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SVAZEK25 (1980) APLIKACE MATEMATIKY ČÍSLO 1 

A NOTE ON NONHOMOGENEOUS INITIAL 
AND BOUNDARY CONDITIONS IN PARABOLIC 
PROBLEMS SOLVED BY THE ROTHE METHOD 

KAREL REKTORYS and MARIE LUDVIKOVA 

(Received March 23, 1978) 

When solving parabolic problems with nonhomogeneous initial and boundary 
conditions by the Rothe method, some difficulties are encountered leading to rather 
unnatural additional conditions concerning the corresponding bilinear form and the 
initial and boundary functions (cf. [1], [2], [3], etc.). In the present paper we show 
how to remove such additional assumptions in the case of the initial conditions 
(Chap. 2) and how to replace them by other, rather more natural assumptions in the 
case of the boundary conditions (Chap. 3; see especially assumption (3.7), p. 64). 

In the first chapter, we summarize briefly basic results from [1] concerning the 
Rothe method in the case of homogeneous initial and boundary conditions. In 
Chaps 2, or 3, nonhomogeneous initial, or boundary conditions are considered, 
respectively. In these chapters, also the cause of the above mentioned difficulties 
will become clear. In Chap. 4, the properties of the very weak solution will be studied, 
especially continuous dependence on the initial condition u0 e L_(p) and indepen­
dence of the function w characterizing the boundary conditions. In Chap. 5, ap­
plication of the Ritz method (or of other direct methods) to approximate solution is 
considered. 

CHAPTER 1. THE ROTHE METHOD IN PARABOLIC PROBLEMS. 
HOMOGENEOUS INITIAL AND BOUNDARY CONDITIONS 

Let us give a brief survey of the work [1] concerning this subject. 
In [1], the parabolic problem 

c) u 
( U ) Au+ — =f in fi--0 x ( 0 , T ) , 

(1.2) u(x,0) = u0(x), 

дu_ _ _ дk~гu 

ôv OV-1 
(1.3) u = J = . . . = ^ = 0 on 8ü,(0,T) 

is considered. 
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A s s u m p t i o n s . Q is a bounded region in EN with a Lipschitz boundary dQ, 
u0 e L2(Q), fe L2(Q), the form 

(1.4) ((v, u)) = X aijD*v D*udx 

m.l./l__* J 
n 

(corresponding to the operator A) with bounded measurable coefficients otj(x) in Q 
is V-elliptic, i.e. 

((v, v)) ^ c||i?||Sr2(k)(fl) for every v e V. 

N o t a t i o n , (v, u), or ||v|| is the scalar product, or the norm in the space L2(Q), 
respectively, 

(F5) (v, u)W2W(Q) = X (I)'v, Dlu) , \v\W2{k){Q) = (v, v)W2<nw , 

V = ]y ; i )e W2
c)(.Q), v = — = . . . = — = 0 on dQ in the sense of traces 

[ dv dvk 1 

(with the metric of the space W(
2

k)(Q)), v is the outward normal to dQ. 

The R o t h e m e t h o d . Divide the interval [0, T] into p subintervals of the length 
h = T\p — denote this division by dt — and substitute the problem (1.1) —(1.3) 
by the following p boundary value problems (for ty = h, t2 = 2h, ...,tp = ph = T) — 
the so called Rothe problems — assuming , f i rs t u0(x) == 0 (thus considering the 
homogeneous initial condition): 

(1.6) ((v,zl)) + Uv,z1) = (v,f), ZleV, 
h 

(1-7) ((v,z2)) + \(v,z2-Zl) = (v,f), z2eV, 
h 

(1.8) ((», zp)) + 1 („, zp - zp_ ,) = (» , / ) , zp e V, 
h 

to be satisfied for all veV. The given assumptions ensure existence (and uniqueness) 
of solutions of (1.6) —(1.8). We construct, in g, a piecewise linear function in t, the 
so-caled Rothe function 

(1.9) «.(x, 0 = z,(x) + l=Jl [z ,+ ,(x) - z,(x)] 
h 

for 
tj^t = tj+l9 j = 0, 1, . . . ,p - 1 , zo(x) = 0 . 

Consider, further, the divisions d2, d3, ..., dn, ..., dividing successively the interval 
[0, T] into 2p, Ap, ..., 2"~1p(= p,,)... subintervals of lengths h2 = T\(2p), h3 = 
= T/(4p), ..., h,, = T/p„, . . . and solve, for every fixed n and for t" = jhn (j = 
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= 1,2, ...,pn), the corresponding Rothe problems similar to the problems (1.6) — 
(1.8). Finally, construct, for every n, the Rothe function 

(1.10) un(x, t) = Z"j (x) + 1 ^ - 5 [Z;+1 (X) - z«(x)] 

tor f}£t£f}+l9 j = 0,l,...,Pn- 1 . 

(Here, z"(x) is the solution of the j- th Rothe problem corresponding to the division 
dn, ZQ(X) = 0; for n = 1, we write h, tj and Zj instead of hl, t), z), respectively, see 
(1.9).) 

In this way, we get the so-called Rothe sequence of functions {un(x, t)}, defined in Q. 
They may be considered, if needed, as abstract functions un(t) from [0, T] into V 

A p r i o r i e s t i m a t e s . Denote 

(V l l ) Z / x ) = Zj(x)~ z 1~ i ( x ) , j=L...,p 
h 

('derivative with respect to t" at the time t = tj). Especially, 

(1.12) Z,(x)=Z-M, 
h 

because u0(x) — 0 according to the assumption. Putting v = zi in (1.6), we get 

(i-13) Ik II = ltlljll 
in consequence of ((z1? z j ) ^ 0. Thus 

(1-14) lZi|| = lljll • 
Subtracting (1.6) from (1.7) and putting v = z2 — zv, we get 

(115) |z2 | | =g | z . | * iiji 

and in a similar way (for details see in [1]) 

(1-16) INI = lljll • 
Denoting, similarly, 

/ ~ ttzl (i.i7) z ; = 

we get, using the same procedure, 

( l is) «z;ll = lljll 
which means the uniform boundedness of ||Z"|| (thus not depending on the divison 

dn). From (1.18) the uniform boundedness of ||zj|| and ||z"||F immediately follows 

(for details see in [1]; for z e Vwe write briefly \\z\\v instead of ||Z||W2<
k)(«))' ^ e n o t e 

(1.19) U„(x, 0 = Z;+ 1(x) for t)^tS tn
j+l , 1 = 0, 1, ..., pn - 1 . 

We shall also write UM(."), considering the function (V19) as an abstract function 
from [0, T] into L2(Q). 
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C o n v e r g e n c e of the R o t h e sequence {un(t)}. Denote, briefly, 

I = [0, T] . 

Let L2(l, V), or L2(I, L2(Q)) be Hilbert spaces of square integrable (in the Bochner 
sense) abstract functions from [0, T] into V, or L2(Q), respectively. In consequence 
of uniform boundedness of \\z"\\v and ||Z"||, the functions un(t) and Un(t) are uni­
formly bounded in L2(I, V), or L2(L L2(Q)), respectively. Then it is possible to find 
subsequences 

(1.20) {uJn(t)}, or {£/,„(.)}, 

converging weakly to some functions 

(1.21) u(t) e L2(l, V) , or U(t) e L2(l, L2(Q)), 

respectively. In [1] it is shown that: 

(1.22) u(t)eC(l,L2(Q)) 

(u(t) is even absolutely continuous), 

(1.23) U(t) = u'(t) in L2(L L2(<Q)), 

(1.24) w(0) = 0 in C(I, L2(Q)), 

the integral identity 

(1.25) J o ((v(t),u(t)))dt + j o (v(t),u'(t))dt = J o (v(t),f)dt 

holds for every v(t) e L2(l, V). 

Definition 1.1. The function u(t) is called the weak solution of the problem (VI) — 
(V3) with u0 = 0. 

In [ l ] , uniqueness of this solution is proved, yielding, in the usual manner, weak 
convergence of the whole sequence {un(t)} to the function u(t) in L2(I, V). Moreover, 
it is shown that {un(x, t)} converges strongly to u(x, t) in L2(Q). 

CHAPTER 2. NONHOMOGENEOUS INITIAL CONDITIONS 

Let us turn to the problem (VI) — (1.3) with u0(x) #= 0, u0 e L2(Q). Using the 
Rothe method, (V6)-(V8) turn into 

(2.1) ((v,z1)) + \(v,zl-u0) = (v,f), ZteV, 
h 

(2.2) ((v,z2)) + \(v,z2-z1)^(v,f), z2eV, 
h 

(2.3) ((v, zp)) + i (v, zp - zp_,) = (v,f) , zp є V 
h 
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(v e V). It is easily seen that the procedure from Chap. 1, leading to the basic apriori 
estimates (V16), (1.18), cannot be applied here, because if u0 4= 0 in L2(Q), (VI4) is 
no more valid. If 

(2.4) u0eWi2k) n V, 

it seems natural to use the substitution u = u0 + z and to convert, in this way, the 
problem (VI) —(V3) into a similar problem with z0 = 0 in L2(Q) and with the right-
hand sidef — Au0 instead off. It follows that some additional assumptions are to 
be imposed upon the operator A, or upon the corresponding bilinear form. In [ l ] , 
it is required that 

(2.5) Ay e L2(Q), ((v, u0)) = (v, Au0) 

holds for every y e W2
2k)(Q) n V, v e V and u0 satisfying (2.4). (CV rather similar 

assumptions in [2], etc.) 
In this way, one comes in [1] to the weak solution (according to Def. VI) z(t) 

with z0 = 0. The function z(t) + u0 is then the so-called weak solution of the problem 
(Vl) —(V3). Showing then the continuous dependence of this weak solution on the 
initial conditions, one removes in [1] the assumption (2.4): Let u0 e L2(Q) and 

(2.6) ut -* u0 in L2(Q) , 

u{ satisfying (2.4); then the corresponding weak solution ut(t) converge, in L2(l,L2(Q)), 
to a uniquely determined function u(t) which is called, in [ l ] , the generalized solution 
o / ( l . l ) - ( l . 3 ) . 

In the present chapter, we show how to remove the additional assumptions (2.5). 
The form ((v, u)) being V-elliptic, a set M exists (see [4], pp. 13V 132), dense in V, 
and consequently in L2(Q), with the following property: If s e M, then there exists 
precisely one g e L2(Q) such that 

(2.7) ((v, s)) = (v, g) holds for every v e V. 

Thus let s e M. Replacing, in (2.1), u0 by s, we get 

(2.8) ((v,z1)) + j(v,zx -s) = (v,f), zxeV. 
h 

Putting zx = s + zx and using (2.7), 

(2.9) ((v,s)) = (v,g), 
(2.8) becomes 

(2.10) ((„,_.)) + } ( . , _ . ) = (v,f-g), z l £ V . 
h 

Similarly, putting in (2.2) z2 = s + z2, etc., we get 

(2.11) ((*, z2)) + i (v, z2 - zx) = (vj - g) , z2 e V, 
h 

(2.12) ((», 2 р )) + ! ( » , _ , - . . _ , ) - - ( « , / - вг), 2р6V . 
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(2.16) 

But (2.10)-(2A2) are Rothe problems of the form (1.6) —(1.8) with / replaced by 

f — g. Thus the sequence {un} of corresponding Rothe functions (1.10) with z" 

replaced by zn converges weakly to a function u(t) having the properties (1.21) —(1.24) 

and satisfying the integral identity 

(2.13) \T((v(t), u(t))) dt+\T (v(t), «'(.)) dt = P (v(t),f - g) dt 
Jo Jo Jo 

(for every v(t) e L2(l, V)). The function 

(2.14) u(t) = u(t) + s 

has then similar properties, with 

(2.15) u(0) = s in C(I,L2(Q)), 

and satisfies the integral identity 

7 ((v(t), u(t))) dt + f (v(t), u(t)) dt = fT (v(t),f) dt 
Jo Jo Jo 

for every v(t) e L2(I, V). (Note that for every such v(t) we have (v(t), g) = ((v(t), s)) 

for almost all t el and that u'(t) = u'(t).) 

Definition 2.1. The function u(t) is called the weak solution of the problem ( l . l) — 

(1.3) with u0 = s e M. 

Uniqueness of this solution follows in the same way as in [1], 

We show that this weak solution depends continuously (in L2(I, L2(Q))) on s e M 

(from L2(Q). Thus let s e M. In the same way as before we get the weak solution 

u(t) of the problem (1.1)-(1.3) with u0 = s. The Rothe problems (2.8), (2.2), (2.3) 

become 

(2.17) ((v,i1)) + \(v,z1-s) = (v,f), i, 6 V, 
h 

(2.18) ((v, z2)) + ~ (v, z2 - z,) = (v,f) , z2eV, 
h 

(2A9) ((v,ip)) + \(v,zp-ip_1) = (v,f), ipeV. 
h 

Subtracting (2.8) from (2.17), (2.2) from (2.18), etc, and writing zJ - z} = zj9 

we get 

(2.20) ((v,z1)) + i

v(v,zi-(s-s)) = 0, zxeV, 
h 

(2.21) ((v,z2)) + i-(v,z2-z1) = 0, z2eV, 
h 

(2.22) ((«,,__))+ !(«,, 2 . - - , - 0 = 0 , 2 p є V , 
Һ 
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wherefrom (putting v = z1 in (2.20), v = z2 in (2.21), etc.) 

(2.23) flz.fl S \\s- sfl, 

(2-24) ||z2|| g ||2.|| ^ | | ^ - s f l , 

and, in general, 

(2.25) ||z-,|| g ||s - s|| . 

Analogously, we get, for the division dn, 

(2-26) ||z] - zj|| ^ flz-fl S \\S - s\\ 

and, in view of the form of the Rothe functions, 

(2.27) \\un(x,t)- un(x,t)\\ S \\S-s\\ 

for every t e [0, T]. Taking the square and integrating between 0 and T, we find 

(2.28) \\un(t) - u„(0|L2(/,L2W) S j(T)\\s - s||La(fl) . 

Having in mind that u(t), or u(t) are weak limits, in L2(I, V), and, consequently, 
in L2(L L2(Q)), of the sequences un(t), or u,,(t), respectively, we finally get 

(2-29) \\H(t) - u(t)\\L2([MQ)) £ V(T)||s - s | | t 2 ( n ) , 

which expresses the required continuous dependence of the weak solution on the 
initial condition from M. 

Now, let u0 e L2(Q) and let {s j be a sequence of M such that 

(2.30) Si -> u0 in L2(.Q) . 

In consequence of (2.29), the sequence of corresponding solutions ut(t) is a Cauchy 
sequence in L2(/, L2(Q)), thus converging, in L2(I, L2(i^)) to a function u(t) (uniquely 
determined by the function u0 because of the just proved continuous dependence). 

Definition 2.2. The function u(t) is called the very weak solution of the problem 
(1.1)-(1.3) with u0eL2(Q). 

In this way, we came to the concept of a solution of (l .1) — (1.3) without additional 
assumptions (2.5). 

From the above constructions it is easily seen that this is the only difference between 
the very weak solution introduced by Def. 2.2 and the generalized solution introduced 
in [1]. Except this, these concepts are identical. 

In [1], some properties of the generalized solution are derived. Because the proofs 
are based on the continuous dependence only, without using (2.5), they remain un­
changed for the case of our very weak solution. Thus we are not going to reproduce 
these proofs here, and only summarize these properties in the following theorems: 

Theorem 2.1. For the very weak solution u(t) from Def. 2.2 we have 

(2.31) u(t) e C(I, L2(Q)) . 

Further, 

(2.32) M(0) = u0 in C(l, L2(Q)) . 
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Theorem 2.2, (Continuous dependence on the initial condition.) For u(t) from 
Def. 2.2, the inequality (2.29) is preserved: 

If ui(l), or u2(t) is the very weak solution of the problem ( l . l ) —(1.3) with 
u01 e L2(Q), or u02 e L2(Q), respectively, we have 

(2-33) | K ( 0 - Wl(0|L2(LL2(<-)) = V(r)HW02 - W0I||L2(O) • 
Moreover, 

( 2 - 3 4 ) | M ' ) - Ul(t)\\c(I,L2(Q)) ^ ||W02 ~ W0l||L2(^) • 

Theorem 2.3. The very weak solution u(t) from Def. 2.2 is the weak limit (in 
L2(I, L2(Q))) of the Rothe sequence {un(t)}, where z} (or z") in (1.9) (or (1.10)) are 
the solutions of the problems (2.1) —(2.3) (or of similar problems corresponding to 
the division dn). Moreover, we have 

(2.35) lim u„(x, t) = u(x, t) 

strongly in L2(Q). 

R e m a r k 2.1. Obviously, the weak solution introduced by Def. 2.1 is a special 
case, for u0 e M, of the very weak solution introduced by Def. 2.2. The weak solution 
by Def. 1.1 is a special case, for u0 = 0, of the weak solution by Def. 2A . 

CHAPTER 3. NONHOMOGENEOUS INITIAL AND BOUNDARY 
CONDITIONS 

Consider, now, the problem 

(3.1) Au + — = f in Q = Q x (0, T) , 
dt 

(3.2) u(x, 0) = u0(x) , 

(3.3) u - weV, 

where u0 e L2(Q), and w e W2
(k)(Q) is a given function characterizing the nonhomoge-

neous boundary conditions. (For w = 0 we have the problem (1.1) —(1.3).) 
The corresponding Rothe problems are 

(3.4) ((v, ux)) + - (v, Ul - M0) = (v,f) , u, - w e V, 
h 

(3.5) ((v, u2)) + -(v, u2 - ux) = (v,f) , u2 - w E V, 
h 

(3.6) ((v, up)) + 7 (v, up - u x) = (v,f) , up - w E V. 
h 

In Chap. 2 we have seen that if u0 =1= 0 it is not possible to use the procedure from 
Chap. 1, because the apriori estimates (1.16), (1.18) do no more hold. The less can 
this procedure be applied in the present case. Difficulties arise here even if u0 = 0, 
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because we cannot put v = ux into (3.4) to get an estimate analogous to (1.13), since 
we have not ul e V. If we put ul = w + zx to reach zx e V, we get a term — ((v, w)) 
on the right hand side which makes it again impossible to obtain estimates of the type 
(1.16), (1.18). It seems to be natural to put u = w + z immediately in (3.1) —(3.3) 
and to convert this problem, in this way, into a problem with homogeneous boundary 
conditions. But such an approach requires additional assumptions on the operator A, 
such as Aw e L2(Q) (see [2], [3], etc.). In this paper, we choose an other approach, 
and will assume — throughout the paper — that the form ((v, u)) is such that 

(3.7) (((„, „))) = ((», «)) + (v, u) 

is an equivalent scalar product in W2
k)(Q). (In details, (3.7) is a scalar product on the 

elements of the space W2
(fc)(tQ), and generates a norm equivalent with the norm of 

this space.) 
This assumption requires, first of all, the symmetry of the form ((v, u)). Neverthe­

less, it seems to be more natural than the assumption Aw e L2(Q) and, at the same 
time, more suitable for applications. A trivial example is as follows: A = —A, V = 
= W2

(1)(.Q). 
Let us denote by W2

[k)(Q) the space the elements of which are the elements of the 
space W2

k)(Q) and in which the scalar product is given by (3.7). The space W2
{k)(Q) 

is complete and the space V, provided with the same scalar product (3.7), is its 
subspace. Thus, the function w from (3.3) can be uniquely decomposed, in W2

(fc)(.Q), 
into the sum 

(3.8) w = wl + w2 , *) wi e V, w2 _L V. 

Especialy, we have 

(3.9) ((v, w2)) = - ( v , w2) for all v e V, 

because 

(3.10) (((v, w2))) = ((v, w2)) + (v, w2) = 0 for all v e V. 

Thus let (3.7) be an equivalent scalar product in Wf\Q). Put, in (3.4)-(3.6), 

UJ = UJ + UJ 

and substitute the p problems (3.4) —(3.6) by 2p problems 

(3.11) ( ( M i ) ) + 7 ( M i - w2) = (v , f ) , ux - w e V, 
h 

(3.12) ((v, u2)) + - (v, t72 - ux) = (v , f ) , u2 - we V, 
h 

(3.13) ( (Mp)) + 7 ( ^ w p - up_x) = (v , f ) , t/p - we V 
ri 

x) Let us note here that a proper decomposition of w can be obtained without the additional 
assumption (3.7(. See a new monography prepared by K. Rektorys on the considered method. 
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and 

(3.14) ((v, ůt)) + \ (v, úx - (M0 - w2)) = O , ú\ e V, 
h 

(3.15) ((v, ú2)) + - (v, ú2 - úx) = O , ú2 e V, 
h 

(3.16) ((v, up)) + - (v, up - up_ x) = 0 , up e V 
M 

(to be satisfied for all v e V). 
Obviously, the problems (3.11) — (3.13), or (3A4) —(3A6) correspond to be prob­

lems 
r\ ~ 

(3.17) Au + — = / in Q = Q x (0, T) , 
dt 

(3.18) u(x,0) = w 2 , 

(3.19) M - we V, 

or 

(3.20) Au + — - 0 in Q = O x (0, T) , 
dt 

(3.21) u(x, 0) = M0 — w2 , 

(3.22) ueV, 

respectively. 

R e m a r k 3.L Let us note here that the function w2 plays an auxiliary role here, 
in theoretical considerations only. As concerns numerical methods (see Chap. 5), 
the decomposition w = wx + w2 is not to be carried out. 

Let us put, in (3.11)-(3.13), 

(3.23) Uj = zj + w 2 , j = 1,2,..., p. 

We get (note that w — w2eV) 

(3.24) ((v, zx + w2)) + 1 (v, f J = ( v , / ) , zx e V, 
h 

etc, or substituting — (v, w2) for ((v, w2)) according to (3.9), 

(3.25) ((v, zx)) + | (v, z t ) = (v,/ + w 2 ) , zx e V, 

(3.26) ((v, z2)) + } (v, z 2 - zO = (v,/ + w 2 ) , z 2 e V, 

(3.27) ((v, žp)) + 1 (v, z р - zp_x) = (v,/ + w2) , zp є V 
м 
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(for all v G V). But these are Rothe problems of the form (1.6) —(1.8) with / + w2 

instead off Consequently, the corresponding Rothe sequence converges weakly in 
L2(L V) to a function z(t) which is the weak solution, according to Def. 1.1, of the 
problem 

(3.28) Az + — = / + w2 in Q = Q x (0, T) , 

dt 

(3.29) z(x, 0) = 0 , 

(3.30) z e V . 

Especially, z(t) satisfies 

(3.31) z(0) = 0 in C(l, L2(Q)) 

and 
(3.32) \\(v(t), z(i))) dt + !\v(t), z'(t)) dt = [\v(t),f + w2) dt 

Jo Jo Jo 

for all v(t) e L2(l, V). The function 

(3.33) u(t) = z(t) + w2 

will then have similar properties (see (1.21) —(1.23); especially we shall have u(t) — 
- w2e L2(I, V), u(t) e L2(I, L2(Q)), u(t) e C(l, L2(Q))) and will satisfy 

(3.34) u(0) = w2 in C(I, L2(Q)) 

and 

(3.35) T((v(t), ü(t))) dř + ľГ(t;(í), ü'(t)) dt = Г(v(t),f) dt 
o Jo Jo 

for all v(t)eL2(l, V). (Note that (v(t), w2) = -((v(t), w2)) for almost all t e [0, T] 

and that z'(t) = u'(t)) 

Definition 3.1. The function u(t) is called the weak solution of the problem (3A7) — 

(3.19). 

The problems (3A4) —(3.16) are Rothe problems of the type (2A)-(2.3) with 
uo — w2> o r 0 instead of u0, or/, respectively. According to Chap. 2, the correspond­

ing Rothe sequence converges weakly in L2(L L2(Q)) to the very weak solution 

u2(t) of the problem (3.20)-(3.22). 

Definition 3.2. The function 

(3.36) u(t) = u(t) + u(t) 

is called the very weak solution of the problem (3.1) —(3.3). 

This concept — intuitively clear, because the problem (3.1) —(3.3) is the " sum" 

of problems (3.17) —(3.19) and (3.20) —(3.22) — deserves a more detailed discussion. 

Especially, uniqueness of this very weak solution — inclusive its independence of 

the possible choice of the functions w (characterizing the same boundary conditions) 
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and thus of the corresponding functions w2 — is to be shown. To clarify these ques­
tions and to derive some properties of this very weak solution is the purpose of the 
next chapter. 

CHAPTER 4. THE DEFINITION 3.2 ESTABLISHED. SOME PROPERTIES 
OF THE VERY WEAK SOLUTION OF THE PROBLEM (3.1)—(3.3) 

Let w (and thus w2) be fixed. 
Let, first, u0 — w2e M (on the set M see the text related to (2.7), p. 60). Then 

the very weak solution u(t) of the problem (3.20) —(3.22) turns into the weak solution 
according to Def. 2.L Thus, it has the properties (1.21) —(1.23) and satisfies 

(4.1) u(0) = u0 - w2 in C(I, L2(Q)) 

and 

(4.2) ( ( ( a , (t), u(t))) dt + J (v(t), u'(t)) dt = 0 

for every v(t) e L2(I, V). Consequently, the function 

(4.3) 

will satisfy 

(4-4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

u(t) = u(t) + u(t) 

u(t) - w2 e L2(I, V), 

u'(t) e L2(I, L2(Q)), 

u(t) e C(I, L2(Q)) (even absolutely continuous) . 

u(0) = u0 in C(I, L2(Q)), 
T FT 

((v(t), u(t))) dt + (v(t), u'(t)) dt = (v(t), f) dt 
Jo Jo Jo 

for all v(t) e L2(I, V). The properties (4.4) and (4.7) correspond to the conditions 
(3.3) and (3.2), respectively, the equation (3.1) is fulfilled in the sense (4.8). Thus, 
in the case u0 — w2e M, the term (very weak) solution of the problem (3.1) —(3.3) 
for this function is justified. Such a solution is unique: Let us have two functions with 
properties (4.4) —(4.8). Then their difference satisfies (1.21) —(1.25) w i t h / = 0 and, 
consequently, is equal to zero (see [1], Theorem 1). Moreover, the solution (4.3) 
depends continuously on the initial conditions: Let u0i

 e L2(iQ), u02 e L2(Q) be such 
functions that 

(4.9) u01-w2eM, U02-W2EM 

(w is always kept fixed). Let u^l), u2(^) be corresponding solutions. Then their 
difference 

(4.10) u(t) = u2(t) - H.(0 

is the weak solution of the problem (2.1) —(2.3) (p. 59) w i t h / = 0 and with u01 — 
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- M01 e M instead of M0 e M. Thus we may apply (2.29) and get 

( 4 1 1 ) ||M2vO - Ml(0l|L2(I,L2(D)) ^ V ( T ) |iW02 - U0I\\L2(Q) • 

Let, now, w0 — w2 £ M. Then we can find such a sequence of functions ste M that 

(4.12) st -» M0 - w2 in L2(Q) 

(i.e. 

(4.13) s i H-w 2 ->M 0 in L2(Q)) . 

Corresponding solutions ut(t) of the problem (3.1) —(3.3) with M0 replaced by st + w2 

then satisfy (4.4) —(4.8) with ut(0) = st + w2 in C(I, L2(Q)). In consequence of 
(4.11), the sequence {Mt(t)} is a Cauchy sequence in L2(I, L2(Q)), and thus converges, 
in L2(I, L2(Q)), to a function u(t) e L2(l, L2(£2)). Because of the above mentioned 
continuous dependence, this function is uniquely determined by the function w0 (it 
does not depend on the choice of the sequence {ste M] with the property (4A2)). 
From the construction of this function and of the function u from Chap. 3 it im­
mediately follows that u(t) coincides with the very weak solution of the problem 
(3.1)-(3.3) introduced by Def. 3.2. 

Thus, w being fixed, uniqueness of the very weak solution of the problem (3.1) — 
(3.3) is shown. 

To give the full establishment of Def. 3.2, we show that u(t) does not depend on 
the choice of the function w (in the sence of Theorem 4.4). But first of all we present 
Theorems 4.1—4.3 which are analogues of theorems 2.1 — 2.3 for the very weak 
solution of the problem (2.1) — (2.3) (Def. 2.2). We get them immediately from these 
theorems, having in mind that the function (3.36) is the sum of the very weak solution 
u(t) of the problem (3.20) —(3.22) (for which thus these theorems are valid) and of the 
function u(t) which is itself the sum of the weak (and thus very weak) solution z(t) 
of a similar problem and of the "constant" function w2. 

Theorem 4.1. For the very weak solution u(t) from Def. 3.2 we have 

(4.14) u(t)eC(l,L2(Q)). 

Further, 

(4.15) M(0) = M0 in C(I,L2(Q)). 

Theorem 4.2. (Continuous dependence on initial conditions ) For the very weak 
solutions ux(t), u2(t) of the problem (3.1) — (3.3), with initial conditions w01, M02, 
respectively, we have 

(4-16) I M O ~ "I(0 | |L 2 (J ,L 2 («)) ^ V ( r ) ||W02 ~ W0l||L2(fi) • 

Moreover, 

(4-17) I M O - Ml(0|lc(J,L2(fl)) = IIU2 ~ M0l|| • 

Theorem 4.3. The very weak solution u(t) from Def. 3.2 is the weak limit, in 
L2(I,L2(Q)), of the Rothe sequence {un(t)}, where Zj (or z") in (1.9) (or (V10)) are 
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solutions of the Rothe problems (3.4) —(3.6) (or of similar problems corresponding 
to the division dn). 

Moreover, we have 

(4.18) lim un(x, t) = u(x, t) 
n—* oc) 

strongly in L2(Q). 

Now, we formulate the announced Theorem 4.4. 

Theorem 4.4. The very weak solution from Def. 3.2 does not depend on the function 
w characterizing the boundary conditions. In detail: Let w e W2

k)(Q) be another 
function such that w — w e V. Then for the very weak solutions u(t), or u(t) of the 
problem (3.1) — (3.3) with the boundary functions w, or w, respectively, we have 

(4.19) u(t) = u(t) in L2(I, L2(Q)) . 

The p r o o f is very simple: The solutions u(t), u(t) are weak limits, in L2(l, L2(Q)), 
of the Rothe sequences un(t), un(t), respectively. But these sequences are identical. 
Indeed, if w — w e V, then, as well known, the solutions of (3.4) —(3.6) (or of similar 
problems for the division dn) are the same, independently of the choice of the function 
w or w. 

CHAPTER 5. APPLICATION OF THE RITZ METHOD. 
(VARIATIONAL-DIFFERENCE METHODS) 

To approximate solving of problems of the type (3.4) —(3.6), direct variational 
methods can be used. We shall consider the Ritz method here, although other methods 
with similar properties can be investigated as well. As before, we assume V-ellipticity 
of the form ((v, u)) as well as that (3.7) is fulfilled (implying symmetry of the form 

((*.«)))• 
Thus, consider the Rothe problems (3.4) — (3.6) which will be writen here in the form 

(5.1) ((», z.)) + \ (v, z. - -0) = (v,f), z.-weV, 
h 

(5.2) ((», z2)) + i (v, z2 - z.) = (vj), z2 -weV, 
h 

(5.3) ((v, zp)) + j (v, zp - zp_!) = (v,f), zp~weV, 
h 

(to be fulfilled for all v e V; z0 = u0). Let v1? ..., vf . . . be a base in V. Solving the 
problem (5.1) by the Ritz method, choose a positive integer r\ and denote by 

n 1 

(5.4) Zl,rAX) = w + tauiviix) 
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the Ritz approximation of the solution zx}) Thus, alti are correspodning Ritz 
coefficients. (We should have denoted them by a[\( more precisely.) Putting z l r i i 
instead of z1 into (5.2) and choosing r\ (r\ = r\ is not excluded), we get similarly 
the Ritz approximation z2, ry2 of the solution z2 of the problem (5.2) (with z l r i i 
substituted for zt). Going on in this way, we come to the Ritz approximation zpr i 
of the solution zp of the problem (5.3) with zp„lr i _l substituted for z t. 

Let us construct, similarly as in (V9), the Ritz-Rothe function (corresponding to the 
division dx) 

(5-5) « l , r i i r p i ( ^ t) = Zj>rji(x) + ~ ^ J [ ^ + l . r i + 1 i W - ZJ,rAX)] 

n 

for 
tj^tStj+i, j = 0, ..., p - 1 , z w = 0 . 

Let us turn to the division dn. We have 

(5.6) ((v, -»)) + I ( v , z\ - -•) = ( » , / ) , zl-weV, 
K 

(5.7) ((., z"2)) + 1 (», z"2 - z!|) = (v,f) , z"2-weV, 
h„ 

(5.8) ((v, znJ) + I (v, z;n- zn
pn_,) = (vj) , zn

Pn-weV 
K 

(for all v eV\ zn
0 = u0). 

Solve, again these problems by the Ritz method, choosing positive integers r", ... 
..., rn

Pn and substituting z" in (5.7) by the Ritz approximation zlrin (cf. (5.4)), etc., 
and construct the corresponding Ritz-Rothe function 

(5-9) «„,.», ;{x,t). 

A question arises, of course, how "close" is this function to the very weak solution 
u(t) = w(x, t) of the problem (3.1) —(3.3). 

We show that to an arbitrary e > 0 it is possible to find such n and such positive 
integers r", ..., rn

Pn that 

(5-10) \HX> t) - Un/[...yp{x> 01L2(Q) < s • 

Having proved it, we say that the Ritz-Rothe method for the problem (3.1) —(3.3) 
is convergent. 

) In what follows, theoretical considerations concerning the convergence of variational-
difference methods take place. Practically, it is not necessary, of course, to use the "classical" 
Ritz procedure (5.4), where the function w is to be known. 
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To the proof we use the idea from [1]: First, in consequence of (4.18), to e/2 it is 
possible to find such an m that for all n > m we have 

(5.H) \\u(x,t) - un(x, t)\\L2(Q) < S-

where un(x, t) is the Rothe function from Theorem 4.3. Thus it remains to prove that 
to e/2 such positive integers r", ..., rn

Pn can be found that 

(5-12) \\un(x,t)- un/x rnJL2w < ~ 

Because of the form of the functions un(x, t), un
n

 r
n (they are piecewise linear in t) 

it is sufficient to prove that 

(5-13) \\zn(x) - zBif-(x)||La(ll) < ~ 

for every j = 1, ...,pn. 

Let r" be sufficiently large in order that 

(5-14) \\z\{x)-zlA{x)\\L2m<5. 

(This can be always reached, even in V) Put z1 >r
n instead of z\ into (5.7) and denote 

the solution of this problem by z\. Thus, z\ solves the problem 

(5.15) ((v, z\)) H- I (v, z\ - zlt«) = (v,f), z\-weV,veV. 
K 

Substract (5.15) from (5.7) and put v = z\ — z\. (This is possible, because z\ — 
- z\e V) We get 

(z\-z\, z - - z - 2 - ( z 1 - z l f f - ) ) ^ 0 

and, consequently, 

(516) \\z\ - z"2\\Li(n) < \\z\ - zun\\Ll(Si) < 8 . 

Let r\ be sufficiently large, so that 

(5.17) \\z\ - z2/2\Ll{Q) < 5, 

replace z\ in the third of the problems (5.6), (5.7) by z2
n and denote the solution 

of this problem by z". Because of (5A6), (5A7) we have 

|| A ~ Z2,r\\\L2(V) < 2O", 

so that we get, similarly as in (5A6), 

II - " r?n II .r--" 1 & 
I I - - 3 Z3\\L2(Q) < L 0 * 

Going on in this way, we get, choosing r\, rn
4, . . . sufficiently large, 

||Z" ~ Zn,rn.\\L2(Q) < J$ , 7 = U • • -, Pn • 
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To fulfill (5.13) it is thus sufficient to choose 

O < 

2p„VT 

In this way, (5.10), and thus the required convergence theorem is proved: 

Theorem 5.1. The Ritz-Rothe method for the problém (3A) —(3.3) is convergent. 

R e m a r k 5.1. It is easy to see that the function w2(x) from the decomposition 
(3.8), which plays a significant role in theoretical considerations, does not appear 
in the numerical process (when applying the Ritz-Rothe method) at all. 

R e m a r k 5.2. The ideas of this páper can be well utilized in considering more 
generál problems. 
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S o u h r n 

POZNÁMKA K NEHOMOGENNÍM POČÁTEČNÍM A OKRAJOVÝM 
PODMÍNKÁM V PARABOLICKÝCH PROBLÉMECH, ŘEŠENÝCH 

ROTHEHO METODOU 

KAREL R E K T O R Y S a M A R I E LUDVÍKOVA 

Při řešení parabolických problémů Rotheho metodou (viz K. Rektorys [ l ] ) činí 
po teoretické stránce určité obtíže nehomogenní počáteční a okrajové podmínky. 
Tyto potíže se řeší zpravidla tím, že se vysloví některé dodatečné předpoklady, 
týkající se příslušné bilineární formy a počátečních i okrajových funkcí (srov. [1], 
[2], [3] atd.). 

V tomto článku je ukázáno, jak lze tyto dodatečné předpoklady odstranit (v případě 
počátečních podmínek — kap. 2), resp. nahradit jednoduššími a přirozenějšími před­
poklady (v případě okrajových podmínek — kap. 3; viz zejména předpoklad (3.7), 
str. 64). 

V závěru článku se zkoumá použití Ritzovy metody (resp. příbuzných přímých 
metod) k přibližnému řešení vzniklých eliptických problémů. 

Authors' addresses: Prof. RNDr. Karel Rektorys, DrSc, RNDr. Marie Ludvíkova, Stavební 
fakulta ČVUT, katedra matematiky a deskriptivní geometrie, Thákurova 7, 160 00 Praha 6. 

72 


		webmaster@dml.cz
	2020-07-02T03:41:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




