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SVAZEK 24 (1979) APLIKACE MATEMATIKY cisLo 3

GENERAL THEORY OF DIRECT METHODS
FOR SOLVING SYSTEMS OF EQUATIONS WITH BAND
MATRICES

LUBOR MALINA

(Received March 30, 1977)

The main goal of the present paper is to establish a general theory of the direct
methods for the solution of systems of linear equations with band matrices. Here
the word “‘general” means that the theory should cover most of the known direct
methods. Due to the growing ability of computers, much work has been devoted
to the development of such methods for special systems of equations such as those
with band or sparse matrices. There are two possible ways, either to adjust the known
general methods to the special structure of the matrix or to create new methods.
Our attention will be focused to the band matrices. Though such systems often occur
in practice (e.g. in the finite element or finite difference methods), there is no general
theory of the methods available up to now. We have started with the following well
known fact. There is a well known theory of sweep or the so called factorization
methods for the solution of differential boundary value problems (cf. [4]). Babuska
in [1] has found that when solving a boundary value problem of order two by the
method of simple factorization and discretizing the resulting system of initial value
problems by Euler’s method is nothing else but the process of discretization of the
original problem by the finite difference method and the solution of the system for
approximate values of the exact solution (with tridiagonal matrix) by Gaussian
elimination. The main idea of the sweep methods is to transfer the boundary condition
at one point over the interval of definition (if there are no transient conditions)
to the other point and vice versa. At every point of the interval we obtain, roughly
speaking, a system of equations for the vector of the solution with a “small” matrix.
Following the above mentioned analogy between boundary value problems and
systems of equations with band matrices we show what the “transfer of the boundary
condition” means in the latter case.

In the first part we shall discuss some ideas from the paper [5]. This paper is
probably one of the first which offer a new insight into the process of Gaussian
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elimination for tridiagonal matrices close to ours. This part contains also some
preliminary concepts and definitions.

The second part is devoted to the definition of a general algorithm and to the
proof that the methods of this algorithm solve our problem. One special variant
of the algorithm, especially suitable if we have more severe restrictions on the com-
puter memory, is also mentioned there.

In the last part it is shown how some known methods can be obtained from the
general algorithm. The reader who is familiar with the notation used can read this
part first. It could help him to understand ideas and technique of Part 2. The whole
article is closed by some numerical results. The questions of numerical stability and
still more general algorithms that presented in this article will be discussed in a forth-
coming paper.

1. PRELIMINARIES

Let us consider a boundary value problem of order 2k over the interval [a, b]-
Discretizing this two point boundary value problem we obtain the difference equation
2k
S afx;) y(x; + jh) = f(x;) for x;=a+ ih, x;+2kh <b,
j=0
where h is the step of the discretization. Discretized boundary conditions can be
written in the form

“

2k 2k
Y myy(a+jh)=w; and Y n;y(b— (2k — j)h) =z,
j=0 j=0

for i = 1(1) k.

Notation. Throughout the paper i = j(k) nstands forie {j,j + k, j + 2k, ..., n}.

Difference equations together with the boundary conditions form a system of
algebraic equations for values of the unknown function y at the points x;. The
matrix of the system is of band form.

We have already mentioned factorization methods for the solution of continuous
problems and their analogy with the process of Gaussian elimination for the dis-
cretized problem in a special case. Factorization methods are of such type that the
boundary condition at one point is transferred to the second point and vice versa
to obtain an algebraic equation for the unknown (vector) function at every point of the
interval of definition. Discretizing a differential equation we come to a difference
equation and this difference equation together with the boundary conditions form
a system of equations whose matrix is of band form. So, it is natural to follow the
ideas of continuous case also in the discrete case.

Consider the linear difference equations

(1-1) by, + hiy, =fi,
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ayy + byys + hays = f2,

ay—1Vn-2 + by—yyn—y + hy_yn =fyo1s
ayyy-1  +byyy  =fn-
The first and the last equation of the system (1.1) is the left and the right boundary

condition, respectively.

Let us define
—h —h;

c, = L ¢y =—— for i=2(1)N -1
2 b, o b; + ca; )

provided b; + c;a; is different from zero. Gaussian elimination for the system (1.1)
yields

(1*2) 1.y — ¢y, = h’
b,
C3
1.y, — ¢33 =(f2_azd1)—,
h,
N
L.oynoy — vy = (fy—1 — ay-1dy—z) —— ,
hy -y
ayyy-1 + byyn = fu,
where

d, ="f‘l“, diyy = (fi+1 - ai+1di) ;Hz for i= I(I)N - 2.

b, i+1
Denoting
Divyy=1 and Dy, ,= —cy, for i=01)N -2
and
x; = [J’is J’i+1]T ’

we can rewrite the system (1.1) in the form

(1.3) Dix;=d; for i=1(1)N -1,
(1'4) [aN: bN] Xy_1 = fn,
where

D; = [Di,l’ Di.z] .

Let us stop the process of Gaussian elimination at the i-th equation. Thus the
system (1.1) is transformed into the form
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D,x; =d; for j=1(1)i -1,

(15) Di,lyi + Di,2yi+1 = Cl'i »
ajyj—y + by, + hy =f; for _i=i+1(l)N— l,
ayyn-1 + byyy = fy -

The system (1.5) is part of the system (1.1) and the influence of the equations of the
system (1.1) up to the i-th equation has been concentrated into the new boundary
condition D;x; = d;. Thus we can see that the forward step of Gaussian elimination
is the transfer of the left boundary condition to the right. For the backward step
the situation is the same. Namely, we can compute the values yy_, and yy from the
equations (1.3)—(1.4). Thus, having computed y;;; we can compute y; from the
equation D;x; = d;. Again the knowledge of y;., enables us to compute all the
values y; for j = i(—1) 1. Hence the “equation” y;,; = y;y, is the transferred
right boundary condition ayyy_; + byyy = fx-

In the next parts we will extend the ideas to the general case of systems of linear
equations with band matrices. And now we can see how natural it is to call the direct
methods for solution of such systems the methods of the transfer of conditions. Let
us turn to the general case. First we shall define what we mean by the band matrix.

Definition. Let G = (g;;) be a square matrix of order N and let p be the least
integer such that
forall i,jef{l,...,N}, |i —j] > p implies g;; = 0.

The number 2p + 1 is called the bandwidth of the matrix G and the matrix G is
called a band matrix.

Let G be a band matrix of order N with a bandwidth 2p + 1 while b =
=[by, ..., by]" is an N-dimensional vector. We are looking for the solution y =
= [yy, ..., yy]" of the system

(1.6) Gy=b.

Following the ideas of the example we shall define a system of 2p-dimensional vectors
x) analogous to the vectors x;:

(1.7) x = [,V(zpwj)(i—l)+1’ R y(zp—j)iH]T

for i = l(l)J + 1, where j is a chosen fixed integer from the closed interval
[0,2p — 1] and J = [(N — 2p)/(2p — j)] ([m] stands for the integral part of the
number m).

Notation. The superscript T will always denote the transpose of a vector. Rank
of a matrix M will be denoted by rank M. The symbol I, stands for the identity

164



matrix of order g while O, ; stands for the null matrix of type i x j, i.e., with i rows
and j columns.

Remark. If it is clear which of the values is chosen for j we shall simply write x;
if this cannot lead to any confusion.

Let us note that the definition of the vectors x; implies that the last j components
of x; repeat as the first j components of x;, , (in the example j was equal to 1).

Assumption 2. For the sake of rather technical then fundamental reasons we
shall assume J = (N — 2p)/(2p — j). This does not affect the generality of our
theory.

In a similar way as we have divided the vector y we divide also the matrix G and
the vector b. Let us denote

I=02p—-j)(i—1).

L
A= r91+p+1,1+1a cees Gr4p+1,0+2p—j s
0. :
_0~-~- 0, Grapsap—iaizp—i
Pr
B' = Ir+p+1,0+2p—j+1> ceos Greprrgi2p+ 00 oo, 0
L9r+p+2p—j,I+2p—j+1> +- > 9r+2p-j+p,I
and
(1.8) A = [A‘ {Ozp_j,jil, B; = [ B! :l,
1
Oj2p-j11; =110,
_ T
(19) fi_ [b]+p+1"'-’ bI+p+2p—j’ 0’-“, 0]

for i = 1(1) J, where A; and B, are square matrices of order 2p and the vectors f;
are 2p-dimensional. The matrices A; and B; are generated by 2p — j rows of the
matrix G the elements of which aplly to both x; and x;, ;, and completed to a square
by the identities

Vi+2p—j+1 = Vi+2p-j+1>

Vi+2p = Yr+2p -

The first p equations of the system (1.6) will be called the left boundary condition
and the last the right boundary condition. We rewrite them in the form

(1.10) Aoxy =fo, AyiiXser = Freq,
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where

AO = ~glla <o G1ps 0, ..., 0 s
(gorr - .
B N
Ajiy = |gnN-priN-2p+1> N T I
0.
-Oy ERRE] 0’ gN_N—p+1, .oy gN,N
fo = [bl, o bP]T and f;,, = [bN-~p+1, o bN]T~

2. GENERAL ALGORITHM

Using the notation (1.7)—(1.10) we can rewrite the system (1.6) in the form
(2.1) Ax,+Bx,,, =f for i=11)J,
Apxy =fo, AjeiXpir =frer-
Now we wish to replace the solution of the system (2.1) by a solution of systems
(2.2) Qx;=gq;, for i=11)J+1,

where Q; are regular matrices with 2p columns of the block form Q; = [D], R]" and
vectors q; are of the form q; = [d], r[]". The pairs D;, d; and R;, r; are connected with
a transfer of the left condition to the right and the right condition to the left, respec-
tively. First we shall describe the transfer to the right. Let us suppose that the system
(2.1) has a solution and we have already obtained a matrix D; and a vector d; such

that
(2.3) Dx; = d;
and the matrix A; for this i is regular. Denoting
H;, = A7'B; and h; = A7'f,
we can write for x; and x;,; the equation
(2.4) x;+ Hx;,; =h,;.
After multiplying this equation by D;, (2.3) and (2.4) yield
DHx;,., = —d,; + D;h;.
Denoting
(2.5) D,y =ZDH; and d;,, = Z(—d, + D:h)
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where Z; is a regular matrix of order equal to the number of the rows of the matrix
D; we can write

(2:6) Diyixiv1 =d;yy.
Equations (2.5) realize the transfer of the equation (2.3) to (2.6). To follow strictly
the ideas of the example from the previous part, for the transfer from the right to the

left we have to complete the matrices D; to squares and regular ones by matrices
R, in such a way that

where r; is an appropriate vector. Again, let us suppose the matrix A; to be regular
and the matrix D;, , to be already completed to the regular matrix Q;, . From the
equation

Qir1Xiv1 = Giss

we can compute the vector x;, ;. Plugging it into the equation (2.4) and multiplying
the resulting equation by the matrix R; we obtain

Rix; = Ri(hi - HiQi—+llqi+1)'
Denoting

(2.7) r; = R,-(hi = HiQi_+lan'+1) s

the vector r; fulfils the equation

If the matrix A, is singular this approach does not work. However, the following
lemma which we quote without proof (cf. [4]) can serve us as a hint how to solve
this case.

Lemma 2.1. Let C, be an a, x n matrix, rank C; = h; while C, isan a, X n
matrix, rank C, = h, and rank C; = hy where C; = [C], C]|". Then there are
matrices S, and S, such that

(1) s,c, =s,C,,

(2) the rank of $,C, equals the number of its rows and is equal to hy + h, — h,
and for every pair of matrices S, S, for which (1) holds, the rank of the matrix
S.C, is not greater then hy + hy — h;.

The following remark also quoted from [4] without proof appears to be useful.
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Remark 1. Lemma 2.1 is proved by modifying the matrix C; to an equivalent
matrix M with h, + h, rows and a, + a, columns,

M = Bl oh]’ﬂz k]
ohg—h,,n, PIB2
_Sl SZ

where

(i) the matrix B, is the h, x a, matrix and consists of all linearly independent rows
of C, while B, consists of those of C, and P, is a permutation matrix such that the

first hy rows of the matrix
Blcl
PIBZCZ

are linearly independent. The matrix P,B, is the (hs = hy) x a, matrix, $; and S,
are (hy + hy — h3) x ay, (hy + hy — h3) x a, matrices, respectively.
(i) hj is equal to the rank of the matrix
B,C,
PIBZCZ
0h1+hz*h3,n ’
(iii) mc, =[ B.C,
PIBZCZ
oh; +hy—h3,n
Moreover,

rank M = hy, + h, .

Thus, let the matrix A; be singular. We wish to transfer the equation (2.3) to the
“point i + 1”. Equation (2.1) for this i can be written in an equivalent form

(2.8) [Ai,l ]xi + [Bi,l] Xiyq = [fi,l]

on.‘,Zn Bi,2 fi,2 >
where rank A; = 2p — n; = rank A, and 2p — n; is equal to the number of the
rows of the matrix A; ; while B; ; and B, , are (2p — n;) x 2p and n; x 2p matrices,
respectively. We can suppose rank B;, = n; because by crossing out linearly de-

pendent rows we do not change the set of solutions of the original problem. Lemma
2.1 implies the existence of matrices S; and §, such that

SZAi,l = lei-
This equation together with (2.8) and (2.3) yields
Diiixiyy =diyy,
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where

(2.9) D,.,=2Z,][S,B.,], dis:1=Z; [szfm - Sldi]-
] 3

Let us note that Lemma 2.1 guarantees that we transfer the maximal number of
equations (2.8) to the point i + 1. But from the numerical point of view this is
useless if we are not able to determine the values hy, h, and h; exactly. The reason
is that the process of determination of the rank of a matrix is numerically unstable.

To transfer the right boundary condition to the left we must distinguish three
cases. Let the equation R, x;,{ = r;,, be already obtained, let the matrix A; be
singular and B; regular. Thus the equation (2.1) can be written in the form

By 'Ax; + x;yy = B]'f;.
Hence choosing

Ri = wiRi+lBi_1Aia r,= wi(’_ri+1 + R,‘+1Bi-1fi)
we have
Rix; =r;.

If the matrix B; is singular we again rewrite the equation (2.1) into an equivalent
form

(2.10) [1/\,-] X + [0 2y | Xip1 = [+fi]s

2Ai ZBi Zfi
where rank B; = rank ,B; = 2p — t; and ,B; is the (2p — 1;) x 2p matrix. Lemma
2.1 implies the existence of matrices $*) and $® such that

(2.11) SM B, = SPR,,, .

Multiplying the equation (2.10) by the matrix § and using (2.1 1) it 1s easy to define
the matrix Ry and the vector r; fulfilling the equation R;x; = r,.

All what has been done up to now is simply a hint how to define the general
algorithm. After its definition we shall prove that it is the algorithm for solution
of the system (1.6).

We divide the set M = {1, ..., J + 1} into four parts,

M=, UM, UM UM,
where

M, = {ieM|both A; and B, are regular or i = 1,i = J + 1},
M, ={ieM | A, is singular, B, is regular} ,
My ={ieM [ A, is regular, B; is singular} ,
My ={ieM | both A; and B; are singular} .

Conserving the notation of the previous part we shall define
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Algorithm J1.
(2) transfer from the left to the right
for ie My U M,
(2.12) D, =A,, d,=f,,
D;,, = ZDH; and d; , = Zi("di + Dih.’);
forieM, u N,
(2-13) Di+1 = zi [szBi,l]’ di+1 = Zi [Szfm - Sldi]
Bi,z fi,z
where S,A; | = §,D; and Z; is a regular matrix.

transfer from the right to the left
b sfer from the right to the I,

for i e M; U My, the matrix R, is an arbitrary matrix such that Q; = [D], RT]"
is a square regular matrix and

(2-14) r; = Ri(hi - H.’Q.'_+l1qi+ 1) s
where q; = [d], r]];
fori=J + 1,

ryer =Ry [DJ+1:|_1 [d1+1] 5
Ay fre1

R, = WR,,B['A;, r,= wi(_ri + Ri+IBi_lfi);

for ieIM,,

for ieM,,

(2.15) Ri = W, [SDLA ], ri= WSV f, — $Pr,
1A; ifi

where SV ,B; = SR, , and W, is a regular matrix.
Vectors x; for i = 1(1) J + 1 are defined as solutions of the systems

(2.16) Qx;=4q; for i=(1)J+1

where
Q;=|D;| and gq;=]d;|.
R; r;

From the definition of Algorithm 1 it is easily seen that it is not the only method.
Different methods could be obtained by a different choice of the matrices Z; and W,.
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Notation. The system {x;}iZ{ of 2p-dimensional vectors x,; defined by (1.7) is
said to be a solution of the system (1.6) iff the vector y = [y, ..., y5]" is a solution
of the system (1.6).

For the proof that solutions of the systems (2.16) are solutions of (2.1) the following
lemmas will be useful.

Lemma 2.2. Let ie M, u M, and let the matrices D; and D;,, be such that

rank D; = rank [D;, d;] while rank D;,, = rank [D;,, d;, ] and let there exist
a solution z of the system

(2.17) D,,,z=d,,,.

Then the system

(218) .

has a solution.

Proof. We can suppose that rank D; equal to the number of its rows because by
crossing out the linearly dependent rows we do not change the set of solutions of the
equation (2.18). This system can be written in an equivalent form

(2.19) D; w = d
A, -B; z + fi,
O,.,2p —B;,z + fi,Z

Equation (2.13) implies
—-B;,,z+f,,=0

for every solution z of the system (2.17). Hence the system (2.19) can be reduced to

a form
D, |w= d; .
A, —B;,z + f;,

Remark 1 implies that this system can be replaced by an equivalent one with a matrix

of the system whose rank is equal to the number of its rows, i.e., the system (2.18)
has a solution.

Lemma 2.3. Let ie M, uIM,, let rank R; = rank [R;, r;] while rank Ry, =
= rank [R;, , r;+,] and the vector z is a solution of the system

Rz=r,.
Then the system

has a solution.
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Since the proof is almost the same as the previous one we omit it.

Theorem 2.1. Let us suppose the assumption 2 to be fulfilled. Then

(i) every solution {x;}{2{ of the system(2.1)is a solution of the systems(2.16) and

vice versa;
(ii) systems (2.16) have unique solutions iff the system (2.1) has a unique solution;

(iii) matrices D; and [D;, d;] can change their ranks only at the points i ¢ M,.
Proof. (i) Let {x;} be a solution of the system (2.1). Then
D, x, =d,
and the vector x, fulfils also the equation
Ax, +Bx,=f.
Let number 1 be an element of 9, U IM;. Then these equations imply

D,x; + D\H;x, = D,h,

and
D,x, —d, =(—d; + D1h1) — D,H,x, .
Equivalently,
Zic, = —c,,
where
¢, =Dx; —d,

If 1 e M, U M, then equations (2.13) imply again
Zc, = —c,
where Z, is a regular matrix of an appropriate order. Thus we can conclude that
Zc, = —c;,, for i=11)J

where Z; are regular matrices. But ¢, = 0, hence ¢; = 0 for all i. For the matrices
R; and vectors r;, the proof is the same. Conversely, let {x;} be a solution of the
systems (2.16). It is sufficient to prove that from every solution of the system Qx; =
= q; we can construct a complete solution of the system (2.1) which consists of
solutions of the systems (2.16). Let us prove this assertion. First, let x, be a solution
of the system (2.16) for i = k. We shall construct the solutions x; of both the systems
(2.1) and (2.16) for i < k. Let us suppose that i € M; U M; and that x, is a solution
of the system Q,x, = q,. Then the system

(2.20) A1z = =B x + fioy
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has a unique solution and we denote it by x,_;. Then
Xy = —H_x + h_,
and
D, x4 = =D H,_x, + Dy_1h_,,

where we have used the equation (2.12). In a similar way one could show that
Ri_yx—y =1y,

i.e., the vector x,_ is the solution of both the equation (2.20) and the system (2.16)
fori =k — 1.

For i e M, u M, the matrix A,_; is singular. Lemma 2.2 implies that there is
a solution z of the system

D.,|z= I: d_,
Ay =B + iy
which we denote by x,_ ;. Directly from the definition of the matrix R,_, and of the
vector r,_ in Algorithm 1 we obtain that this x,_, satisfies
R yxy =r_y.
In each case we can construct in this way vectors x; for i < k, such that

Qx;=q; and Ax; +Bx,,, =f;.

Now we shall construct solutions x; for j > k from the vector x,. First, let us suppose
ieM; UM,. Then (2.14) yields

r, = Ri(hi — Hixi+1)

where x;, is a solution of the system (2.16) for the index i + 1. For the vector d;
we have the equation

d;=—Z'd,,, + Dh;.
But

diyy =D x4y,

Zszil—l = DiH[,

hence
Q= qi(hi - Hixi+1)-

It means that h; — H;x;+; is a unique solution of the system Q;x, = q;. We shall
denote it by x;.
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Let i € M, U M, i.e., the matrix A; is singular and x; is a solution of the system
Q.x; = q;. Then Lemma 2.3 implies the existence of solutions w,

(2.21) R \w=[ ri, .
B; —Ax; + f;

We choose one of them and denote it by x; . It is sufficient to show that
Dipyx;py =diyy.

Equations (2.21) and (2.8) imply
- [Am] x; + [fu = [Bi,l:] Xy
0 fiz B,

DiyiXipy =diy.

and

Thus we have constructed a solution of the system (2.1) from the solutions of the
systems (2.16).

(i) Again, let us suppose that the system (2.1) has a unique solution but there is
an index k such that the solution of the system Q,x = q, is not unique. As we have
already proved, every solution of the original problem is a solution of the systems
(2.16). Therefore the system (2.16) for i = k has infinitely many solutions. From each
of its solutions we can construct a solution of the original problem in the same way
as we have done above. And this is a contradiction with the uniqueness of solution
of the original problem. Similarly, if the systems (2.16) have unique solutions, point
(i) implies that the same holds for the original problem.

(iii) If i € M, then the equations (2.12) imply

[Diy,diry] = Z[D; d] [H,- hi]

0 -1
H, h,
0 -1

Remark 3. The theorem just proved implies that under the assumption that the
original problem has a unique solution,

rank Q; = rank [Q;, q;] = 2p.

Remark 4. Matrices R; and vectors r; can be chosen in a special way, namely,
setting

where both the matrices Z; and

are regular.

R, = WR, B/'A,, r, = wi(—ri+1 + Ri+lBi~1fi)
for i e M, U M, and defining them by the equations (2‘15) forie M3 U Mm,.
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Finally, we should like to mention a subgroup of Algorithm 1 where we can
compute matrices R; and vectors r; together with D; and d; provided M, = M. One
of the possibilities is to ask that for two different initial values, say r; and s, all the
vectors differ only by a constant. It means

const = r; —s; = —R;H,Q7}, [op,l :],
Fiv1 = Sit
ie.,
RiHiQi—+11 = [Ti9 —',,] s
where T; is an arbitrary square matrix of order p. Hence
Ri+1 = TiDi+1 - RH;.
Fori = J + 1 we have

const = r;,; — $;,4

ryvr =Ry [DJ+1]_1 [d1+1:|-
A, fre1

Conserving the notation of the previous parts we shall define

where

Algorithm 7 3.
(i) for i = 1 we set D, = A,, dy = f,, s, is a p-dimensional vector and Ry is such
a matrix that Q. is a regular matrix;

D;,, = Z,D;H;, di,; = Zi(_'di + Dihi) s
Riyy =TDiyy — RH;, s,y = —s;+ Td;,, + R,
fori=11)J + 1.
We set
Q,=|D;|, q:=|d;},
R; s;
(ii) x; = Q7 '(q; + const) for i=1(1)J + 1.

3. EXAMPLES

The first example of methods which come within the frame of the Algorithm J°1
is the so called “driving-through” algorithm (cf. [3]). Let the following system of
equations with a block tridiagonal matrix G be given:

(3'1) CY._,—BY, +AY,, = —F, for i= l(l)N -1,
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with boundary conditions
(3.2) —ByY, + A)Y, = —F,,
CNYN—I + BNYN = —Fy

where C;, B; and A; are square matrices and both B; and C; are regular for all values
of i.
The solution of the system (3.1)—(3.2) is given (cf. [3]) by

(3.3) Y., = XY, + K, for i= l(l)N s
where
(3-4) Xi+1 = (Bi - Cixi)_l A,

Kiii =(B; = CX;)"' (F, + CK;),
X, =B;'A,, K,=B;'F,.
In the notation of the previous part p is equal to one and we choose j = 1, i.e.,
J=N—1,M =9, and
A0 = [V YT

i—=1>

H, =[-c/'B, C['A[], h,.:[_ci‘lfi
_’t ot,t Ot,l

for i = 1(1) J + 1 under the assumption that all the matrices needed are regular.
Here t is the order of matrices A;, B;, C,. Let us denote D; = [D,-,l, D;,] where
D; , and D; , are square matrices of order t. Matrices Z; are chosen so that
Z,= —(B,+ CD,,)" ' C, for i=11)N—1
provided that B; + C,D; , is regular. (For G a positive definite matrix this is true.)
Hence
(3~5) Di+1,1 =1,
Diyy,= _(Bi + CiDi,z)_1 A,
di+1 = (Bi + CiDi,z)_1 (Fi + Cidi)
for i = 1(1) J.
The left boundary condition is

(3.6) D,,=1,, D,,=-B3'A,, d, =B;'F,.

For x;,; we have the system
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i.e.,
(3.7) Yy = (By + CyDy )" (Fy + Cydy).
The matrices R; can be chosen under our regularity assumptions so that

Ri = [Or,n ’t] .
Then

(3-8) ri=—D;  ripy +diyy.

The matrices Q; are of the form

(3.9) Qi= [l, Df,z]

of,t ’t
and the vectors x; are solutions of the systems Q;x = q;. Thus (3.9) implies

r.=Y

i i

and we have obtained for the vectors Y;
(3.10) Yi= =Dy oYy +diyy .

Setting X; = — D, ,, the equation (3.10) together with (3.5)—(3.7) are just the equa-
tions (3.3)—(3.4).

As the second example we should like to mention the methods from [2]. They are
methods for inversion of a tridiagonal symmetric matrix G:

G=[c¢ a, o
az €, a4z

@ dy—1 Cy—q Ay
ap Cn
and

b=1[b,...0]", y=[Dp-ur]
where
Gy =b.
We choose j = 1, i.e.,

X; = [,Vi» Yi+1]T for i = 1(1)‘] +1

and J = n — 2 because p = 1 so that J = (n — 2)/(2 — 1).

Further,
A =(a;, 0f, B; = Civy Aiga|> fi=]bisy
0 1 —1 0 0
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fori=1(1)J + 1 and
AO = [1’ aZ/Cl] , A, = [la cn/an] >
fO = bl/cl ’ fn = bn/au

provided that all divisions are possible. Matrices Z;, i.e., the concrete method of
Algorithm 71 are chosen so that the matrices D; = [D, ;, D; ,] are of the form

D, = [1, D] .
Thus
Qi+
4 e o BT
Then
pli+H — Aiv2 D — a
¢ivr — DPayyy ' 31 ’

by = aids b

d. =
i+1 -
(i)

Civr — DWa;yy Cq

for i = 1(1)n — 2.
Matrices R; and vectors r; are chosen so that R; = [0, 1] and r; = [y;4,].
Let us define the quantities C;:

— iy .
(3.11) C1=0’ CH_lzm for 1=1(1)n—1.
Then
DY = —Cisy

and

d.: .

div1=08;41Ci1z.——— Ciys -b'H .
Aiv2 Ay

For x,_; we have
1 - Cn Xp—1 = d'l— 11>
a, ¢, b,
xn— 1= a Cn Cn dn— 1
—a, 1 b,

where « stands for (¢, + a,C,)”'. Recurrence for d; implies

hence

i i+1
di= ayCiy,y ... Cy—01 o

Ai41Cy  J=11=j+1 054,
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= _Ci+l e Cz

Then for y, we have the equation

n n—1 n
yn = O((b" - andn—l) = a(bn + 1_[ Ctbl + 2 H Ctbj) N
t=2 j=2t=j+1

Denoting
(3.12) Vi= ] C, for i=11)n -1,

t=i+1
this equation can be rewritten in the form

n

By means of the quantities V; we can rewrite the system Q;x; = q; to

i+1 i+1

b.
vi=di+ Coyyivr = =2, Il Ci— + Cis1yivrs
j=te=j+1 a4,
ie.,
i+1 i+1 b i+2 i+2 b.
yi=—2 H C,.— —Ci+12 I—[ C.——
j=1t=j+1 Aiyq j=1t=j+2 Aiyo

n n b'
— Civr - Cot Y Il G2 4 aCiyy ... C Y Viby =

j=1e=j+1  a, i=1
Vi
= aVibn + al/iV;l—l - bn—l +
a"
C,- C
+ (“ViVn—z - V2= V,— )bn—l +
a, an-1
C,- 1
+ o+ (VY = ViCyu. Cpey ==L — V,Cy ... Cy s -
a'l Cllall
1
T ee. T ViCZ"‘Ci—l‘d— b].
Civy ... Coligy

Let us denote

Wy=Vi{a— ¥ . for j=1(1)n
k=j+1aVi_q
This recurrence implies
(3.13) W, =V <VJ.WJH — > for j=n-—-1(-1)1,
Aj+1
(3.14) W, =a.
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Choosing special vectors b, namely, b = e; for i = 1(1) n, where e; =[0,0, ...
.. 0,1,0,...,0]" and 1 is placed at the i-th position, we can write for the elements
k;; of the matrix G~ in virtue of the equation for y;

(3.15) ki = ViW; for i<j.

Thus (3.15) together with equations (3.11)—(3.14) is the first of the algorithms from

[2]
Realizing that
G.G1=1,

we can write for the product of the j-th row of the matrix G and the (j + 1)-st column
of the matrix G~ *:

aiVieiWipy + ¢;ViWir + a1 Vip 1 Wiy =0,

e,
View=—(c¥; + a¥j-i)fazey for j=1(1)n -1

and

Vo=0, V, = — .

Wo
Similarly
G'.G=1,
ie.,
VW, 20,y + ViW,_ic; + ViWa, = 0.

Then

— i W_y — a;W,

v‘/j_.z =
a;_q

forj =n+ 1(-1)2,
Wo=(=1, Wu:1=0,
and this is the second algorithm from [2].

We have tested our theory on a “model example”, namely, for G being the tridia-
gonal matrix

G=J1 O , b= =207,
1 -2 1 1
0 1-2 1
1 -21 1
01 0

where h is a constant.
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The system
Gy =b

has been solved by three methods of Algorithms 1 and Z 3. First of them was the
method of Algorithm 71 with j = 0, i.e.,

X; = [J’2i—1, .Vzi]T

and
H,=A'B,=[1 =27 10]=[-=32],
0 1 -21 -21
h, = =2h| 3],
1
-1
=TT T Zz = [Zl]
3+2.D;,
Thus
D, = [Di+1,17 Di+],2:| = Zi[—3Di,1 - 2Di,2a 2Di,1 + Di,z] >
D, =[1,0],
diyy =Z(—d;—2h.(3.D;y + D;,)),
d, =0.

With our choice of matrices Z; we have
D;; =1 foreveryi.
For the transfer from the right to the left we choose matrices R; as in Remark 4:

R; = wiRi+lBi_1Ais

ie.,
R; = [Ri, Rin] = Wi[Riyi 1+ 2. Riyy —2Riiyy — 3Risq 2]
RN = [09 ]] )
o= Wi(_ri+l — 2h '(3 Rigyg +7 'R”l’z))’
Fy = 0 s
where
= w =[],
342, Ri+1,1
ie.,

R;, =0 foreveryi.
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The second method has been the method of Algorithm 3 with the same Z; as
in the first method which means that the matrices D; are of the form [1, D;,] and
matrices T; are

T;=—-2.Ri,,

i.e., matrices R; have been of the form [0, R; ,]. “Uncorrect” initial value s, equals
one. The third method was the usual Gaussian elimination that is also a method
of Algorithm 71 as is shown in [6] The constant h was chosen to be 10™* and
1078 and the order N of the matrix G has been 100 and 1000, respectively. Calcula-
tions have been done on SIEMENS 4004 in double precision. Astonishingly, the
Gaussian elimination gave the worst results. The other methods gave correct values
within the rank of machine accuracy. Both the method of Algorithm J°1 and of I3
appeared to be scarce sensitive to the growth of the order of the matrix G. This is
in full agreement with the stability analysis we hope to present in the next paper.

Table 1.

Vi

methods of Algorithm 1 and 73

Gaussian elimination .
and the exact solution

10 00999898 00999897
100 08264462 [ 108264462
400 23875115 } 23875114
700 | -21120292 [ -21120293
950 ‘ 04795425 04795429
990 -00999895 100999897
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Souhrn

OBECNA TEORIE PRIMYCH METOD RESENI SOUSTAV
ROVNIC S PASOVOU MATICI SOUSTAVY

LUBOR MALINA

V praci je ukdzdna moZnost konstrukce obecného algoritmu pro feSeni soustav
linedrnich rovnic s pasovou matici soustavy. V prvni ¢asti se pojednava o Gaussové
eliminaci zptsobem podstatné€ odliSnym od postupt diivéjsich. Jsou zde osvétleny
zakladni myslenky, které vedou k definici obecné tfidy pfimych metod feSeni soustav
s pasovymi maticemi (tyto se pak nazyvaji metodami pfesunu okrajovych podminek),
ktera je popsana v druhé &asti. V tfeti Casti je ukdzano na ptikladech, jak 1ze volbou
parametru obecného algoritmu dostat nékteré znamé metody.
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