Aplikace matematiky

Yakichi Shimokawa

On the nomographic chart of three complex variables in the line coordinates

Aplikace matematiky, Vol. 24 (1979), No. 4, 241-249

Persistent URL: http://dml.cz/dmlcz/103804

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE NOMOGRAPHIC CHART OF THREE COMPLEX variables in the line coordinates

Yakichi Shimokawa
(Received June 30, 1977)

The methods of nomographing the functional relations among three complex variables which satisfy Massau's complex chart determinant: $\operatorname{det}\left(M_{3}^{c}\right)=0$, have been discussed [1], [2]. In this article, the author tries to investigate the methods of nomographing them in the line coordinates.

1. LINE COORDINATES

If we represent a point P by $\left(x_{1}, x_{2}, x_{3}\right)$ in the homogeneous coordinates, the straight line through the point P is represented by

$$
\begin{equation*}
u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0 \tag{1}
\end{equation*}
$$

and $\left(u_{1}, u_{2}, u_{3}\right.$ are called the homogeneous coordinates of the straight line or the line coordinates. If we put

$$
\begin{equation*}
x_{1}: x_{2}: x_{3}=x: y: 1, \tag{2}
\end{equation*}
$$

the homogeneous coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ of the point P are transformed into the Cartesian rectangular coordinates (x, y). Moreover, if we put

$$
\begin{equation*}
u_{1}: u_{2}: u_{3}=\xi: \eta:-m \tag{3}
\end{equation*}
$$

the line coordinates $\left(u_{1}, u_{2}, u_{3}\right)$ are transformed into the Cartesian rectangular coordinates (ξ, η). By these transformations the point P in the Cartesian rectangular coordinates (x, y) is represented by the straight line

$$
\begin{equation*}
x \xi+y \eta=m \tag{4}
\end{equation*}
$$

in the Cartesian rectangular coordinates (ξ, η), where m is an arbitrary constant.

2. RELATIONS BETWEEN THE COORDINATES (x, y) AND (ξ, η)

If we represent a point $P_{j}\left(x_{j}, y_{j}\right)$ in the Cartesian rectangular coordinates (x, y) by the point $P_{j}\left(z_{j}\right)$ in the Gaussian complex plane, where $z_{j}=x_{j}+\mathrm{i} y_{j}, \mathrm{i}=\sqrt{ }-1$, the point $P_{j}\left(z_{j}\right)$ is transformed into the straight line p_{j} in the Cartesian rectangular coordinates (ξ, η) where

$$
\begin{equation*}
p_{j}: x_{j} \xi+y_{j} \eta=m \tag{5}
\end{equation*}
$$

We represent the intersecting point $P_{j k}\left(\xi_{j k}, \eta_{j k}\right)$ of the straight lines p_{j} and p_{k} in the Cartesian rectangular coordinates (ξ, η) by the point $P_{j k}\left(z_{j k}\right)$ in the Gaussian complex plane where

$$
\begin{equation*}
P_{j k}=P_{k j}, \quad z_{j k}=z_{k j}, \quad z_{j k}=\xi_{j k}+\mathrm{i} \eta_{j k}, \quad j \neq k, \quad \mathrm{i}=\sqrt{ }-1 . \tag{6}
\end{equation*}
$$

From the relations:

$$
\begin{equation*}
z_{j k}=\zeta_{j k}+\mathrm{i} \eta_{j k}, \quad x_{j} \xi_{j k}+y_{j} \eta_{j k}=m, \quad x_{k} \xi_{j k}+y_{k} \eta_{j k}=m \tag{7}
\end{equation*}
$$

we have

$$
\xi_{j k}=\frac{m\left(y_{k}-y_{j}\right)}{x_{j} y_{k}-x_{k} y_{j}}, \quad \eta_{j k}=\frac{m\left(x_{j}-x_{k}\right)}{x_{j} y_{k}-x_{k} y_{j}} .
$$

Therefore,

$$
\begin{gather*}
z_{j k}=\frac{m\left(y_{k}-y_{j}\right)+\mathrm{i} m\left(x_{j}-x_{k}\right)}{x_{j} y_{k}-x_{k} y_{j}}=\frac{\mathrm{i} m\left(x_{j}-x_{k}-\mathrm{i} y_{k}+\mathrm{i} y_{j}\right)}{x_{j} y_{k}-x_{k} y_{j}}=\frac{\mathrm{i} m\left(z_{j}-z_{k}\right)}{x_{j} y_{k}-x_{k} y_{j}}, \tag{8}\\
j \neq k, \quad \mathrm{i}=\sqrt{ }-1 .
\end{gather*}
$$

We have the following relation:

$$
\begin{gather*}
\Varangle P_{j k} \mathrm{O} P_{l j}=\arg \left(\frac{z_{l j}}{z_{j k}}\right)=\arg \left(\frac{\mathrm{i} m\left(z_{l}-z_{j}\right)}{x_{l} y_{j}-x_{j} y_{l}} \cdot \frac{x_{j} y_{k}-x_{k} y_{j}}{\mathrm{i} m\left(z_{j}-z_{k}\right)}\right)= \tag{9}\\
=\arg \left(\frac{z_{l}-z_{j}}{z_{k}-z_{j}} \cdot \frac{x_{k} y_{j}-x_{j} y_{k}}{x_{l} y_{j}-x_{j} y_{l}}\right)=\arg \left(\frac{z_{l}-z_{j}}{z_{k}-z_{j}}\right)+\arg \left(\frac{x_{k} y_{j}-x_{j} y_{k}}{x_{l} y_{j}-x_{j} y_{l}}\right), \\
j \neq k, k \neq l, l \neq j .
\end{gather*}
$$

Similarly, a point $Q_{j}\left(w_{j}\right)$ in the Gaussian complex plane is transformed into the straight line q_{j} and the intersecting point $Q_{j k}$ of the straight lines q_{j} and q_{k} is represented by the point $Q_{j k}\left(w_{j k}\right)$ in the Gaussian complex plane, where

$$
\begin{equation*}
w_{j}=u_{j}+\mathrm{i} v_{j}, \quad Q_{j k}=Q_{k j}, \quad w_{j k}=w_{k j}, \quad k \neq j \tag{10}
\end{equation*}
$$

Moreover, we have the relation

$$
\begin{gather*}
* Q_{j k} \mathrm{O} Q_{l j}=\arg \left(\frac{w_{l j}}{w_{j k}}\right)=\arg \left(\frac{w_{l}-w_{j}}{w_{k}-w_{j}}\right)+\arg \binom{u_{k} v_{j}-u_{j} v_{k}}{u_{l} v_{j}-u_{j} v_{l}}, \tag{11}\\
j \neq k, k \neq l, l \neq j .
\end{gather*}
$$

If we have the relation

$$
\begin{equation*}
\Delta P_{1} P_{2} P_{3} \propto \Delta Q_{1} Q_{2} Q_{3}, \tag{12}
\end{equation*}
$$

namely,

$$
\left|\begin{array}{lll}
z_{1} & z_{2} & z_{3} \tag{13}\\
w_{1} & w_{2} & w_{3} \\
1 & 1 & 1
\end{array}\right|=0,
$$

we have the relation:

$$
\begin{gather*}
\arg \left(\frac{z_{l}-z_{j}}{z_{k}-z_{j}}\right)=\arg \left(\frac{w_{l}-w_{j}}{w_{k}-w_{j}}\right), \tag{14}\\
j, k, l=1,2,3, j \neq k, k \neq l, l \neq j .
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
\nless P_{j k} \mathrm{O} P_{l j}-\nless Q_{j k} \mathrm{O} Q_{l j}=\arg \left(\frac{x_{k} y_{j}-x_{j} y_{k}}{x_{l} y_{j}-x_{j} y_{l}}\right)-\arg \left(\frac{u_{k} v_{j}-u_{j} v_{k}}{u_{l} v_{j}-u_{j} v_{l}}\right) . \tag{15}
\end{equation*}
$$

As the values of

$$
\left(\frac{x_{k} y_{j}-x_{j} y_{k}}{x_{l} y_{j}-x_{j} y_{l}}\right) \text { and }\left(\frac{u_{k} v_{j}-u_{j} v_{k}}{u_{l} v_{j}-u_{j} v_{l}}\right)
$$

are real, their arguments are zero or π.
Therefore,

$$
\begin{equation*}
\Varangle P_{j k} \mathrm{O} P_{l j}=\Varangle Q_{j k} \mathrm{O} Q_{l j}, \quad \Varangle P_{j k} \mathrm{O} P_{l j}=\Varangle Q_{j k} \mathrm{O} Q_{l j}+\pi, \tag{16}
\end{equation*}
$$

or

$$
\Varangle P_{j k} \mathrm{O} P_{l j}=\Varangle Q_{j k} \mathrm{O} Q_{l j}-\pi .
$$

If we superpose the vector $\mathrm{O} P_{j k}$ on the vector $\mathrm{O} Q_{j k}$, the vector $\mathrm{O} P_{l j}$ and the vector $\mathrm{O} Q_{l j}$ are collinear and the point $P_{l j}$ is the intersecting point of p_{l} and p_{j} while the point $Q_{l j}$ is the intersecting point of q_{l} and q_{j}. If one of the values z_{1}, z_{2} and z_{3} is zero, for example, $z_{1}=0, p_{1}$ is the straight line through the point at infinity. The point $P_{12}\left(z_{12}\right)$ is the point at infinity on p_{2} and the point $P_{31}\left(z_{31}\right)$ is the point at infinity on p_{3}. If we draw the straight lines p_{2}^{\prime} and p_{3}^{\prime} through the origin which are parallel to the straight lines p_{2} and p_{3}, respectively, we have the following relations:

$$
\begin{align*}
& \star P_{12} \mathrm{O} P_{23}=\text { the intersecting angle of } p_{2}^{\prime} \text { and } \mathrm{O} P_{23}, \tag{17}\\
& \star P_{31} \mathrm{O} P_{23}=\text { the intersecting angle of } p_{2}^{\prime} \text { and } \mathrm{O} P_{23}, \\
& \star P_{12} \mathrm{O} P_{31}=\text { the intersecting angle of } p_{2}^{\prime} \text { and } p_{3}^{\prime} .
\end{align*}
$$

3. REPRESENTATION OF AN ANALYTIC FUNCTION IN THE LINE COORDINATES

If $w=f(z)$ is an analytic function of $z=x+\mathrm{i} y$, we have the relation:

$$
\begin{equation*}
w=f(z)=u(x, y)+\mathrm{i} v(x, y), \quad \mathrm{i}=\sqrt{ }-1 \tag{18}
\end{equation*}
$$

The point $P(u, v)$ which is represented by $w=f(z)$ in the Gaussian complex plane, is shown by the intersection of the curvilinear nets

$$
u=u(x, y) \quad \text { and } \quad v=v(x, y) .
$$

The point $P(u, v)$ in the coordinates (u, v) is transformed into the straight line p in the coordinates (ξ, η),

$$
\begin{equation*}
p: u(x, y) \xi+v(x, y) \eta=m . \tag{19}
\end{equation*}
$$

If y is constant, we have the following envelope of the straight lines p having the parameter x and index y :

$$
\begin{gather*}
F(x, \xi, \eta)=u(x, y) \xi+v(x, y) \eta-m=0, \tag{20}\\
\frac{\partial F}{\partial x}=\frac{\partial u(x, y)}{\partial x} \xi+\frac{\partial v(x, y)}{\partial x} \eta=0 .
\end{gather*}
$$

Solving these expressions with respect to ξ and η, we have

$$
\begin{align*}
& \xi=\frac{\left|\begin{array}{cc}
m & v(x, y) \\
0 \frac{\partial v(x, y)}{\partial x}
\end{array}\right|}{\left|\begin{array}{ll}
u(x, y) & v(x, y) \\
\frac{\partial u(x, y)}{\partial x} & \frac{\partial v(x, y)}{\partial x}
\end{array}\right|}=\frac{m \frac{\partial v(x, y)}{\partial x}}{u(x, y) \frac{\partial v(x, y)}{\partial x}-v(x, y) \frac{\partial u(x, y)}{\partial x}}, \tag{21}\\
& \eta=\frac{\left|\begin{array}{ll}
u(x, y) & m \\
\frac{\partial u(x, y)}{\partial x} & 0
\end{array}\right|}{\left\lvert\, \begin{array}{ll}
\frac{u(x, y)}{} v(x, y) \\
\left.\frac{\partial u(x, y)}{\partial x} \frac{\partial v(x, y)}{\partial x} \right\rvert\, & \\
u(x, y) \frac{\partial v(x, y)}{\partial x}-v(x, y) \frac{\partial u(x, y)}{\partial x}
\end{array}\right.} \\
& u(x, y) \frac{\partial v(x, y)}{\partial x} \neq v(x, y) \frac{\partial u(x, y)}{\partial x} .
\end{align*}
$$

If x is constant, we have the following envelope having the parameter y and index x :

$$
\begin{gather*}
\xi=\frac{m \frac{\partial v(x, y)}{\partial y}}{u(x, y) \frac{\partial v(x, y)}{\partial y}-v(x, y) \frac{\partial u(x, y)}{\partial y}}, \tag{22}\\
\eta=\frac{-m \frac{\partial u(x, y)}{\partial y}}{u(x, y) \frac{\partial v(x, y)}{\partial y}-v(x, y) \frac{\partial u(x, y)}{\partial y}}, \\
u(x, y) \frac{\partial v(x, y)}{\partial y} \neq v(x, y) \frac{\partial u(x, y)}{\partial y} .
\end{gather*}
$$

Therefore, if the values of x and y are given, the straight line p is the common tangent of the envelopes (21) and (22) (See Fig. 1).

Fig. 1.

4. COMPLEX CHARTS OF THREE VARIABLES

If a given functional relation of three complex variables $F\left(z_{1}, z_{2}, z_{3}\right)=0$ is represented by Massau's complex chart determinant of the third order or complex nomographic function:

$$
\operatorname{det}\left(M_{3}^{c}\right)=\left|\begin{array}{ccc}
f_{1}\left(z_{1}\right) & f_{2}\left(z_{2}\right) & f_{3}\left(z_{3}\right) \tag{23}\\
g_{1}\left(z_{1}\right) & g_{2}\left(z_{2}\right) & g_{3}\left(z_{3}\right) \\
1 & 1 & 1
\end{array}\right|=0,
$$

equation (23) is called a key equation or a type equation for the three complex variable charts. We put

$$
\begin{gather*}
w_{j}=f_{j}\left(z_{j}\right)=f_{j}\left(x_{j}+\mathrm{i} y_{j}\right)=u_{j}\left(x_{j}, y_{j}\right)+\mathrm{i} v_{j}\left(x_{j}, y_{j}\right), \tag{24}\\
w_{j}^{*}=g_{j}\left(z_{j}\right)=g_{j}\left(x_{j}+\mathrm{i} y_{j}\right)=u_{j}^{*}\left(x_{j}, y_{j}\right)+\mathrm{i} v_{j}^{*}\left(x_{j}, y_{j}\right), \\
j=1,2,3, \mathrm{i}=\sqrt{ }-1 .
\end{gather*}
$$

From (23), we have the relation

$$
\left.\begin{array}{lll}
w_{1} & w_{2} & w_{3} \tag{25}\\
w_{1}^{*} & w_{2}^{*} & w_{3}^{*} \\
1 & 1 & 1
\end{array} \right\rvert\,=0,
$$

and from (25), we have the relation

$$
\begin{equation*}
\Delta P_{1} P_{2} P_{3} \propto \Delta Q_{1} Q_{2} Q_{3}, \tag{26}
\end{equation*}
$$

where vertices P_{j} and Q_{j} are represented by w_{j} and w_{j}^{*} in the Gaussian complex plane and they are shown by the intersections of curves of the curvilinear nets $u_{j}=$ $=u_{j}\left(x_{j}, y_{j}\right), v_{j}=v_{j}\left(x_{j}, y_{j}\right)$ and $u_{j}^{*}=u_{j}^{*}\left(x_{j}, y_{j}\right), v_{j}^{*}=v_{j}^{*}\left(x_{j}, y_{j}\right)$, respectively. By (21) and (22), the point $P_{j}(j=1,2,3)$ is transformed into the straight line p_{j} in the line coordinates (ξ, η), and p_{j} is the common tangent of the respective curve in a family of curves which have index y_{j} and parameter x_{j} and the respective curve in a family of curves which have index x_{j} and parameter y_{j}. Similarly, the point Q_{j} $(j=1,2,3)$ is transformed into the straight line q_{j}, where q_{j} is the common tangent of the respective curve in a family of curves which have index y_{j} and parameter x_{j} and the respective curve in a family of curves which have index x_{j} and parameter y_{j}. The points $P_{j k}$ and $Q_{j k}$ are the intersecting points of p_{j}, p_{k} and q_{j}, q_{k}, respectively, where $P_{j k}=P_{k j}, Q_{j k}=Q_{k j}, j, k=1,2,3, j \neq k$.

5. METHOD OF SOLUTION

If a given functional relation $F\left(z_{1}, z_{2}, z_{3}\right)=0$ is represented by the expression (23), we have a pair of figures, namely, the first partial chart where the family of curves has a common tangent p_{j} and the second partial chart where the family of curves has a common tangent $q_{j}(j=1,2,3)$. If the values z_{1} and z_{2} are known, we

Fig. 2.

The first partial chart.
The second partial chart.
superpose the vector $\mathrm{O} Q_{12}$ on the vector $\mathrm{O} P_{12}$, cf. Section 2, the vectors $\mathrm{O} Q_{23}$, $\mathrm{O} P_{23}$ and the vectors $\mathrm{O} Q_{31}, \mathrm{O} P_{31}$ are collinear, respectively, and the points P_{23}, P_{31} and Q_{23}, Q_{31} lie on the straight lines p_{3} and q_{3}, respectively.

Therefore, if we seek for the straight lines p_{3} and q_{3} which satisfy the above conditions and are the common tangents of curves having the same indices x_{3} and y_{3}, the value $z_{3}=x_{3}+\mathrm{i} y_{3}$ is the required third quantity (See Fig. 2).

6. AFFINE TRANSFORMATION OF THE COMPLEX CHART

We multiply the given complex chart matrix \mathbb{M}_{3}^{c} from the left by a matrix A, where

$$
\mathrm{A}=\left\|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{27}\\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right\|, \quad \operatorname{det}(\mathbb{A}) \neq 0
$$

and every element $a_{i j}$ is a complex number.
Then

$$
\begin{align*}
& \left.A M M 3_{c}^{c}=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right| \begin{array}{ccc}
f_{1}\left(z_{1}\right) & f_{2}\left(z_{2}\right) & f_{3}\left(z_{3}\right) \\
g_{1}\left(z_{1}\right) & g_{2}\left(z_{2}\right) & g_{3}\left(z_{3}\right) \\
1 & 1 & 1
\end{array} \right\rvert\, \tag{28}\\
& =\| \begin{array}{cc}
a_{11} f_{1}\left(z_{1}\right)+a_{12} g_{1}\left(z_{1}\right)+a_{13} & a_{11} f_{2}\left(z_{2}\right)+a_{12} g_{2}\left(z_{2}\right)+a_{13} \\
a_{21} f_{1}\left(z_{1}\right)+a_{22} g_{1}\left(z_{1}\right)+a_{23} & a_{21} f_{2}\left(z_{2}\right)+a_{22} g_{2}\left(z_{2}\right)+a_{23} \\
1 & 1
\end{array} \\
& a_{11} f_{3}\left(z_{3}\right)+a_{12} g_{3}\left(z_{3}\right)+a_{13}=\bar{M}_{3}^{c} . \\
& a_{21} f_{3}\left(z_{3}\right)+a_{12} g_{3}\left(z_{3}\right)+a_{23}
\end{align*}
$$

The matrices \mathbb{A} and \bar{M}_{3}^{c} are called the complex affine transformation matrix and the transformed complex chart matrix, respectively.

When $\operatorname{det}\left(M_{3}^{c}\right)=0$, we have $\operatorname{det}\left(\bar{M}_{3}^{c}\right)=0$ and vice versa. By an adequate affine transformation, we have other new charts which are convenient to use.
7. SOME TYPE EQUATIONS

1. Type equation

$$
\begin{equation*}
\frac{f_{1}\left(z_{1}\right)+f_{2}\left(z_{2}\right)}{g_{1}\left(z_{1}\right)+g_{2}\left(z_{2}\right)}=\frac{f_{1}\left(z_{1}\right)+f_{3}\left(z_{3}\right)}{g_{1}\left(z_{1}\right)+g_{3}\left(z_{3}\right)} \tag{29}
\end{equation*}
$$

The corresponding chart matrix is

$$
\left\|\begin{array}{ccc}
-a f_{1}\left(z_{1}\right) & a f_{2}\left(z_{2}\right) & a f_{3}\left(z_{3}\right) \tag{30}\\
-b g_{1}\left(z_{1}\right) & b g_{2}\left(z_{2}\right) & b g_{3}\left(z_{3}\right) \\
1 & 1 & 1
\end{array}\right\|,
$$

where a and b are the chart factors, and the skeleton of the corresponding complex chart is similar as in Fig. 2. If we put $f_{j}\left(z_{j}\right)=z_{j}, g_{j}\left(z_{j}\right)=z_{j}^{2}(j=1,2,3)$ in the expression (29), we have the relation:

$$
\begin{equation*}
\frac{z_{1}+z_{2}}{z_{1}^{2}+z_{2}^{2}}=\frac{z_{1}+z_{3}}{z_{1}^{2}+z_{3}^{2}} . \tag{31}
\end{equation*}
$$

As a practical example, we put $a=4, b=1$ and $m=240$ in the rectangular section paper of $1000 \times 700 \mathrm{~mm}$ and obtained nomographically $z_{1}=3.70+2 \cdot 86 \mathrm{i}$ or $z_{1}=-2 \cdot 10-4 \cdot 86 \mathrm{i}$ for the exact solution $z_{1}=3 \cdot 7016+2 \cdot 8599 \mathrm{i}$ or $z_{1}=$ $=-2 \cdot 1016-4 \cdot 8599 \mathrm{i}$, respectively, when the given values are $z_{2}=-3 \cdot 2+2 \cdot 2 \mathrm{i}$ and $z_{3}=4 \cdot 8-4 \cdot 2 \mathrm{i}, \mathrm{i}=\sqrt{ }-1$.
2. Type equation

$$
\begin{equation*}
\frac{1}{f_{1}\left(z_{1}\right)}+\frac{1}{f_{2}\left(z_{2}\right)}=\frac{1}{f_{3}\left(z_{3}\right)} . \tag{32}
\end{equation*}
$$

The corresponding chart matrix is

$$
\left\|\begin{array}{ccc}
a f_{1}\left(z_{1}\right) & a f_{2}\left(z_{2}\right) & a f_{3}\left(z_{3}\right) \tag{33}\\
b f_{1}^{2}\left(z_{1}\right) & b f_{2}^{2}\left(z_{2}\right) & 0 \\
1 & 1 & 1
\end{array}\right\|,
$$

and the skeleton of the chart is shown in Fig. 3.

Fig. 3.
The first partial chart.
The second partial chart.

If we put $f_{j}\left(z_{j}\right)=z_{j}(j=1,2,3)$ in the expression (32), we have the relation:

$$
\begin{equation*}
\frac{1}{z_{1}}+\frac{1}{z_{2}}=\frac{1}{z_{3}} \tag{34}
\end{equation*}
$$

As a practical example, we put $a=4, b=1$ and $m=60$ in the rectangular section paper of $1000 \times 700 \mathrm{~mm}$ and obtained nomographically $z_{3}=0.83+0.91 \mathrm{i}$ for the exact solution $z_{3}=0.8255+0.9088 i$ when the given values are $z_{1}=1.4+$ $+2 \cdot 1 \mathrm{i}$ and $z_{2}=1 \cdot 8+1 \cdot 5 \mathrm{i}, \mathrm{i}=\sqrt{ }-1$.

Acknowledgement. The author wishes to offer his thanks to Dr. Katuhiko Morita for his hearty encouragement and suggestions.

References

[1] Morita, K. and Simokawa, Y.: Nomographic Representation of the Functional Relations among Three Complex Variables. Z. A. M. M., 40 (1960), 350-359.
[2] Jurga, F.: Nomography and Other Graphical Methods (Slovak). Bratislava, 1963, pp. 296 -311.

Souhrn

O KONSTRUKCI NOMOGRAMU゚ S TŘEMI KOMPLEXNÍMI PROMĚNNÝMI POMOCÍ PŘíMKOVÝCH SOUŘADNIC

Yakichi Shimokawa

V článku se pojednává o nomografickém zobrazení vztahu mezi třemi komplexními proměnnými, jestliže tento vztah lze zapsat ve tvaru determinantu

$$
\left|\begin{array}{ccc}
f_{1}\left(z_{1}\right), & f_{2}\left(z_{2}\right), & f_{3}\left(z_{3}\right) \\
g_{1}\left(z_{1}\right), & g_{2}\left(z_{2}\right), & g_{3}\left(z_{3}\right) \\
1 & 1 & 1
\end{array}\right|=0 .
$$

Soustavy křivek, tvořících nomogram, jsou obálky soustav přímek, a proto se v článku s výhodou používá aparátu přímkových souřadnic. Nomogram má charakter dotykového nomogramu.

[^0]
[^0]: Author's address: Prof. Yakichi Shimokawa, Faculty of Medical Technology, Kanazawa Univ., Kodatsuno 5-11-80, Kanazawa City, Ishikawa Pref., 920, Japan.

