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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON SIGNORINI PROBLEM FOR VON K ARM AN EQUATIONS 

THE CASE OF ANGULAR DOMAIN 

JAN FRANCU 

(Received October 20, 1977) 

INTRODUCTION 

This paper is a continuation of the article [3]. It deals with the Signorini boundary 
value problem for the system of von Karman equations. 

The above mentioned problem (Section l) is formulated in a more general form 
which contains the bilateral, the first and the second Signorini problems (problems 
R, Sl9 Sn in [3]) and their combinations. The boundary conditions are generalized 
by introducing F4 on which w„ = 0 is required. Together with the variational formu
lation (1.16) — (1.18) the corresponding classical formulation (1.19) —(1.29) is in
troduced. 

The main result is the generalization of the existence theorem from the infinitely 
smooth domain to the case of the angular domain (the domain whose boundary is 
piecewise three times continuously differentiable) which is also studied in [ l ] . The 
used method of nonlinear pseudomonotone semicoercive operator inequality is the 
same as in the paper [3]. 

The contribution of the paper consists in overcoming the substantial technical 
difficulties connected with the non-smoothness of the boundary of the domain. The 
difficulties occur especially when the estimate of the term B(w; £F, w) is deduced, 
see Section 4. After the estimate (3.5) is obtained the proof of the existence theorem 
does not differ from that of Theorem 4.1 in [3], so we only refer to the latter. 

1. NOTATION AND FORMULATION OF THE PROBLEM 

Throughout the paper let Q be a simply connected bounded domain in JR2 de
scribing the shape of a plate. Let its boundary dQ represented in the form dQ — 
= {co(t) = (co^f), cO2(r)) G R2, t e <0, /)} be piecewise three times continuously 
differentiable; this means: 

355 



Let coe [C(<0, /))]2 be a continuous injective function and let a finite set T — 
= [xp O = T0 < Tj < ... < T„ = /} exist such that 

(1.1) ^ e f C 3 ^ . . . ! , ! ; ) ) ] 2 for j = 1,2,...,it, 

a>(0) = co(l). 

(1.2) The parameter t is the length of arc hence \co'(t)\ = 1; let the orientation be 
such that (nx9 ny) = (co'l9 — &>i) is the unit vector of the outward normal 
to dO for te(09 I) - T 

(1.3) The angles cpj between the tangents co'(tj + )9 -CD'(TJ-) and <p0 between 
co'(0 + )9 -co(l-) fulfil O < cpj < 2TT for xi e T. 

We denote byf(f+),f(*-) the limits limf(s), limf(s). 
s~*t+ s-+t-

As usual, we shall denote the partial derivatives by wx, wy, wxy; the normal deriva
tive by wn, the tangential derivative by wx; the operators A2w, [w,f] are as in the paper 
[3]: A2w = wxxxx + 2wxxyy + wyyyy, [w,f] = wxxfyy + wyyfxx - 2wxyfxy; and the 
form 

(1.4) bxy(u; v9 w) = uxyvxwy + uxyvywx - uxxvywy - uyyvxwx . 

Let us define the boundary operator Hw by 

(1.5) Hw = (1 - v)(wxxnxny - wxy(n
2

x - n2) - wyynxny) 

where v is Poisson's constant (0 g v < ^), and operators Mw, Tw by 

Mw - vAw + (1 - v) (wxxn
2

x + 2wxynxny + wyyn
2), 

Tw = ~(Aw)n + (Hw)x. 

In order to specify the boundary conditions let dQ be divided into four pairwise 
disjoint subsets F1,F2,F3,F4 so that IJA = 5.Q and let T' a F3 u F4, F" c= 
c F2 u F3. We suppose that each of the sets Ti9 F\ F;' is either empty or its interior 
with respect to dQ is a union of homeomorphic images of open intervals. 

The function k, /, m, r, P specifying the boundary problem are supposed to fulfil 
(with an arbitrary real number p > l): 

(1.6) k e Lp(T2 u F3); k _ 0 on F2 u F3 , 

/ e LX(F3 u F4) ; / ^ 0 on F3 u F4 , 

m e Lp(F2 u F3) ; r e L^F, u F4), 

P e Lx(£). 

In the presence of corners co(xj) in the interior of F3 u F4 the function specifying 
the boundary problem must be completed by constants hj. Denote by T° the set of 
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those corners t j and by T the set of corners tj in the interior of .T". (Hence %" a 

c f c J ) . 

Boundary conditions of Airy stress function <2> are given by functions <Po> <?i 
defined on dQ which are supposed to fulfil 

(1.7) <2>0 e ^ ' H v ^ J . 
for / = 1, 2 , . . . . n , 

* . 6 ^ 2 - 2 ( a , ( ( t , _ l 5 t , ) ) ) 

(1.8) <2>0 eFF1 > 2(30), 

(1.9) $oi = - « , - * 0 + "x*i e W1/2 '2(50) , 

Or 

Let us introduce the following linear form: 

(1.10) f(q>) = f mcpn dS + f r(p dS + X M ^ . ) ) + f P<P dx d>!, 
JT2UT3 JT3UT4 T>€j° J « 

bilinear forms 

(1.11) (w, v)^02,2 = ( u ^ x x + 2uJcyt?xy + w^vyy) dx dy , 
J« 

(1.12) A(u, v) = (u, i?) 0̂2.2 + v [u, v] dx dy + kuMv„ dS + luv dS , 
J « J T2UT3 JT3UT4 

and the expression 

(1.13) B(u; v, w) = J bxy(u; v, w) dx dy . 
Jo 

Let us denote by Vthe closure of the set 

(1.14) 1T = {u e C2(Q); u = 0 on Tt u F2, u„ = 0 on Fx u F4} 

in the norm of W2f2(Q) and by K the closure of the set 

(1.15) { « e f ; w ^ 0 o n r , un = 0 on F"} 

in the norm of W2'2(0). 

Now we can introduce the notion of a variational solution of the problem: 

Definition I. The couple |w, # | e K x W2'2(Q) is said to be a variational solution 
of the problem if 

(1.16) A(w, v — w) = B(w; <P, v — w) + / ( v — w) holds for each v e K , 
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(1.17) ($,\l/)Wo2,2 = -B(w;w, i//) holds for each xj/eW*'2(Q), 

(IAS) 0 satisfies $ = # 0 , <Pn = # x on 5.Q in t/ze sense of traces . 

Relation between classical and variational solutions 

The sufficiently smooth variational solution defined above is the classical solution 
of the system of equations 

(1.19) A2w = [<2>, w] + P 
on Q 

A2(p = ~[w, w] 

satisfying the boundary conditions 

(1.20) Ф = Ф0, Ф„ = Фi on ÕQ , 

(1.21) w = w„ = 0 on Г i , 

(1.22) w = 0 on г 2, 
(1.23) w„ = 0 on V4, 

(1.24) Mw + kwn = m on F2 u F3 -- Г", 

(1.25) Mw + kwn Ş; m , w, 

(Mw + fcw„ — m) w„ = 

,Ł0 

= 0 
on F", 

(1.26) Tw + íw + Фj,tWx - Ф^y = r on VЗ U F4 -- г. 
(1.27) Tw + łw + Фyxwx -

(Tw + łw + Фyxwx -

Ф W 
YXXYV y 

Ф w 

> r, 

r) 

w 

w II 
IIV

 

0 

0 
on Г ; 

in the presence of corners in the interior of F3 u F4 

(1.28) H W(CO(TJ. + ) ) - H W(CO(T,-)) = hj for Ty e J ° - T 

(1.29) HwKTJ + ) ) - H w ( o > ( T , - ) ) ^ h y , w ^ O 
for T:E T . 

(H W(CO(T,. + ) ) - H W(CO(T,-)) - n,.) w = 0 

Mechanical interpretation of the boundary conditions 

In the case F' = F" = 0 the bilateral problem is treated in the following ways: 

In general, the plate is supported and clamped along F1? supported and elastically 

clamped on F2, elastically supported and clamped on F4, and elastic supports and 

elastic clamping are prescribed on F3. In particular, if k = 0 the elastic support 
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converts to a transverse load and if / = 0 the elastic clamping converts to a loading 
with a moment distribution. If in addition k = m = 0 on F2 the plate is simply 
supported, if / = r = 0 on F4 it is simply clamped (allowing free vertical displace
ments) and if k = I = m = r = 0 on F3 then F3 is the free part of the boundary dQ. 

The introduced formulation of the problem enables us to deal with unilateral 
problems as well. If F' = F3 u F4 the first Signorini problem is considered. The 
special case / = r = 0 of the condition (1.27) describes the situation of the edge of 
a plate which lies on a rigid base so that it can be deflected only upwards (see [3], 
Remark after Definition 2.2). 

The second Signorini problem is described in the case F" = F2 u F3. 

2. REFORMULATION OF THE PROBLEM 

In order to be able to use the abstract existence theorem for pseudomonotone 
semicoercive operators (see e.g. [3], Section 5) we shall reformulate the problem 
using Knightly's idea (see [5]) in the same way as in [3], Section 6. 

Let F e W2'2(Q) be a function such that 

(2.1) F = 3>0 and F„ = # t on dQ in the sense of traces . 

The existence of such a function F follows from the assumptions (1.7) —(1.9) and 
Theorem 4 in [2]. 

Further, let C • Q -* <0, 1> be an arbitrary function such that 

(2.2) C 6 C2(Q) and C = 1 , C„ = 0 on dQ. 

Substituting <P = g + CF into (1.16) and (1.17) we obtain 

(2.3) A(w, v — w) — B(w; g,v — w) — B(w; CF, v — w) ~ f(v — w) , 

(2.4) (g, xl>)Wo2a + (CF, <AW,2 = -B(w; w, *A). 

Let us introduce a real Hilbert space H = V x WQ'2(Q) with the norm generated 
by the scalar product 

(2.5) ((U, Z)) = (w, v)w2t2 + (g, XI/)WQ2>2 

provided U = \w, g\, Z = |v, i/>|; w, v e V and g, y\i e JV0
2,2(-2)- Let <f, v} denote the 

pairing between H' and H. Define a continuous functional QEH' by 

(2.6) Q ( Z ) = / ( » ) 

and a bounded operator ^"c : /J -» H' by 
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(2.7) ^ ( U ) , Z> = A(w, v) + (g, il/)Wo2,2 - B(w; g, v) - B(w; £F, v) + 

+ B(w;w,il/) + (tF,il,)Wo2t2. 

Let us define the solution of the problem K^ as follows: 

Definition II. The couple U = \w, g\ eK x W0
2'2(iQ) is said to be a solution of the 

problem K^ if 

(2.8) <^n(U), Z - U > ^ < Q , Z - U > holds for each ZeK x W0
2'2(O). 

The problem from Definition I and the problem K^ are equivalent, i.e. the solution 
\w, 4>| from Definition I exists if and only if the solution |w, g\ exists and 4> = 
= g + ZF. 

3. MAIN RESULT 

Define 

(3.1) Yv = {ve V; A(v,v) = 0} . 

Theorem. Suppose that Q is the domain described in Section 1 (1.1) —(1.3). 
Further let the following assumptions be satisfied: 

(3.2) F2 and F4 are either empty or a union of finitely many segments of straight 
lines. 

(3.3) The angles q)j (see (1.3)) in the interior of T2 u F4 between segments range 
strictly between 0 and % and no two adjcent parts of T2 and F4 lie on the 
same straight line. 

(3.4) <£0 = 4>! = 0 on F3 . 

Let the conditions (1.6) —(1.9) be satisfied. 

Then the following assertions hold: 

(i) If Yv = {0} then there exists a variational solution. 

(ii) If Yv #= {0} and simultaneously each zeK n YF\{0} satisfies the inequality 
f(z) < 0 (see (1.10)) then there exists a variational solution. 

Sketch of the proof. We find such a function ( that the operator &~r defined by (2.7) 
satisfies the assumptions of the abstract existence theorem (it is pseudomonotone 
and semicoercive), see e.g. [3], Theorem 5.3. Then there exists a solution \w,g\ of 
the problem K-. From the relation $ = g + £F we obtain a variational solution 
|w, $\ introduced in Definition I. 
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To prove the semicoerciveness of ^ - (for some C) we find for each y > 0 a function C 

satisfying (2.2) for which 

(3.5) \B(w; CF, w)| S ?||w||^2>2 holds for each w e V. 

The estimate (3.5) is the crucial point in the proof of our theorem because the re

mainder of the proof repeats literally the corresponding parts of the proof of Theorem 

4.1 in [3]. 

4. AUXILIARY FUNCTION C AND ESTIMATE OF TERM B(w; CF, w) 

We obtain the desired function C satisfying the estimate (3.5) immediately from the 

following lemma by a proper choice of e, d. 

Lemma. There exist two positive constants c, 3 with the following property: 

For each e, S > 0 there exists a function C satisfying (2.2) such that 

(4.1) |B(w; CF, w)| ^ (cs + 3<51/4) ||F||^a.a ||w||^2,2 holds for each weV. 

Before proving the lemma in detail we sketch the idea of the proof and clear up 

some technical details. 

Idea of the proof. 

I The boundary strip QA of a sufficiently small width A > 0 will be divided into 

a finite number of "oblongs" Qh {JQt = QA (see Fig. l). 

"(0)=ш(l) 
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II The auxiliary function C will be constructed on each oblong Qu while C = 0 
inside of Q — QA. To obtain the function C on Qt we use special functions of distance 
from the boundary and a special function z with parameters s, d. The parameter S 
determines the width of support of the function C and thus its measure (denote 
supp £ = Qd a QA) is 

(4.2) n(Qd) <: const 5 . 

The parameter e determines the estimate of derivatives of the function £, see (4.22). 

III It is 

(4.3) B(w; CF, w) = f C 0*y(w; F, w) + | F bxy(w; £ w ) . 

The first integral in (4.3) will be estimated by using (4.2) and the inequality of 
imbedding in Sobolev spaces (see [6]): 

(4-4) | | L | U S ) g [>(--,)] " 8 H/clL-ow ^ const ^ / 8 | j | U , 2 ( f t ) • 

The second integral in (4.3) will be estimated in each oblong separately. In order 
to estimate the terms with the "unpleasant" derivatives C2 (4.22) we transform the 
differential form bxy into a differential form with derivatives in the other directions 
and introduce local Cartesian (or oblique) co-ordinates (x*, y*). After that we are 
ready to use Hardy's inequality (4.11). 

Let us introduce some technical details: 

Auxiliary function ha. For a < b let hh
a : R

1 -» <0, 1> be the function with the 
following properties: 

(4.5) haeC\R>), 

hb
a(t) = 0 for t S a , 

hb
a(t) = 1 for t ^ b , 

b — a 

The function z e C2(<0, oo)) is introduced in [4], (4.16)-(4.18). Let us recall its 
properties: 

(4.6) z(t) = 1 , z'(t) = 0 for te <0, h), 

supp z c <0, d) , 

(4.7) \z'(t)\ ^ ? for t > 0 . 
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Regularized distance a. There exist a function a and positive constants cuc2,c 
such that 

(4.8) cr e C\Q) n C(D), 

(4.9) cx dist ((x, y), dQ) S o(x, y) S c2 dist ((x, y), dQ) for (x, y) e Q , 

(4.10) H = c , |cr-| = c . 

For this assertion see [6], Chapitre 5, Lemma 3A. 

Hardy's inequality. Let p > 1, a < b,fe C\(a, b», f(a) = 0. Then 

(4n) risrd's(^T)'[Vw|'d"-
For this assertion see [6], Chapitre 2, Lemma 5A. 

Transformation of the differential form bxy. In addition to the partial derivatives 
fx>fy w e s n a u u s e t n e direction derivatives. Let zx = (xf, yf) e R2 be a unit vector and 
let us denote 

(4.12) fz,(x, y) = lim } (/(x + hxlt y + h)>.) - f(x, y)). 

Obviously 

(4-13) | / „ | S \fx\ + | / , | . 

Let zu z2 and z3, z4 be two pairs of unit vectors zt = (*., yf) and let J12 = xty2 — 
- *2yi> ^34 = ^3y4 - *4y3> both J12, J34 + 0. Then by virtue of fx = l /J1 2 . 
• (fzji ~ fz2yi) e t c we obtain 

(4.14) bxy(u; v, w) = y—~- [uzlZ4vZ2wZ3 + UZ2Z3V21WZA _ uEítivr.* 
•'12 , '34 

Local Cartesian (oblique) co-ordinates 

(4.15) (x*, y*) : Qt -> <*,_,, t<> x < - A , A> 

have the following properties: 

(4.16) \x >y ) _. 1 ( r e s p _ Const. > o) 
d(x, y) J 

IMW^|/.| + |/,|. 
We shall denote the transformed sets and functions by Q*f*. 
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Proof of Lemma 

I Let us consider the "special" points of dQ — the "corners" in F2 u F4 and the 
points at which F2 or F4 neighbour with rt or F3. The boundary strip QA is divided 
with respect to these "special" points by inner normals n(t() at the points <*)(/,), tt $ T 
which are not "special". It is done in such a way that each arc St = a)((ti-i> '»>) — 
the side of the oblong Q{ - contains inside at most one "special" point, see Fig. 1. 
Further, we shall suppose that the width of QA is sufficiently small and the arcs St are 
sufficiently short. 

Ä н Шt,:,) ß-i 

i " • 
1 
1 

D(tj) | Л ' н 

i *•-« I \ ^ s ( 
! : Ч 

«(Ъ-<) s, »(U) c i t * 

Fig. 2. 

II We shall consider four types of oblongs Qt according to the boundary conditions, 
prescribed on their arcs S(. 

a Let St c F2 or F4 and let St be a segment of a straight line, see Fig. 2. We put 

(4.17) C = <5) on Qt 

where s is the perpendicular distance from the straight line containing the segment S 
and z is the function with parameters e, S satisfying (4.6), (4.7). 

Fig. 3. 

b Let St cz F! u F3, Fig. 3. In this case we put 

(4.18) C = z{?) on Qi 

where a is the regularized distance (4.8) — (4.10). 
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c Let F2 or F4 neighbour in St with Fx u F3. Let e.g. S~ - ©(<*,_!, T,>) c Fx 

or F3, S + = co(<Ti, ti)) c F2 or F4 be a segment of a straight line and the angle (pj, 
see (1.3), ranges between 0 and 2n, Fig. 4. Let us denote by (p(x, y) the function of the 

Fig. 4. tü(ti-l) 

Ddf) 

angle between the vectors O / ( T J + ) and (x, y) — CQ(TJ) for (x, y) e Qt. Then we can 
put 

(4.19) t; = z(s) + h%ę)(z(a)-z(s)) on Q> 

where s is the perpendicular distance from the straight line containing S+, o is the 
regularized distance and 

(4.20) either 0 < a < b < q>j if 0 < (pj _ n 

or (pj~n<a<b<n if n < (pj < 2n 

d Let Si c F2 u F4 but let St consist of two straight segments, S~ = co({tt_ u T,->), 
S+ = O)(<Ty, t f>), Fig. 5. According to (3.3) the angle (pj between the segments 5 + 

and S~ isQ < q)j < n. In this case we put 

(4.21) C = z(s~) + z(s+) - z(s~) z(s+) on QІ 

where sk is the perpendicular distance from the straight line containing Sk,k = - , + . 

The function £ constructed above satisfies (2.2). According to (4.6) and (4.9) the 
condition (4.2) is satisfied. In addition, we require the derivatives of the function f 
to satisfy the estimate (with a positive constant c0) 

(4.22) M*>y)\ SC° dist ((x, y), dQ) 
for (x, y) e Qл 
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for each unit vector z. This condition is satisfied, too, as can be easily seen in all these 
cases from the construction of the function £ and from the properties of the functions 

z, cг, s. 

I l l All constants are supposed to be independent of s, S. The members in the 
first integral in (4.3) can be simply estimated by means of Holder's inequality and (4.4) 
as follows: 

(4.23) 
J íiô 

CwxyFywx ^ IKylIL-C-Q) \\Fy\\LHf2ó) IKIIL4(^) = COnStO-1/4||F||^2)2 ||w||^2j2 . 

The remaining terms can be estimated similarly, so we obtain 

(4.24) í£ 
J QÔ 

Cbxy(w; F, w) ľg ЗO"1/4||F|L2,2 ||w||^2,2 . 

Let us consider the second integral in (4.3). We restrict ourselves to smoother 
functions wei^, ree (1.14). We shall establish the estimate in detail in one case, 
in the other possible cases we only mention the different technical details. 

a l Let St c F2 and let St be a segment of a straight line, Fig. 2. The function £ 
is given by (4.17). We transform the form bxy into derivatives in the directions of 
the normal n and the tangent T to St. In virtue of (4.14) we have bxy = bnx. We intro
duce local Cartesian co-ordinates such that St in the new co-ordinates become 
S* = {(**, j/*); j * = 0, x* e (tt_l9 ti)}. The terms containing £T equal zero because 
£T = 0 on Qt. The term containing wT can be estimated by means of (4.22) and 
Hardy's inequality (because wf(x*, 0) = w*(x*, 0) = 0, see (1.22) as follows: 

(4.25) FWтnínWт dx áy 
Qi 

vxn\\L* L(0r-H'*s 
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= e const HFLoo w t n L 2 HЯ w * . 2 d y * dx 
1/2 

g econst IFL2.2 wL2.2 . 

The remaining term FwxxCnwn can be transformed by integrating it by parts with 

respect to T: 

(4.26) - f 
Jßi* 

F*w*£nw* dy* dx* = — Ґ(Ғ*w*í>*)(x*,,,*)dy*Ţ 
. J o JX*=ÎІ-I 

f w*[ғ*C>„*] 
Jßi* 

t dy* dx* . 

The latter integral contains wT, so it can be estimated in the same way as in (4.25). 
Let us denote 

(4.27) 

Thus we obtain 

(4.28) 

- 4 0 - F*w*w*nC{t,У*)ày*. 

Fbxy(w; C, w) í ! ) ( * , _ . ) - £>(řf) + c f - | F | W2.2 W W -

The terms — D(tf), 1)(^~i) will be cancelled by the terms with opposite signs from 
the estimates of the neighbouring oblongs Qi+1, Of-i-

a2 Let S; cz F4 and let Sj be a segment of a straight line. In this case we shal! 
proceed similarly: we transform the form bxy into derivatives in the directions of n, T. 
We can apply Hardy's inequality to the term containing wn because wn = 0 on F4 

(1.23). The remaining term Fwnx£nwx is integrated by parts with respect to x and we 
obtain 

(4.29) I Fbxy(w; C, w) = D(tt) - 1)(ír-i) + cie||F||pr2,2 |w||^2.2 

Remark . In this case the terms D(t) in (4.29) have the signs opposite to those 
in (4.28). This is the reason why we suppose in (3.3) that no two adjacent parts of F2 

and F4 lie on the same straight line. 

b Let St c F! u F3. The function £ is given by (4A8). In this case we need not 
transform the form hxy. We introduce such a system (or two systems) of local 
Cartesian co-ordinates that we can estimate (integrating with respect to y*) each 
point of Qt by a boundary point from Sh see Fig. 3. Let St in the new co-ordinates 
become S* = {(x*, a(x*)), x* el], where a is a proper function. 
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Let us consider the case S- c F3. We can use Hardy's inequality because Fx = 

= Fy = 0 on F3 (3.4); e.g. let us estimate the term Fwxx£ywy: 

(4.30) 

< e const 

Í 
"" Г / Ґ I I7* 

JЛJ«(**)|y* - <*(**) 

[Ш> | 4 d '*h] 

^^xxCyWy d x d y ^ 

< 8 const dy • Jdx* | WxxlІL- ||W,||Ł4 ^ 

|W« | |L- ||w,||L4 ^ £ const HFII^,-. ||w||Sr2.2. 

If St contains a piece of Fx then it can be estimated by Hardy's inequality as in (4.25) 
because wx = wy = 0 on Fx (1.21). Finally, we obtain 

(4.31) Г F bxy(w; C, w) g є c f | Ғ | | ^ . 2 | | w | | ^ , 2 

c Let F2 or F4 neighbour in Sf with Fx u F3. The function ( is given by (419). 
Let us consider e.g. the case S+ c F2 or F4 and S" c Fx u F3 — for notation see 
paragraph lie of the proof and Fig. 4. Let Tj < a+ < b+ < tt and let us denote 

(4.32) Q+ = {(x, y) e Qt; 0 < <p(x, y) < a} , 

S' = {(x, y) e Qu cp(x, y) = a} . 

We split the integral into three: 

(4.33) 

f Fbxy(w; £,w) = { (1 - hb
a:(t

+)) Fbxy + f h^t(t+) Fbxy + f Fbxy 

JiQi J.Q+ J.Q+ J f i i - iQ + 

where t+ is a function on Q+ given by the relation 

(4.34) t+(x, y) = t if (x, y) - co(t) is a normal vector to S+ . 

We transform the form bxy into derivatives in the directions of the normal n+ and 
the tangent T + to S+ in the first and the second integral. They can be estimated as 
in the case a l or a2, only we use oblique co-ordinates instead of Cartesian ones in 
the first integral. Integration by parts yields the terms D(tt) in the second integral 
and D' in the first one (the other equals zero): 

(4.35) D' = f Fwxw£n — . 
J S' sin a 

The term D(t() will be cancelled by the same term with the opposite sign from the 
neighbouring oblong Qi+i; D' will be estimated later. The third integral can be 
estimated in the same way as in the case b because S" c Fx u F3. 
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Let us consider the remaining term D'. We shall integrate with respect to the local 
co-ordinates r, \j/ given by r = |(x, y) — G)(T/)|, \]/ = r cp(x, y). We can write 

(4.36) F*w^wn ár — F*wt*w*dr-= f (F*wт*wn*),di/>dr 
(S')* J ( ß ť - ß + )* 

The first integral on the left hand side equals zero because wT = wn = 0 or Fr = Fn = 
= 0, (1.14) or (3.4). In virtue of d(r, \j/)jd(x, y) = 1 and (4.13) we can estimate the 
integral on the right hand side (integrating with respect to the oblique co-ordinates 
(x*, y*)) as in the case b. The second integral on the left hand side estimates the 
term D'. 

d Let S( c F2 u F4 but let S( consist of two segments S~ and S+, Fig. 5. The 
function £ is given by (4.21). Let us denote Q+ = supp z(s+). Let t+ be the function 
on Q+ defined as in (4.34) and let Q~ and t~ have the analogous meaning, see Fig. 5. 
Further let ti_1 < a~ < b~ < %j < a+ <b+ < tv The integral splits into five 
parts: 

(4.37) 

f Fbx~ = í (1 - hb'-(r)) Fbxy(w; z(s~), w) + 
Jn, Jo-

Һb'-(Г) Fbx\w; z(s~), w) + 
ß ~ 

+ f (1 - hh
a+(t+)) Fbxy(w; z(s+), w)+[ hb

al(t
+) Fbxy(w; z(s+), w) 

Jí2+ Jí2 + 

Fbxy(w; z(s~) z(s+), w). -L 
The first and the fourth integral can be estimated in the same way as in the case a l 

and a2; integration by parts yields the terms D^^^, D(t^ which will be cancelled 
by the same terms with opposite signs from the neighbouring oblongs. 

As for the second, the third and the fifth integral in (4.37), we shall integrate with 
respect to the oblique co-ordinates with the co-ordinate axes in the directions of the 
tangents x~ to S~ and T + to S+. 

We shall consider three cases: 

dl Let St cz F4. We transform the form bxy into derivatives in the directions of the 
normals and the tangents to the segments S~ and S+:n~,rc + , T ~ , T + . I n virtue of 
(4.14) we obtain 

(4.38) bxy(w; £ w) = 

- const (wt-n-CT+wn+ + wx+n+Ct~wn- - wx-n+£x+wn- - wr-^-£T-wn+) . 

Let us estimate the second integral in (4.37). The terms with z(s~)x- equal zero, the 
term with wn-z(s')x+ can be estimated as in (4.25) because wn- = 0 on S~. The 
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remaining term Fwx-n-z(s~)x + wn + hb~(t~) is integrated by parts with respect to T~. 
The traces equal zero because wn+ = 0 on S+ and hb-(t~) = 0 for t~ rg a~. The third 
integral can be estimated similarly. 

In the fifth integral the terms with wn-z(s~)x + , wn+z(s+)x- can be estimated as 
in (4.25). The remaining two terms are integrated by parts (e.g. Fwx-n~z(s~) z(s+) wn + 

in T~, the traces equal zero because wn+ = 0 on S+ and z(s+) = 0 for s+ ^ d) and 
estimated in the usual way. 

d2 Let Sj c f2, We transform the form bxy into bT_T+ and we can proceed similarly 
as in the case dl because z(s~)x- = 0 on Q~, z(s+)x+ = 0 on Q+, wx- = 0 on S~, 
and wT+ = 0 on S+. 

d3 Let one of the segments be a subset of F2, the other of F4, e.g., S~ <= F2 and 
S+ c F4. In this case we can use z(s~)x- = 0 on Q~, z(s+)l+ = 0 on Q+, wx- = 0 
on S~ and wM+ = 0 on S+. Let the angle (pj be ^ 4= T̂r. Then we can transform the 
form bxy into derivatives in the directions r~, T+, T~, n+: 

(4.39) bxy(w; £ w) = 

= const (wT-T-CT+ww+ + wT+,. + CT-wT- - wT-n+CT+wT- - wx+x-Cx-wn+) 

and we proceed like in the case dl . 

Jfcpj = i;: the transformation yields bxy = brT+ because T~ = - n + andT+ = n~, 
and we proceed like dl. 

We complete the proof by putting c = Yfi-

Remark.The boundary strip QA can be divided so that there is no oblong of type a. 
We consider it only as the simplest case. 
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S o u h r n 

O SIGNORINIOVĚ PROBLÉMU PRO VON KÁRMÁNOVY ROVNICE 

PŘÍPAD OBLASTI S „ROHY" 

JAN FRANCŮ 

Článek se zabývá existencí řešení zobecněného Signoriniova problému. Použitá 
metoda, která spočívá v převedení příslušné okrajové úlohy na nerovnici s pseudo-
monotónním semikoercitivním operátorem je uvedena v [3]. Existenční výsledek 
pro oblasti s hladkou hranicí z [3] je zobecněn na technicky důležité oblasti s ,,rohy'\ 
Rozhodujícím krokem důkazu je odhad nelineárního členu, který se objevuje v ope
rátorové formulaci problému. Podstatné technické obtíže, které jsou spojeny s ne-
hladkostí hranice jsou překonány speciální volbou pomocné funkce. 

Authoťs address: Jan Franců, Matematicko-fyzikální fakulta UK, Malostranské nám. 25, 
118 00 Praha 1. 
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