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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

GENERAL THEORY OF DIRECT METHODS 
FOR SOLVING SYSTEMS OF EQUATIONS WITH BAND 

MATRICES 

L U B O R MALINA 

(Received March 30, 1977) 

The main goal of the present paper is to establish a general theory of the direct 
methods for the solution of systems of linear equations with band matrices. Here 
the word "general" means that the theory should cover most of the known direct 
methods. Due to the growing ability of computers, much work has been devoted 
to the development of such methods for special systems of equations such as those 
with band or sparse matrices. There are two possible ways, either to adjust the known 
general methods to the special structure of the matrix or to create new methods. 
Our attention will be focused to the band matrices. Though such systems often occur 
in practice (e.g. in the finite element or finite difference methods), there is no general 
theory of the methods available up to now. We have started with the following well 
known fact. There is a well known theory of sweep or the so called factorization 
methods for the solution of differential boundary value problems (cf. [4]). Babuska 
in [ l ] has found that when solving a boundary value problem of order two by the 
method of simple factorization and discretizing the resulting system of initial value 
problems by Euler's method is nothing else but the process of discretization of the 
original problem by the finite difference method and the solution of the system for 
approximate values of the exact solution (with tridiagonal matrix) by Gaussian 
elimination. The main idea of the sweep methods is to transfer the boundary condition 
at one point over the interval of definition (if there are no transient conditions) 
to the other point and vice versa. At every point of the interval we obtain, roughly 
speaking, a system of equations for the vector of the solution with a "small" matrix. 
Following the above mentioned analogy between boundary value problems and 
systems of equations with band matrices we show what the "transfer of the boundary 
condition" means in the latter case. 

In the first part we shall discuss some ideas from the paper [5]. This paper is 
probably one of the first which offer a new insight into the process of Gaussian 
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elimination for tridiagonal matrices close to ours. This part contains also some 
preliminary concepts and definitions. 

The second part is devoted to the definition of a general algorithm and to the 
proof that the methods of this algorithm solve our problem. One special variant 
of the algorithm, especially suitable if we have more severe restrictions on the com­
puter memory, is also mentioned there. 

In the last part it is shown how some known methods can be obtained from the 
general algorithm. The reader who is familiar with the notation used can read this 
part first. It could help him to understand ideas and technique of Part 2. The whole 
article is closed by some numerical results. The questions of numerical stability and 
still more general algorithms that presented in this article will be discussed in a forth­
coming paper. 

1. PRELIMINARIES 

Let us consider a boundary value problem of order 2k over the interval \a, b\< 
Discretizing this two point boundary value problem we obtain the difference equation 

2k 

Y, aj(xi) y(xt + jh) = f(xt) for xt = a + ih , xt + 2kh ^ b , 
j = 0 

where h is the step of the discretization. Discretized boundary conditions can be 
written in the form 

2k 2k 

X rriij y(a + jh) = wt and £ ntj y(b - (2k - j) h) = zt 
1=0 ; = o 

for i = 1(1) k. 

N o t a t i o n . Throughout the paper i = j(k) n stands for i e{j,j + k, j + 2k, ..., n}. 
Difference equations together with the boundary conditions form a system of 

algebraic equations for values of the unknown function y at the points xt. The 
matrix of the system is of band form. 

We have already mentioned factorization methods for the solution of continuous 
problems and their analogy with the process of Gaussian elimination for the dis­
cretized problem in a special case. Factorization methods are of such type that the 
boundary condition at one point is transferred to the second point and vice versa 
to obtain an algebraic equation for the unknown (vector) function at every point of the 
interval of definition. Discretizing a differential equation we come to a difference 
equation and this difference equation together with the boundary conditions form 
a system of equations whose matrix is of band form. So, it is natural to follow the 
ideas of continuous case also in the discrete case. 

Consider the linear difference equations 

(1-1) 0iyi + fny2 =f1 , 
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a2yx + b2y2 + h2y3 - f2 , 

aN- ly iV-2 + 0N-lyN-l + "jV-lyiV = / N - l » 

aNy;v-i + N̂yN =fN • 

The first and the last equation of the system (l . l ) is the left and the right boundary 

condition, respectively. 

Let us define 

~hl ci+1= "hf for i = 2 ( l ) N - l ^2 — 1 > ^i+1 

Di bt + ctai 

provided bt + c%a% is different from zero. Gaussian elimination for the system (IT) 
yields 

(1.2) l.yx-c2y2 = £ . , 
bi 

1 • y2 - C3y3 = (/2 ~ M l ) 7 1 > 
^2 

1 • yN-i ~ cNyN = ( /N - i — aN-i^N-2): > 
^iV-1 

tfNyN-1 + frNyN = /N , 

where 

dt=
f±9 di+1=(fi+1-ai+1di)C-^- for i = l ( l ) N - 2 . 

bi hi+1 

Denoting 

Di+ljl = l and Di+U2=-ci+2 for i = 0 ( l ) N - 2 

and 

** = [y., y,+ i ] T , 

we can rewrite the system (l . l) in the form 

(1.3) DtXi = dt for i = 1(1) N - 1 , 

(1.4) O N , V W - i =/N> 

where 

Dt = [/),.„ D ;,2] . 

Let us stop the process of Gaussian elimination at the i-th equation. Thus the 
system ( l . l ) is transformed into the form 
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DJXJ = dj for j = 1(1) i - 1, 

(1.5) Dttlyt + Dif2yi+1 = di9 

ajyj-i + bjyj + hjyj+i =fj f o r I = * + K 1 ) ^ - *> 

«NyiV-l + ^y/v = / v -

The system (1.5) is part of the system (1.1) and the influence of the equations of the 
system (l . l ) up to the i-th equation has been concentrated into the new boundary 
condition Dixi = dt. Thus we can see that the forward step of Gaussian elimination 
is the transfer of the left boundary condition to the right. For the backward step 
the situation is the same. Namely, we can compute the values yN~1 and yN from the 
equations (1.3) —(1.4). Thus, having computed yi+1 we can compute yi from the 
equation D£x, = d(. Again the knowledge of yi+1 enables us to compute all the 
values yj for j = /(—I) 1. Hence the "equation" yJ+1 = yi+1 is the transferred 
right boundary condition aNy?N^1 + °jvyN = /N-

In the next parts we will extend the ideas to the general case of systems of linear 
equations with band matrices. And now we can see how natural it is to call the direct 
methods for solution of such systems the methods of the transfer of conditions. Let 
us turn to the general case. First we shall define what we mean by the band matrix. 

Definition. Let G = [gtf) be a square matrix of order N and let p be the least 
integer such that 

for all i, j e {1, ..., N} , |i — j \ > p implies gtj = 0 . 

The number 2p + 1 is called the bandwidth of the matrix G and the matrix G is 
called a band matrix. 

Let G be a band matrix of order N with a bandwidth 2p + 1 while h = 
= [b1? ..., bN~\T is an N-dimensional vector. We are looking for the solution y = 
= [y l5 ..., yN]T of the system 

(1.6) Gy = b . 

Following the ideas of the example we shall define a system of 2p-dimensional vectors 
x\j) analogous to the vectors xt: 

(1«7) Xi = Ly(2p-j)(i-l)+l> •••> y(2p-/)i+lj 

for i = 1(1) J + 1, where j is a chosen fixed integer from the closed interval 
[0, 2p — 1] and J = [(N — 2p)/(2p — j)] ([m] stands for the integral part of the 
number m). 

N o t a t i o n . The superscript T will always denote the transpose of a vector. Rank 
of a matrix M will be denoted by rank M. The symbol lq stands for the identity 
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matrix of order q while Oifj stands for the null matrix of type i x j , i.e., with i rows 
and j columns. 

Remark . If it is clear which of the values is chosen for j we shall simply write xt 

if this cannot lead to any confusion. 
Let us note that the definition of the vectors x{ implies that the last j components 

of xt repeat as the first j components of x £ + 1 (in the example j was equal to 1). 

Assumption 0>. For the sake of rather technical then fundamental reasons we 
shall assume J = (N — 2p)/(2p — j). This does not affect the generality of our 
theory. 

In a similar way as we have divided the vector y we divide also the matrix G and 
the vector b. Let us denote 

A1 = 9I+P+I,I+I> 

0 

I = (2p-j)(i-l). 

9l + p+ l,I+2p-j 

ß< = 

and 

(1.8) 

(1.9) 

0- • • • 0 , 9l + p+2p-j,I+2p-j_ 

9l + p+l,I+2p-j+І9 •••> gI + р + l , I + 2 р + l > 0, . . . , 0 

ßl + p+2p-j,I + 2p-j+ІУ •••5 9l + 2p-j + p,I 

Ai = rA' \o2p.jj], B; = r BÍ 

fi = 0 / + P + i , •••> bI + p+2p^j, 0, . . . , 0 ] T 

for i = 1(1) J, where At and Bt are square matrices of order 2p and the vectors ft 

are 2p-dimensional. The matrices At and B- are generated by 2p — j rows of the 
matrix G the elements of which aplly to both xt and xi+1, and completed to a square 
by the identities 

yI+2p- J + — Уl+2p-j+l 

Уl + 2p Уl+2p-

The first p equations of the system (1.6) will be called the left boundary condition 
and the last the right boundary condition. We rewrite them in the form 

(1.10) ^ * o x i — fo 9 AJ+IXJ + I — fj+l 5 
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where 

~gu> . . . . giP> o, ... , o > 

_gpl> , gp,2p_ 

г ~l 

ЎN-p+l,N-2p+ 1> > 9N-P+I,N 

0. 

0, . . . , 0, gjv,N-p+i> • • •> 9N,N 

^ * J + l — 

f0 = [b_, ..., Ьp]
т and fЈ+1 = [V-p + 1, ..., V ľ 

2. GENERAL ALGORITHM 

Using the notation (1.7) — (1.10) we can rewrite the system (1.6) in the form 

(2.1) AiXi + Btxi+1 = d for i = l ( l) J , 

_4oxi = f0 , Aj+1xJ+1 = fJ+1 . 

Now we wish to replace the solution of the system (2.1) by a solution of systems 

(2.2) QiXt = qt for i = l ( l ) J + 1, 

where Q, are regular matrices with 2p columns of the block form Qt = [D], Rj] T and 
vectors qt arc of the form qt = [dT, r J ] T . The pairs Dh dt and R„ rt are connected with 
a transfer of the left condition to the right and the right condition to the left, respec­
tively. First we shall describe the transfer to the right. Let us suppose that the system 
(2.1) has a solution and we have already obtained a matrix Dt and a vector dt such 
that 

(2.3) DtXi = dt 

and the matrix At for this i is regular. Denoting 

Hi = AJ1Bi and hi = AT1fi 

we can write for xt and xi+1 the equation 

(2.4) xt + Htxi+1 = hi . 

After multiplying this equation by Dh (23) and (2.4) yield 

Denoting 

(2.5) D I + 1 - - Z I D I H I and di+1 = Z^-d, + Dtht) 
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where Zt is a regular matrix of order equal to the number of the rows of the matrix 
Dj we can write 

(2-6) Oi+1xi+1 = di+1. 

Equations (2.5) realize the transfer of the equation (2.3) to (2.6). To follow strictly 
the ideas of the example from the previous part, for the transfer from the right to the 
left we have to complete the matrices Dt to squares and regular ones by matrices 
R; in such a way that 

Ri*i = rt, 

where r,- is an appropriate vector. Again, let us suppose the matrix At to be regular 
and the matrix Di+l to be already completed to the regular matrix Qi+l. From the 
equation 

Qi+ ixi+i = 9 i + i 

we can compute the vector xi+1. Plugging it into the equation (2.4) and multiplying 
the resulting equation by the matrix R; we obtain 

RiXi = R^h,- HiQ;+\qi+1). 

Denoting 

(2.7) rt = Rf(hf ~ HiQrAqi+i ) , 

the vector rt fulfils the equation 

RiXt = r, 

If the matrix At is singular this approach does not work. However, the following 
lemma which we quote without proof (cf. [4]) can serve us as a hint how to solve 
this case.s 

Lemma 2.1. Let Cx be an a1 x n matrix, rank C1 = h1 while C2 is an a2 x n 
matrix, rank C2 = h2 and rank C3 - h3 where C3 = [CT, Cj]T . Then there are 
matrices Sx and S2 such that 

(1) stcx = S2C2, 

(2) the rank of S1C1 equals the number of its rows and is equal to hx + h2 — h3 

and for every pair of matrices Su S2for which (1) holds, the rank of the matrix 
S^x is not greater then hx + h2 — h3. 

The following remark also quoted from [4] without proof appears to be useful. 
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R e m a r k 1. Lemma 2A is proved by modifying the matrix C 3 to an equivalent 

matrix M with h1 + h2 rows and ax + a2 columns, 

h\ia2 

PyB2 

s 

M = B, 

^ / j 3 - / J i , a i 

^— S1 **2 

where 

(i) the matrix Bx is the h1 x a1 matrix and consists of all linearly independent rows 

of Cl while B 2 consists of those of C 2 and Px is a permutation matrix such that the 

first h3 rows of the matrix 

в.сЛ 

are linearly independent. The matrix P X B 2 is the (h 3 — h_) x a2 matrix, Sl and S2 

are (hj + /i2 — h3) x _j_, (hx + li2 — h3) x a2 matrices, respectively, 

(ii) li3 is equal to the rank of the matrix 

(Ш) 

Moreover, 

ßiCi 
Piß 2 C 2 

^hl+h2--h3,n_ 5 

=_. ß l c l 
* \ ß

2 C _ 

^ O / П + Й г - hъ,n_ 

rank A4 = hx + h2 . 

Thus, let the matrix Af be singular. We wish to transfer the equation (2.3) to the 

"point i + 1". Equation (2.1) for this i can be written in an equivalent form 

(2.8) [*i,i 1*.+ [Bí,i']xi+1 - [ f u 1 
Lo„„2,J LB

ř,2J L f „ J , 
where rank At = 2p — n f = rank A£ t and 2p — nt is equal to the number of the 
rows of the matrix Atl while B / f l and B, 2 are (2p — n£) x 2p and nt x 2p matrices, 
respectively. We can suppose rank Bt 2 = nt because by crossing out linearly de­
pendent rows we do not change the set of solutions of the original problem. Lemma 
2.1 implies the existence of matrices Sx and S2 such that 

M u = S1Di. 

This equation together with (2.8) and (2.3) yields 

ғ f + l л i + l di+i , 
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where 

(2-9) D l + 1 ~ S 2 ß . Л , di+ì 

- ß'.2 J 
= z, Sгfi.i ~ sidi 

fiл 

Let us note that Lemma 2A guarantees that we transfer the maximal number of 

equations (2.8) to the point i + 1. But from the numerical point of view this is 

useless if we are not able to determine the values hu h2 and h3 exactly. The reason 

is that the process of determination of the rank of a matrix is numerically unstable. 

To transfer the right boundary condition to the left we must distinguish three 

cases. Let the equation R;+iX i + 1 = ri+l be already obtained, let the matrix At be 

singular and B t regular. Thus the'equation (2A) can be written in the form 

B r M i x i + x i + 1 = B;'fi. 

Flence choosing 

R; = W , R i + 1 B r i . 4 ; , r, = W(-ri+1 + Ri+iB7>f.) 

we have 

*І*І 

If the matrix Bt is singular we again rewrite the equation (2.1) into an equivalent 

form 

(2.10) Kľ'Trľ"'1f 
where rank Bt = rank 2 B i = 2p — tt and 2Bt i s the (2p - t() x 2p matrix. Lemma 
2.1 implies the existence of matrices S ( 1 ) and S ( 2 ) such that 

(2.11) 5^^, = ^ % , , . 

Multiplying the equation (2A0) by the matrix S ( 1 ) and using (2.11) it is easy to define 
the matrix Rx and the vector rt fulfilling the equation R ix i = rt. 

All what has been done up to now is simply a hint how to define the general 
algorithm. After its definition we shall prove that it is the algorithm for solution 
of the system (1.6). 

We divide the set 9JI = {1, ..., J + 1} into four parts, 

m = a»! u m2 u m3 u m4, 
where 

M1 = {ie SR | both At and Bt are regular or i = 1, i = J + 1} , 

M2 = {i e 101 | At is singular, B i is regular} , 

9W3 = {i e 9P1 | At is regular, Bt is singular} , 

9W4 = {z G 9M | both A( and B i are singular} . 

Conserving the notation of the previous part we shall define 
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Algorithm .5H. 

(a) transfer from the left to the right 

for iemx u9JJ3, 

(2.12) D, = A0 , d, = f0 , 

D i + 1 = Z A " . and di+l = ^ ( - d ^ + D,h,) ; 

/Or i e 9Jl2 u SJR4, 

(2.13) D l + 1 = Z T S 2 B U 1 , d l + 1 = Z T S 2 f M - S ^ l 

where S2Ai/L = StDt and Z t is a regular matrix. 

(b) transfer from the right to the left 

for i e sMt u sJJl3, the matrix Rt is an arbitrary matrix such that Qt = [DT, RT]T 

is a square regular matrix and 

(2.14) ri = Ri(hi~ HtQT+\qi+1)9 

where qt = [dj, r T ] T ; 

/Or i = J + 1, 

rJ+i = RJ+i T ^ J + i l - 1 NJ+ i 1 ; 

L*J + d Lfr+iJ 
for i e m2, 

Rt = WiRi+1B^Ai, rt = W ^ - r , + Ri^B^f,) ; 

/Or i e ^ 4 , 

(2.15) R; = W; [ S ^ 2Af| , r; = W; pS1) 2f; - S<2V;+ f 

L i*. J L if* 
where S(1)

 2B; = S(2)R,-+1 ana7 Wt is a regular matrix. 

Vectors xtfor i = l( l) J + 1 are defined as solutions of the systems 

(2.16) QiXi = qt for i = (1) J + 1 

where 

Ç.-ОД ._, , ,- й 

From the definition of Algorithm 2T\ it is easily seen that it is not the only method. 
Different methods could be obtained by a different choice of the matrices Z t and Wt. 
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Notation. The system {xjj*.1 Of 2p-dimensional vectors xt defined by (1.7) is 

said to be a solution of the system (1.6) iff the vector y = [y 1 ? ..., y^]1 is a solution 

of the system (1.6). 

For the proof that solutions of the systems (2.16) are solutions of (2.1) the following 

lemmas will be useful. 

Lemma 2.2. Let i e 9Jl2 u 9CR4 and let the matrices Dt and D i + 1 be such that 
rank Dt = rank [D i ? </,-] while rank D i + 1 = rank [ D i + 1 , <J i + 1] and let there exist 
a solution z of the system 

(2.17) 

Then the system 

(2.18) 

has a solution. 

di+l. 

[Al

t\ L-^+fJ 

Proof. We can suppose that rank Dt equal to the number of its rows because by 
crossing out the linearly dependent rows we do not change the set of solutions of the 
equation (2.18). This system can be written in an equivalent form 

(2-19) 

Equation (2.13) implies 

D; w = di 

Kг - ß . д - + fi.l 
0Пi, 2p -B. .2- + Ѓ..2 

Bf,2Z + f i , 2 = О 

for every solution z of the system (2.17). Hence the system (2.19) can be reduced to 

a form 

LAúJ L-B' Í . Í -+f f .J 
Remark 1 implies that this system can be replaced by an equivalent one with a matrix 
of the system whose rank is equal to the number of its rows, i.e., the system (2.18) 
has a solution. 

Lemma 2,3, Let i e 9Jl2 u 9)t4, let rank Rt = rank [Ri5 r f] while rank R i + 1 

= rank [Rj+ 1 , -"i+i] and the vector z is a solution of the system 

R;z = iv . 
Then the System 

has a solution. 

[ R i + 1 l w = Г Г ; + 1 1 
[в, J L-Ai- + fJ 
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Since the proof is almost the same as the previous one we omit it. 

Theorem 2.1. Let us suppose the assumption & to be fulfilled. Then 

(i) every solution [xjf*/ Of the system (2.1) is a solution of the systems (2.16) and 

vice versa; 

(ii) systems (2.16) have unique solutions iff the system (2.1) has a unique solution; 

(iii) matrices D. and [Dh </J cLzn change their ranks only at the points i £ 9Kf. 

Proof, (i) Let { x j be a solution of the system (2.1). Then 

£>!*! = <*1 

and the vector xi fulfils also the equation 

_4i*i + B.X2 = f, . 

Let number 1 be an element of WHt u 9Jl3. Then these equations imply 

D ^ i + D1H1x2 = D ^ 

and 

&i*i - <*i = (-<*! + D A ) - & i " i * 2 

Equivalently, 

Z 1 C 1 = ~ C 2 > 

where 
c i = D*X* ~ <*r 

If 1 e 9ft 2 u 90t4 then equations (2.13) imply again 

Z 1 C 1 = ~ C 2 

where Zx is a regular matrix of an appropriate order. Thus we can conclude that 

z ; c i = - c ; + i for i = 1(1) J 

where Zi are regular matrices. But cx = 0, hence ĉ  = 0 for all i. For the matrices 
Rt and vectors rh the proof is the same. Conversely, let { x j be a solution of the 
systems (2.16). It is sufficient to prove that from every solution of the system QiXt = 
= qt we can construct a complete solution of the system (2.1) which consists of 
solutions of the systems (2.16). Let us prove this assertion. First, let xk be a solution 
of the system (2.16) for i = k. We shall construct the solutions xt of both the systems 
(2.1) and (2.16) for i < k. Let us suppose that i e M1 u 5013 and that xk is a solution 
of the system Qkxk = qk. Then the system 

(2.20) 4 . - 1 * = -Bk-i*k + fk-i 
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has a unique solution and we denote it by xk_1. Then 

*fc-i — ~Hk_1x f e + hk_l 

and 

Dk_1xk_1 = ™^fc-iHfc_1x/c -t- Dk_íhk_í 

where we have used the equation (2.12). In a similar way one could show that 

^fc- lX fc- l = r f c - l 9 

i.e., the vector xk_1 is the solution of both the equation (2.20) and the system (2.16) 
for i = k — 1. 

For i e S0t2 u 9M4 the matrix -Afe„! is singular. Lemma 2.2 implies that there is 
a solution z of the system 

[: 
Dk-г 

Ajc-i 

z = ° fc- l 

, - ß f c - Л + ffc-i. 

which we denote by x fc_1. Directly from the definition of the matrix Rk-1 and of the 
vector rk_1 in Algorithm 3~\ we obtain that this xk_1 satisfies 

^ f c - i x f c - i — г f c - i • 

In each case we can construct in this way vectors x^ for i < k, such that 

QtXi = q. and AiXt + Btxi+1 = f,. 

Now we shall construct solutions Xj for j > k from the vector xk. First, let us suppose 
i e m1 u 2R3. Then (2.14) yields 

r. = Ri(hi - H t-x i + 1) 

where x i + 1 is a solution of the system (2.16) for the index i + 1. For the vector </,• 

we have the equation 

But 

hence 

đř = -ZтЫ^. + D^. 

di+. = ui+ iXi+ x , 

ZГ'0,.,, = 0 ^ , 

Q, = q,(Д - н ; x i + 1 ) . 

It means that ht — Htxi+1 is a unique solution of the system Q^X; = qf. We shall 

denote it by x-. 
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Let i e 3012 u
 SJR4, i.e., the matrix At is singular and x^ is a solution of the system 

Q.x- = qt. Then Lemma 2.3 implies the existence of solutions w, 

(2.21) R .+ i 

ß, 

г ri+í T 
L-AІX,. + f,J 

We choose one of them and denote it by xi+1. It is sufficient to show that 

®i+lXi + 1 = " i + 1 • 

Equations (2.21) and (2.8) imply 

L« J Iftal [ A d 
and 

DІ+IXІ+Í = di+i 

Thus we have constructed a solution of the system (2.1) from the solutions of the 
systems (2.16). 

(ii) Again, let us suppose that the system (2.1) has a unique solution but there is 
an index k such that the solution of the system Qkx = qk is not unique. As we have 
already proved, every solution of the original problem is a solution of the systems 
(2.16). Therefore the system (2.16) for i = k has infinitely many solutions. From each 
of its solutions we can construct a solution of the original problem in the same way 
as we have done above. And this is a contradiction with the uniqueness of solution 
of the original problem. Similarly, if the systems (2.16) have unique solutions, point 
(i) implies that the same holds for the original problem. 
(iii) If i e SCRX then the equations (2.12) imply 

where both the matrices Z£ and 

are regular. 

[D.+i,rf.+ .]--.г.[Di,rff]ГHi 

[ľ1 -î] 
R e m a r k 3. The theorem just proved implies that under the assumption that the 

original problem has a unique solution, 

rank Qt = rank [Qh q J = 2p . 

R e m a r k 4. Matrices Rt and vectors rt can be chosen in a special way, namely, 
setting 

R; = W fR i + 1B,rM., rt = Wl-r^t + Rt+1B;1fi) 

for i E 9}^ u SJR2
 a n d defining them by the equations (2.15) for i e 9#3 u 50|4. 

174 



Finally, we should like to mention a subgroup of Algorithm $~\ where we can 
compute matrices R- and vectors rt together with D { and dt provided 501t = $Jl. One 
of the possibilities is to ask that for two different initial values, say r { and s l 5 all the 
vectors differ only by a constant. It means 

COПSt = Г: — s- = — -R,HiQ7+\\opA 

ì.e., 

RiHiQ7+\ = [ T , - I , ] , 

where Tf is an arbitrary square matrix of order p. Hence 

^i+i = Tfii+i — Ri^i. 

For i = J + 1 we have 

where 

const = rJ+1 - s j + 1 

r j+ i = Rj+i f D J + I 1 1f"c '.7+il-

L Ĵ L̂ J 
Conserving the notation of the previous parts we shall define 

Algorithm ̂ 3 . 

(i) for i = 1 we set Dx = A0, dt = f0, sx is a p-dimensional vector and Rl is such 

a matrix that Qx is a regular matrix; 

Do., = Z D H d..,, = Z(-d- + D h) 
* - # l + l - K - l - - # l , , l > W I + 1 -"*»V » ' *^inij 5 

Ri+i = ^ A + i - R.H-:, s i + 1 = - s - + Tidi+1 + Rfhf 

fOr i = 1(1) J + 1. 

We set 

(ü) 

Q ,1«;]' - [ ? ] • 
X | = Q. ^ + const) for i = 1(1) J + 1 . 

3. EXAMPLES 

The first example of methods which come within the frame of the Algorithm $~\ 
is the so called "driving-through" algorithm (cf. [3]). Let the following system of 
equations with a block tridiagonal matrix G be given: 

(3.1) ß,Г, + Л . Г í + 1 = - Ғ ; for i = 1(1) A ř - 1, 
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with boundary conditions 

(3.2) -ß0У0 + . 4 . Л = - " > : 

^N^N~Í + °N^N = ~~ - / V 

where Ch Bt and At are square matrices and both Bt and Ct are regular for all values 
of i. 

The solution of the system (3.1) —(3.2) is given (cf. [3]) by 

(3.3) 

where 

(3.4) 

y,_. = x;y,. + K, for i = 1(1) N , 

X i + 1 = (B. - QX, . ) - ' / , , . , 

K ; + 1 = ( B i - C i X i ) - 1 ( F i + C iK i) , 

X t = B0 A0 , Kt = B0 F0 . 

In the notation of the previous part p is equal to one and we choose j = 1, i.e., 
/ = N - 1, SR = mt and 

x^> = [y7_ 1 ,y jY , 

H ; = T - C r ' B , C fMf l , h, = \-C^F^ 

L-'< °M J L°u J 
for i = 1(1) J + 1 under the assumption that all the matrices needed are regular. 
Here t is the order of matrices Ah Bh Ch Let us denote Dt = [ D f l , D; 2] where 
D, j and Df 2 are square matrices of order t. Matrices Z£ are chosen so that 

Z ^ ^ T C A ^ C , for i = l ( l ) N - l 

provided that B, + Cpi2 is regular. (For G a positive definite matrix this is true.) 

Hence 

(3-5) D i + 1 > 1 = J , , 

D ; + 1 , 2 = - ( B . + C i D, , 2 ) - 1 .4 i , 

d i + 1 = ( B . + C i D. ,2 ) - 1 ( F .+ C , d . ) 

for j = 1(1) J. 

The left boundary condition is 

(3-6) Dx>1 = I,, D1>2 = - B o ^ o , d. = Bo >F0 . 

For xJ+1 we have the system 

"', D , + 1, 
Cw — ß/v 

** = ľV ~~ Г dN~\ -

L-ғJ 
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i.e., 

(3.7) YN = {BN + CNDNt2)~1 (FN + CNdN). 

The matrices Rt can be chosen under our regularity assumptions so that 

R* = [o M , I,]. 

Then 

(3.8) r f = - D i + 1 > 2 r / + 1 + d l + 1 . 

The matrices Q; are of the form 

(3.9) Q, 

L°... I, 
and the vectors xt are solutions of the systems Q,x = qt. Thus (3.9) implies 

r, = y, 

and we have obtained for the vectors Yt 

(3.io) y ( = - D i + 1 > 2 y i + 1 + d ( + 1 . 

Setting Xf = —Di2i the equation (3.10) together with (3.5) —(3.7) are just the equa­
tions (3.3)-(3.4). ' 

As the second example we should like to mention the methods from [2], They are 
methods for inversion of a tridiagonal symmetric matrix G: 

Ct <*2 

a2 c2 «з 

an- ì cn-
an 

ì an 

cn 

and 

where 

We choose j = 1, i.e., 

b = \bí,...,bnf, Y = íyí,-,y„Y 

GY = b. 

*i = b i . J i + i ] " for i = 1(1) J + 1 

and J = n — 2 because p = 1 so that J = (n — 2)/(2 — 1). 

Further, 

l, = [aí + 1 0 ~ | , ß , = Г c f + 1 a 1 + 2 ~|, ЃÍ = f^i+il 

L° -Ј L-i 0 Ј L« Ј 
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for i = 1(1) J + 1 and 

&o = [1, «2/ci] , A. = [1, cnjan~] , 

fo = ^i/ c i - f* = &»/«» 

provided that all divisions are possible. Matrices Z-, i.e., the concrete method of 
Algorithm 2T\ are chosen so that the matrices Dt = [D I f l, Di2\\ are of the form 

Thus 

Then 

Z, = 

Ű ( Í + D 

D, = [1, !>( °]-

Ö , + I 
, zi -(z,). 

c i + 1 - D ( i >я i + 1 

, zi -(z,). 

ű f + 2 i Гìd) - ^^ 

ci+1 - D(0ai+1 cx 

, bi+l - ai+1di bt 

i + 1 ~ c --~D(i>a~~' 1 _ 7 
c i + l -^ " i + 1 c l 

for i = 1(1) n - 2. 

Matrices R- and vectors r- are chosen so that Rt = [0, 1] and rt = [ y i + 1 ] . 

Let us define the quantities C-: 

(З.H) C l = 0 , C ł + 1 = — 7 - ^ - foг i = l ( l ) « - l . 
c i + L j a i 

and 

For x„„ 1 we have 

hence 

ű ( i> = - c i + 1 

d _ fl r —? r _i±l 
" i + 1 — " i + l W + 2 • W + 2 • 

a i + 2 ai+2 

[i -c,"|x,_1--rti._."|, 
K cn\ \_bn \ 

X-,-1 = i - a [ c„ Cj^-i"] 
L-a, 1 [[*>„ j 

where a stands for (cn + a„CM) *. Recurrence for dt implies 

_ < - - f l 2 c < + 1 . . . c , — — - - t n -----
fli+ici j ' = 1 - = 1 + i a i + i 
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= - C i + 1 . . . C 2 _ _ _ _ - £ n ___. 
«i+i 1=it=./+iai+i 

Then for yn we have the equation 
n n— 1 n 

yn = a(bn - a„dn^) = a(_„ + f] C,&, + S IT C>bj) • 
1=2 j=2 t=j+I 

Denoting 
n 

(3.12) Vi = n c . f ° r i = i ( i ) n - 1 > 
. - = i + i 

this equation can be rewritten in the form 

n 

yn = « Z Pi&j • 
i = l 

By means of the quantities Vf we can rewrite the system Qfx,. = qi to 

i + i i + i i 

yt = df + Ci+iyi+i = - E 11 Ct—^- + Ci+iyi+i , 
; _ = 1 , = J + 1 fli+1 

i.e., 
i + l i + 1 Ï i + 2 i + 2 i 

yt = -I П c, .-^-c i + 1 x п c,.-^--
j = i ř = j + i a i + 1 j=iř=j+2 a i + 2 

- С í + 1 . . . С „ _ 1 t П С,^" + a С i + 1 . . . С „ î V;ò; = 
j = к = . + i a„ І = I 

= aVД,+ (aVV ,^ - ^ W i + 

+ («V,V„-_ - V— - V,—) K-2 + 

... + (/aVíV1 - VІС2...С„_2^Ľ_1- VA...С„_2.-í-
a„ C„a 

• ••-VA-С..,.—- -— W 

c i + 1 ... ь п a i + 1 / 

; = Г f a - £ - Ь - ) for j = 1(1) n . 

Let us denote 

W 

This recurrence implies 

(3.13) Wj = VJ+\ (vj\VJ+1 - — ) for j = n - 1(-1) 1, 
\ «. + i/ 

(3.14) W„ = a . 
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Choosing special vectors b, namely, b = et for i = l( l) n, where et = [0,0, ... 
..., 0, 1, 0, ..., 0] T and 1 is placed at the i-th position, we can write for the elements 
ktj of the matrix G~1 in virtue of the equation for yt 

(3-15) fcy = V,Wj for i š j . 

Thus (3A5) together with equations (3.H) —(3.14) is the first of the algorithms from 

[2]. 
Realizing that 

G.Gl = l„ 

we can write for the product of the j - th row of the matrix G and the (j + l)-st column 
of the matrix G"1 : 

i.e., 

and 

Similarly 

i.e., 

Then 

ajVj_1WJ+1 + CJVJWJ+1 + aj+1Vj+1Wj+1 = 0 , 

VJ+I = ~(cjVj + ajVj_1)\aj+1 for j = 1(1) n - 1 

к0 = o, y,..!. 

G - 1 G = / n J 

VtWj-iOj^ + ViWj-.Cj + VWjaj = 0. 

- Cj-.TF,-. - ajWj 
Wj.2 = 

*/-i 

for ; = n + 1(— 1) 2, 

w. = (-iy, 1V„+1 = 0 ; 

and this is the second algorithm from [2]. 
We have tested our theory on a "model example", namely, for G being the tridia-

gonal matrix 

"1 0 
1 - 2 1 
0 1 - 2 1 

1 - 2 1 
0 1 

, Ь = -2A 

where A is a constant. 
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The system 

Gy = Ь 

has been solved by three methods of Algorithms 2T\ and ^ 3 . First of them was the 

method of Algorithm 2T\ with j = 0, i.e., 

* i = [y2í- l ,y2í] 1 

and 

н; = v в i ""1 - 2 " - ì 1 0~ = " - 3 2 
0 1 - 2 1_ - 2 1_ 

h; = - 2 й "3" 

_1_ 

3 + 2 . D i > : 

, ^ = [Z ř ] . 

Thus 

Oi+l = [ D l + 1 > 1 , D i + 1 > 2 ] = Z , [ - 3 D U - 2 D i j 2 , 2 D u + D,,2] , 

D, = [ 1 , 0 ] , 

d f + 1 = Z , . ( - J , - 2/i. ( 3 . D u + D,>2)), 

di = 0 . 

With our choice of matrices Zt we have 

Ditl = 1 for every i. 

For the transfer from the right to the left we choose matrices Rt as in Remark 4: 

R ; = WtRi+ .Br•>.4., 

J . Є . , 

^І = [RІ,I, Ri,г] = W . [ R J + I , I + 2 . R ; + 1 > 2 , — 2 R І + 1 1 - З R ; + 1 2 ] 

RN = [o, i ] , 

r; = Ж ; (-r ; + 1 - 2 A . ( З . Ä ( + U + 7 . R І + 1 > 2 ) ) , 

rN = 0 , 

where 

i.e., 

Ж = 
- 1 

, w, = [иЯ, 
3 + 2 . R ; + 1 ) 1 

R; 2 = 0 for every i. 
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The second method has been the method of Algorithm $~3 with the same Zt as 

in the first method which means that the matrices Dt are of the form [1, L\2] and 

matrices T. are 

Tt= - 2 . K i > 2 , 

i.e., matrices Rt have been of the form [0, KIf2]. "Uncorrect" initial value si equals 

one. The third method was the usual Gaussian elimination that is also a method 

of Algorithm ,T1 as is shown in [6]. The constant h was chosen to be 10~4 and 

10" 8 and the order N of the matrix G has been 100 and 1000, respectively. Calcula­

tions have been done on SIEMENS 4004 in double precision. Astonishingly, the 

Gaussian elimination gave the worst results. The other methods gave correct values 

within the rank of machine accuracy. Both the method of Algorithm &~1 and of &~3 

appeared to be scarce sensitive to the growth of the order of the matrix G. This is 

in full agreement with the stability analysis we hope to present in the next paper. 

Table 1. 

I 

Уi 

I 

Gaussian elimination methods of Algoriîhm У\ and У~Ъ 
and the exact solution 

10 •00999898 •00999897 
100 •08264462 •08264462 
400 •23875115 •23875114 
700 •21120292 •21120293 
950 •04795425 •04795429 
990 •00999895 •00999897 
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Souhrn 

OBECNÁ TEORIE PŘÍMÝCH METOD ŘEŠENÍ SOUSTAV 
ROVNIC S PÁSOVOU MATICÍ SOUSTAVY 

LUBOR MALINA 

V práci je ukázána možnost konstrukce obecného algoritmu pro řešení soustav 
lineárních rovnic s pásovou maticí soustavy. V první části se pojednává o Gaussově 
eliminaci způsobem podstatně odlišným od postupů dřívějších. Jsou zde osvětleny 
základní myšlenky, které vedou k definici obecné třídy přímých metod řešení soustav 
s pásovými maticemi (tyto se pak nazývají metodami přesunu okrajových podmínek), 
která je popsána v druhé části. V třetí části je ukázáno na příkladech, jak lze volbou 
parametru obecného algoritmu dostat některé známé metody. 

Author''s address: Dr. Lubor Malina, CSc, Ústav aplikovanej matematiky a výpočtovej tech­
niky PF UK, Matematický pavilón, Mlýnská dolina, 816 31 Bratislava. 

183 


		webmaster@dml.cz
	2020-07-02T03:28:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




