1.7) to find u € V(G, n, m) such that
a(u,v) = (f,v) YwveV(G, n,m).
1y H¥G) and H"(l,-) (k = 0 integer) denote the Sobolev space on G and /;, respectively. For
their definitions and characterizations see [3], [4]. H{‘,(G) and H(’;(l,») are defined as completions
of D(G) and D(/;) respectively, with respect to the Sobolev norm. D(G) and D(I;) are the sets

of infinitely differentiable functions with compact supports in G and I;, respectively.
2) If one of the systems is empty, the corresponding sum si omitted.
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As a(u, v) is continuous on V(G, n, m) and V(G, n, m)-elliptic, there exists a unique
solution u of (1.7). Integrating by parts, it is easily seen for u sufficiently smooth that
u satisfies:

Au=f in G— ('Qlli Y (.L:)‘Jj))

_
on

u

=0 on 66(?i denotes the normal derivative of u)
n

with the following interface conditions along ribs:

[Tu],( = (L_li)(4), i=1,...,n;
[Tu],, = @), j=1,...,m,

where

Tu =2 i(Au} _ 9 (ugehyny, — uy(n2 — nl) — uynn,),
on ot

n = (n,, n,)is the unit outward normal to I, J; respectively, 0/0t denotes the tangen-
tial derivative (the derivative in the direction of segments I;, J; respectively) and
[Tu];, is the jump of Tu on I, i.e. [Tu];, = Tﬁ"[+ - Tﬁi|_ (analogously for [Tu];).

For the numerical approach to (1.7) we shall use the finite-clement method. Let
Vi, h€(0, 1) be a system of finite-dimensional subspaces of V(G, n, m). We say that
u, €V, is a Galerkin approximation of u iff

(1.8) \ a(uy, v) = (f,v) YoeV,.

To prove the convergence of u, to u, we suppose that there exist a subspace ¥~ <
< V(G, n, m)dense in ¥(G, n, m) and a mapping r, : ¥~ — V, such that ]Hu - rhvm -
-0, h =0+, Ve ¥ Itis well known that under these conditions |||u, — u//| > 0,
h = 0+ (see [1]).

In the next section we prove that we can take ¥~ = D(G) and r will be taken
as an Hermite interpolation of v € D(G). Unfortunately, as we know nothing about
the regularity of u, we can prove nothing about the rate of convergence.

§ 2. PROBLEM OF DENSITY
For our next considerations, we shall use some lemmas.

Lemma 2.1. For any region Q@ < R" and any number ¢ > 0 there exists a function
n € D(R"), such that:
—0snlx) =1,



—n(x)=1 VxeQ,,
-n(x) =0 V¢,
where .Qe(s > 0) denotes the g-neighbourhood of Q.
Proof: see [5].

Lemma 2.2. Let a region Q = R" be covered by a finite number of open spheres

U(x, 1), k=1, ...,N(r, > 0 are diameters, x, € Q). Then there exist functions
h € D(U(x,, ry)) such that

N
(2.1) Y h{x) =1 for VxeQ.
K=1
Proof. For each k =1, ..., N we can construct U(x,, ;) (ri <r,) such that
N
U U(x,, 1) © Q. According to Lemma 2.1. there exist functions #, € D(U(xy, rv)):
k=1

(2:2) m(x) =1 for VxeU(x,r).

Let us set

NS _ mdx)
(2.3) h(x) —kglnk(x), h(x) = W)

It is easy to see that the functions ,(x) satisfy the statement of our lemma.

First, let us consider the case when one of the system (e.g. J) is empty. We start
with the simpliest case — with the space ¥(G, I, 0). Let us recall that

V(G, 1,0) = {ve H)(G), 1€ Hy(,)},

I ={[x, ], x=x;, =0,ye(—1,1)}.
Let us define

Dy(G) = {ue D(G), u = 0},
Vo(G) = {ue HYG), i = 0} .
Lemma 2.3. Dy(G) is dense in Vo(G) with respect to V(G, 1, 0)-norm.

Proof. Let u € Vo(G) be arbitrary. We can write

(24 u=ug+uy,,

where
(2.5) us(x, y) = 1/2(u(x, y) + u(—x, y)) (symmetiic part of u)

uy(x, y) = 1/2(u(x, y) — u(—x, y)) (antisymmetric part of u).
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dug/ox € Hy(G) and according to (2.5), dug/ox is an odd function with respect to x.
By Beppo-Levi definition of Sobolev spaces (see [4]), we obtain (dus/0x) (0, y) = 0
a.e. on Iy, hence ug|g, € Hy(G,) (i = 1,2), where G; = (—1,0) x (=1, 1), G, =
=(0,1) x (=1,1). By the definition of Hg(G;), there exist functions @4, € D(G;),
D% — uslci in Hy(G;) for h - 0+ (the symbol uSIGi denotes the restriction of u
to G;). Setting

(2.6) @5 (x, y) = <

we obtain

P (x,y) for [x,y]eG;,

0 for [x,y]eG—-G;, i=12,

(2.7) @5 = @5, + %, = us (h > 0+)
with respect to Hg(G)-norm and even with respect to V(G, 1, 0)-norm, because
i=oh=0.
Let us examine the antisymmetric part u, of u. Let {K;}}~; be a “symmetric”
covering of G, i.e.:
N
- UK;>G
i=1
— for any ie{l,...,N} there exists je {l, ..., N} such that for [x, yo] € K;,
the point [ —xo, o] € K.
From the proof of Lemma 2.1 it is clear (in our case) that the functions h(x)
giving the partition of unity corresponding to {K,}i-,, are symmetric with respect
N
to x. As usual, we can write u, = Y u;, u; = uh; and u; € H3(G). The open sets

i=1

K, e {K;}\, are of three types (see Fig. 1).

% 7
<,

@ V%)

Type 1. Type II. Type IIL.
Fig. 1.

If K; is of the first type, ujtc;i € Hy(G)), then there exist ¢} ; € D(G;) (i = 1, 2) such
that '
(,Df,,,--*ujlgi, h“")0+
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in H3(G,). In the same way as in (2.6) we can construct ¢j € Do(G) such that
(2.8) (p,{—»Mj, h— 0+

with respect to V(G, 1, 0)-norm.
Let K; € {K,-}?’:l be of the second type. Because of &} = 0, the regularizations
@;, of u; (see [4]) belong to Do(G). Indeed,

®h(x) =J o(x — y, huy)dy, (dy =dy,dy,, x =[x, x,])
E;

u; is antisymmetric and the kernel w(x — y, h) is a symmetric function with respect
to x. Hence

(2.9) D> u;, h—>0+

with respect to V(G, 1, 0)-norm. Finally, let K; be of the third type. We define
U; (%, y) = uyx,y + aL), where a = +1, L> 0 sufficiently small. The sign of a
is chosen in such a way that U, ; € Hy(G), i.e. U, has a compact support in G.
From the mean value convergence theorem we obtain U;; — u;, L— 0+ with
respect to V(G, I, 0)-norm. The regularizations @} , of U; ; belong to Do(G) for the
same reason as in the previous case and

(2.10) O, > U;L, h->0+

in V(G, 1,0). Let us set

(2.11) Pur =201+ Y P+ i€ D(G),
Jetly JEl2 JEl3

where ¢, are sets of all indices i of K; € {K;}}_, of the k-th type (k = 1, 2, 3). From
the triangle inequality and (2.8), (2.9), (2.10) we conclude

(2.12) ”<P;,'4,L - uA“HzO(G) = m‘PZ,L - “Am -0

for h, L— 0+. Setting
Pnr = 05 + L,

using (2.7), (2.12) and the triangle inequality, we obtain
e = @uulll = [lus = o5)] + [ua = olasf| >0
for h, L— 0+. Lemma is proved.

Theorem 1.2. D(G) is dense in V(G, 1, 0) with respect to the V(G, 1, 0)-norm.

Proof. It can be carried out with the aid of the previous lemmas analogously
as in [2].
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Immediately, one can extend the previous results to the case of a plate with a finite
number of parallel ribs (not necessarily equidistant). Let I = {I;}{-; be a system
(1.1a). Then one can prove the following

Theorem 2.2. D(G) is dense in V(G, n, 0) with respect to the norm of V(G, n, 0).

Proof. Using the technique of the partition of unity and Theorem 1.2, we obtain
the statement of Theorem 2.2.

Until now we have supposed that the system J is empty. Now, let us consider the
case when both I and J are nonempty. We start again with the simpliest case. Let

I = {[x.y]eR? x =0, ye(—1,1)},
Jo =[x ] e R xe(~11), y = 0},
Dyo(G) = {ue D(G), i =0, & =0},
Voo(G) = {u e Hy(G), i = 0, = 0} .

Lemma 2.4. D(G) is dense in V,o(G) with respect to the V(G, 1, 1)-norm.

Proof. Let u € V4o(G) be arbitrary. The function u can be written in the following
way: ’
(2.13) u=ug + ug, + uy + Uy,
where
ug (x, y) = Hu(x, y) + u(x, —y) + u(=x,y) + u(—x, —y)),
g (X, ¥) = Hulx, y) + u(=x, —=y) = u(=x,y) = u(x, = y)),
ug,(x, y) = Hu(x, y) = u(=x, —=y) + ulx, =y) = u(=x, ),
ug(x, ) = Hu(x, y) — u(—x, —=y) —u(x, —y) + u(=x,y)), [x y] e G.
It is readily seen that all terms on the right hand side of (2.13) belong to Voo(G).
u,, is symmetric with respect to x as well as to y. Hence duy, [0x, du,, [0y are odd
functions with respect to x and y, respectively. By Beppo-Levi definition of Sobolev

spaces and using the same considerations as in Theorem 1.2 we obtain u,, |, € H3(G))
(i =1,2,3,4), where

G, = (0, 1) x (0,1), G, = (—1,0) x (0, 1),

Gy =(—-1,0) x (—1,0), G, =(0,1) x (—1,0).
Let
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4
Then u, = )’ u,,. By the definition of H(G;) there exist functipns y; € D(G;) (i =

i=1
=1, ..., 4)such that x, = uy,|, for h — 0+ in H}(G)).
If

) ¥ on G,
4= _
0 on G- G,

we obtain {} — ul, h = 0+ in V(G, 1, 1) and from the triangle inequality:
(2.14) @s, > u,, h->0+ in V(G 1,1),

where
4
@4, = Y. L€ Doo(G) -
i=1

Now, let us examine u, (analogously u,,). u,, is symmetric with respect to y and
odd with respect to x. Using the same considerations as in the previous case, we
deduce that

uA."FieVO(Fi) (l = l’ 2)’
where
Fy=(=11)x(0,1), F,=(-1,1)x(-1,0).

Using the statement of Theorem 1.2, we find that there exist (p';l € Do(F)):

(/":1,,; - uAllF.- in VO(Fi) .
Let us set

h
. <QDA1" on F,,

Then ¢, € Doo(G) and
muA1 - qo',’hw -0 for -0+ .

In the same way we obtain

I

The situation is more complicated for u,.

Uy, = @4l >0 for h—>0+.

Let the system {K;}}~; of open circles cover G and let the following condition,
concerning their mutual position, be satisfied:

(2.15) for each ie{l, ..., N} there exist iy, i,, iye{l, ..., N} (not necessarily
different), such that for any x = [0 Vo) € K, the points x, = [—xo, yol €
€K, x; = [xo, —¥o] €Ki, and x3 = [ —xo, —¥o] € K,,.
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K;e{K,}}_, are of three types (see Fig. 2).
Using the technique of the partition of unity corresponding to {K,}i-, we can write
N

u;, = Y uj,where u; = h; . u,,and h;e D(K)satisfy (2.1). From the proof of Lemma
i=1

2.2 one can see immediately that

(2~16) hi(xo, .Vo) = hi,("‘o: )’0) = hiz(x09 “‘YO) = hi;(_x’), “J’o) 5

where i, iy, iy, i€ {1, ..., N} satisfy (2.15).

Z N

@m 7

Type 1. ' Type II. Type III.
Fig. 2.

B

7 4%,
a4

The function ug, is antisymmetric with respect to x and y. From this and (2.16)
we can reach the assertion of lemma 2.4 in the same way as in the proof of Lemma
2.3.

Lemma 2.5. Let
W

D,

{ue HY(-1,1)), u0) = 0},
{ue D((-1, 1)), u(0) = 0} .

Then D, is dense in V| with respect to HS((— 1, 1))-n0rm.

It

Proof. We can express again u as a sum of a symmetric and an antisymmetric

part:
Uu=ug+ u,.

The rest of the proof is analogous to that of Lemma 2.3.
The main result is contained in
Theorem 2.3. D(G) is dense in V(G, 1, 1) with respect to V(G, 1, 1)-norm.

Proof. Let ue¥(G,1,1) be an arbitrary function. First, we introduce some
auxiliary functions:

(217) @eD(G), 0= ¢(x,y) =1, o(x,y)=1 for x* + y*< 1/4,
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(2.18) ¢*eD(I;), ¢’ eD(J,), ¢X(x)=1 for xel{—1+a 1 —a),
@) =1 for yel{—l+a, 1 —ay(ae(0,1)),
095 ¢ =1

Further, we define

(2.19) {“2

Us

i —u(0,0)9(0,y) on I,
ii — u(0,0) ¢(x,0) on J,.

Il

It is easy to see that Uy e Hi(I,), us e Hy(J,), u,(0) = u4(0) = 0. By Lemma 2.5
there exist functions x2, x3 from D(I;), D(J 1) respectively, x5(0) = x3(0) = 0,
(2:20) X2 uy, yy—uy in Ho(l), H(J))
respectively. Let
(.21) ¥ 3) = 0.

P(x, y) = @(¥),

(% ) = xa(v)

Bx, y) = 4(x),

Uz(x’ J’) = uz()’) >

Ua(x, y) = us(x),

0(x y) = Ba(x, ) P¥(x, y),

0(x,y) = 2x, ) P(x, 5),

U,(x, y) = Uy(x, y)Adl"(x, y),

Us(x,y) = Us(x, y) D(x, y) .

It is readily verified that y}, x5 € D(G) and

(2.22) G-U,, B3->Us, n>o in V(G 1,1).
Indeed,
(2.23)

o*l, _ o0, _ U0, _ o0, _ o5 _ 273 _

ox*  oxdy 0y*  oxdy ox*  ox oy

e N -
oy*  0ox dy
from (2.21) and by Fubini’s theorem
*7 N *0, ’ 0’15 o 0°0,
dy? oy? ox? ox?

, n—
in I*(G).
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By definition of U,, Uj, X3, X3 we have

(2.24) B-U,
Xg g U3 in H(Z)(G) .
Further,
T2 =750, y) 250, y) = 25(y) s
25 = 7% 0) @(x, 0) = 13(x),
U2 = Uy,
ﬁs = u3
and from (2.20) we obtain
(2.25) %-U, in HI,),
;'5 i ﬁ3 in H(Z)(Jl) .
Moreover,
(2.26) B=U,=73=U,=0 VneN.
Thus (2.24), (2.25), (2.26) yield (2.22).
Finally, let us set
(227) U(x, y) = u(0,0) ¢(x, y) + Us(x, y) + Us(x, y),
XX ¥) = u(0,0) o(x, y) + 23(x, ) + 23(x, ») -

Then y,€ D(G),U = u,U = @ and

(2.28) %» = U with respect to (G, 1, 1)-norm.
The function u can be written in the form

(2.29) u=U+2Z,

where U is defined by (2.27). Hence it follows that Z € V,o(G). Using Lemma 2.4
we see that there exist {, € Dyo(G) such that

(2.30) (> Z in V(G 1,1).
It is readily seen that

@y = fn + (€ D(G)
and

lu = @l < [V = wll] +

Thus the theorem is proved.
Using the partition of unity and the statement of Theorem 2.3, one can prove

C,,—Z'H—»O, n— .

Theorem 2.4. D(G) is dense in V(G, n, m) with respect to the V(G, n, m)-norm.
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§ 3. NUMERICAL EXPERIENCE

As has been explained above the analysis of bending of a plate with ribs can be
regarded as a combination of a plate flexure analysis and a beam flexure analysis
(see also the type of the energy functional (1.5) or (3.3) below). Under Kirchhoff’s
and Bernoulli’s hypotheses, the bending energies of the plate and the beam have
the following form, respectively:

B1) Bl = s [P+ (= 20 x (20 4 v ey,

12(1
' (32) F,,(w)——-é:l EIO) 6

where E is Young’s modulus, J the inertia momentum, w is the deflection function
and the summation in (3.2) is taken over the ribs. The internal energy of construction
can be expressed as follows:

(3-3) Fyw) = F(w) + Fy(w).

The explicit form of the stiffness matrix of a beam with degrees of freedom w, w’
and of an element of Ahlin’s type is shown in many papers. For this reason it is
sufficient to give the Hooke law, corresponding to (3.3), in the matrix form:

{o} = [D] {e}

where
£ 1w 0
[D]=-———]|v1 0 s
(1‘V) 0031 —v)
O, &,
{o} = . {8 =145 ¢,
xy yxyj

g, 0y, T,, are normal and shear stresses, respectively, &,, &,, y,, deflections, ¢ is the
thickness of the plate, E Young’s modulus and v is Poisson’s ratio.

In order to test the convergence of our numerical approach in the sense of the
finite element method in practice, two model examples were solved. The results
have been compared with solutions that were obtained by the folded plate method —
see [6].") The geometry of the specimens under consideration has been chosen with

1) Thanks are due to Doc. Kiistek and Ing. Kvasnicka, CVUT, Prague for providing the
results needed.
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respect to the extraordinary precision of che folded plate method in this case. Error
analysis with respect to the different mesh size is given in Tables 1 and 2. The errors
are computed according to the following formula:

finite element method — folded plate method
folded plate method

100%

where plus or minus indicates over- and underestimation respectively.

In the first example a square plate 2 x 2 m? is stiffened by one rib 2 x 12 cm?
and subjected to the uniformly distributed load p = 1 kp/cm?. The edges which are
parallel to the ribs are clamped and the remaining edges are simply supported (see
Fig. 3, where various grids used are shown as well).

From Table 1 it is readily seen that the finite element results are in a good agree-

. t=2cm
simply supp. S
7 /
/ 2/12
A ‘ /
& i g
g 2 £
5 A
e Tm 1m o7
/
simply supported 2x 2 elements
H MLS
4x4 elements 8x8 elemements

Fig. 3.
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simply supported t=2em

7, —
2712
|
i ribs
’7/ Tm Tm Tm | 9
: Y
simply supported 6x4 elements
H S

12x8 elements Fig. 4.

ment with the folded plate solution and that they do converge towards the exact
values. The bending moments are defined as usual:

M, = —D(wi, + vwy,),

M, = (w + vwxx)
_ EP
12(1 —v?)

In order to investigate the situation when more ribs are taken into account, we
have considered a problem of a rectangular plate 3 x 2 m? with two ribs, 2 x 12 cm?.
The boundary conditions are the same as in the first example. The plate is subjected
to the uniformly distributed load p = 1 kp/cm?. The geometry and the grids used
are shown in Fig. 4. The results obtained for this problem are compared with the
folded plate solution in Table 2. The agreement between the finite element method
and the folded plate method is reasonably good.
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Souhrn

RESENI PROBLEMU DESKY S ZEBRY

JArROSLAV HASLINGER, PETR PROCHAZKA

V této praci je studovan problém desky, podepiené zebry. K numerickému feseni
tohoto problému uzivime metodu koneénych prvkl. ProtoZe vSak neni nic znamo
o hladkosti feSeni daného problému, je tfeba zkoumat problém hustoty dostate¢né
hladkych funkci ve vychozim energetickém prostoru. Tomuto problému je vénovan
§ 2. Zkoumame jednak pfipad navzijem rovnobéZnych Zeber, jednak pfipad k sobé
kolmych Zeber (rostu). Tato prace dopliiuje a rozdifuje vysledky obsazené v [2].
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