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SVAZEK 25 (1980) APLIKACE MATEMATIKY CisLo 1

A NOTE ON NONHOMOGENEOUS INITIAL
AND BOUNDARY CONDITIONS IN PARABOLIC
PROBLEMS SOLVED BY THE ROTHE METHOD

KAREL REKTORYS and MARIE LUDVIKOVA

(Received March 23, 1978)

When solving parabolic problems with nonhomogeneous initial and boundary
conditions by the Rothe method, some difficulties are encountered leading to rather
unnatural additional conditions concerning the corresponding bilinear form and the
initial and boundary functions (cf. [1], [2], [3], etc.). In the present paper we show
how to remove such additional assumptions in the case of the initial conditions
(Chap. 2) and how to replace them by other, rather more natural assumptions in the
case of the boundary conditions (Chap. 3; see especially assumption (3.7), p. 64).

In the first chapter, we summarize briefly basic results from [1] concerning the
Rothe method in the case of homogeneous initial and boundary conditions. In
Chaps 2, or 3, nonhomogeneous initial, or boundary conditions are considered,
respectively. In these chapters, also the cause of the above mentioned difficulties
will become clear. In Chap. 4, the properties of the very weak solution will be studied,
especially continuous dependence on the initial condition u, € L,(2) and indepen-
dence of the function w characterizing the boundary conditions. In Chap. 5, ap-
plication of the Ritz method (or of other direct methods) to approximate solution is
considered.

CHAPTER 1. THE ROTHE METHOD IN PARABOLIC PROBLEMS.
HOMOGENEOUS INITIAL AND BOUNDARY CONDITIONS

Let us give a brief survey of the work [1] concerning this subject.
In [1], the parabolic problem

0
(1.1) Au+~;f=f in 0=0x(0,T),
C
(12) u(x,0) = uo(x),
_Ou AN
(1,3) u——a—v—...—avk_l =0 on OQX(O,T)

is considered.
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Assumptions. Q is a bounded region in Ey with a Lipschitz boundary 0Q,
Uy € Ly(Q), f e Ly(Q), the form

(1.4) (v, u)) = ' z a;;D'v Diu dx
lil.lil =k F
(corresponding to the operator A) with bounded measurable coefficients a;;(x) in Q
is V-elliptic, i.e.
((v,0)) = c||v]iv,00@ Torevery velV.

Notation. (v, u), or |[v] is the scalar product, or the norm in the space L,(2),
respectively,

(13 (& Wi =l |Z (Dil% D'u), HUI’sz“‘)(—Qi = (v, Vw0000 5
i<k
k— 1
V=1v;0e WP(Q), v = av =..= A =0 on 0Qin the sense of traces
ov ovk 1

(with the metric of the space W§(Q)), v is the outward normal to 0Q.

The Rothe method. Divide the interval [0, T] into p subintervals of the length
h = T|p — denote this division by d; — and substitute the problem (1.1)—(1.3)
by the following p boundary value problems (for t; = h,t, = 2h, ..., t,=ph=T)-
the so called Rothe problems — assuming, first uo(x) = 0 (thus considering the
homogeneous initial condition):

(1.6) ((U’:I))+;,(U’Z’):(U’f)’ z, eV,
(1.7) (v, z2)) + ;]z (0,2, —zy) = (v.f), zp€V,
(1) (2) + (002 = 2m) = (1) 20 Vs

to be satisfied for all v e V. The given assumptions ensure existence (and uniqueness)
of solutions of (1.6)—(1.8). We construct, in Q, a piecewise linear function in 1, the
so-caled Rothe function

(19) (1) = 29 + () = 2]

for

s

IIA

t<ty, j=01,..,p—1, zHx)=0.

Consider, further, the divisions d,, ds, ..., d,, ..., dividing successively the interval
[0, T] into 2p,4p,...,2" 'p(= p,) ... subintervals of lengths h, = T/(2p), h;y =
= T/(4p), ..., h, = T|p,, ... and solve, for every fixed n and for } = jh, (j =
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= 1,2, ..., pu), the corresponding Rothe problems similar to the problems (1.6)—
(1.8). Finally, construct, for every n, the Rothe function

t —
(1.10) u,(x, 1) = 2 (x) + —

N [2e1(x) = 2} (x)]

for st=t,, j=01L..,p, —1.

n
]

(Here, Z(x) is the solution of the j-th Rothe problem corresponding to the division
d,, z0(x) = 0; for n = 1, we write h, t; and z; instead of hy, t], z}, respectively, see

(1.9).)
In this way, we get the so-called Rothe sequence of functions {u,,(x, 1)}, defined in Q.
They may be considered, if needed, as abstract functions u,(t) from [0, T] into V.

Apriori estimates. Denote

(1.11) Z(x) = fff_(_)f).":_};_z_l;j,,(,{) , j=1...,p

(~derivative with respect to ” at the time ¢ = t;). Especially,

(1.12) Z(x) = 2

h
because 1y(x) = 0 according to the assumption. Putting v = z; in (].6), we get
(1.13) Izl = #lf]
in consequence of ((zy, z;)) = 0. Thus
(1.14) 1z = sl
Subtracting (1.6) from (1.7) and putting v = z, — z,, we get
(1.15) |Z:] = [z = |71
and in a similar way (for details see in [1])
(1.16) 1zl = 171 -
Denoting, similarly,
(1.17) zn =27 i
h

n

we get, using the same procedure,

(1.18) 1z5] = |71

which means the uniform boundedness of HZ;‘“ (thus not depending on the divison
d,). From (1.18) the uniform boundedness of [z%| and |z}|, immediately follows
(for details see in [1]; for z € V we write briefly ||z, instead of ||z, ()). Denote

(1.19) Ufx, 1) = Z},(x) for £ <t<t),,, j=01,...p,— 1.
We shall also write U,(f), considering the function (1.19) as an abstract function
from [0, T] into L,(Q).
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Convergence of the Rothe sequence {u,(t)}. Denote, briefly,
1=1[0,7].
Let Ly(I, V), or Ly(I, L, Q)) be Hilbert spaces of square integrable (in the Bochner
sense) abstract functions from [0, T into ¥, or L,(2), respectlvely In consequence
of uniform boundedness of |z%[, and ||Z], (1) and U,(1) are uni-
formly bounded in Ly(I, V), or Ly(I, Ly(Q)), respectively. Then it is possible to find
subsequences

(1.20) {up (0 or {U (0,
converging weakly to some functions

(1.21) u(t)ye Ly(1, V), or U(t)e Ly(I, Ly(Q)).
respectively. In [1] it is shown that:

(1.22) u(t) e C(1, L,(2))

(u(1) is even absolutely continuous),

(1.23) U(t) =u'(t) in Ly(I, L(Q)),
(1.24) u(0) =0 in C(I, Ly(Q)).

the integral identity

(1.25) j 0' (o(0), u(1))) dt + J (oe), w'(1)) dt = J (o(0), ) dt
holds for every v(t) € Ly(I, V).

Definition 1.1. The function u(r) is called the weak solution of the problem (1.1)—
(1.3) with ug = 0.

In [1], uniqueness of this solution is proved, yielding, in the usual manner, weak
convergence of the whole sequence {u,(1)} to the function u(r) in L,(I, V). Moreover,
it is shown that {u,(x, 1)} converges strongly to u(x, t) in L,(Q).

CHAPTER 2. NONHOMOGENEOUS INITIAL CONDITIONS

Let us turn to the problem (1.1)—(1.3) with wuy(x) & 0, uy e L,(2). Using the
Rothe method, (1.6)—(1.8) turn into

1) (02 + 4 02— ) = (0f) zie Y
(22) (0) + 1+ oz = =) = (), me V.
(23) (02) + 5 (o2 = e = ()0 560
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(ve V). Itis easily seen that the procedure from Chap. 1, leading to the basic apriori
estimates (1.16), (1.18), cannot be applied here, because if uy % 0 in L,(Q), (1.14) is
no more valid. If

(2.4) uge W n v,

it seems natural to use the substitution u = v, + z and to convert, in this way, the
problem (1.1)—(1.3) into a similar problem with z, = 0 in L,(2) and with the right-
hand side f — Au, instead of f. It follows that some additional assumptions are to
be imposed upon the operator A, or upon the corresponding bilinear form. In [1],
it is required that

(2.35) Ay e Ly(Q), ((v,up)) = (v, Auy)

holds for every y e W¥¥(Q) n V,ve V and u, satisfying (2.4). (Cf. rather similar
assumptions in [2], etc.)

In this way, one comes in [1] to the weak solution (according to Def. 1.1) z(t)
with z, = 0. The function z(t) + u, is then the so-calied weak solution of the problem
(1.1)—(1.3). Showing then the continuous dependence of this weak solution on the
initial conditions, one removes in [1] the assumption (2.4): Let u, € L,(2) and

(2.6) u; —u, in Ly(Q),

u; satisfying (2.4); then the corresponding weak solution u(t) converge, in L,(I,L,(2)).
to a uniquely determined function u(f) which is called, in [ 1], the generalized solution
of (1.1)=(1.3).

In the present chapter, we show how to remove the additional assumptions (2.5).
The form ((v, u)) being V-elliptic, a set M exists (see [4], pp. 131, 132), dense in V,
and consequently in L,(), with the following property: If s € M, then there exists
precisely one g € L,(Q) such that

(2.7) ((v, 5)) = (v, g) holds for every ve V.
Thus let s € M. Replacing, in (2.1), uy by s, we get

1
(2.8) (v, z1)) + Z(v, zy —s)=(v,f), z,eV.

Putting z; = s + Z, and using (2.7),

(29) (v, 5)) = (v 9)

(2.8) becomes

5 1, . s
(2.10) ((v, z,))+;(v,z,)=(v,f—g), Z eV.
Similarly, putting in (2.2) z, = s 4 Z,, etc., we get
- 1 - - ~
(2.11) (v, ,)) + Z(v’ L -%)=0f-9), L€V,
\ o 1
(2.12) ((v, Z,,))+;(v, Z,—%,1)=(v,f—g), Z,€V.
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But (2.10)—(2.12) are Rothe problems of the form (1.6)—(1.8) with f replaced by
f — g. Thus the sequence {ii,} of corresponding Rothe functions (1.10) with 4
replaced by 27 converges weakly to a function #(f) having the properties (1.21)—(1.24)
and satisfying the integral identity

e [ ana+ [} o0 a0 - o

(for every v(t) € Ly(I, V)). The function

(2.14) u(t) = a(t) + s
has then similar properties, with
(2.15) u(0) =s in C(I, Ly(Q)),

and satisfies the integral identity

(2.16) J (((0). u(2))) dt + LT (o(t). (1)) dt = Lr (u(t). f) dt

,
0

for every o(t) € L,(I, V). (Note that for every such v(r) we have (v(1), g) = ((v(1), 5))

for almost all ¢t e I and that @'(r) = u'(1).)

Definition 2.1. The function u(t) is called the weak solution of the problem (1.1)—
(1.3) with uy, = se M.

Uniqueness of this solution follows in the same way as in [1]

We show that this weak solution depends continuously (in L,(I, L,(Q))) on se M
(from Lz(Q). Thus let §e M. In the same way as before we get the weak solution
i(t) of the problem (1.1)—(1.3) with u, = §. The Rothe problems (2.8), (2.2), (2.3)
become

(2.17) (0. 2)) + }1@, 5 —8) = (0.f), %€V,
{
(2.18) (0 22) 4 (02 = 2) = (0f) . 2aeV,
(2.19) ((0.2,) + ;(u, 52 ) =(0f), 2eV.
1

| Subtracting (2.8) from (2.17), (2.2) from (2.18), etc., and writing 2; — z; = Z,
we get

(2.20) (0. 7)) + 11;(0, Z - (5—s5) =0, ZeV,
(2.21) ((0.2,)) + %(v, 5 -2)=0, neV,
(2.22) (v.7,) + ]11(1), 2= %) =0, eV,
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wherefrom (putting v = Z, in (2.20), v = Z, in (2.21), etc.)

2
(2.23) IZ,] < |5 -],
(2.24) 12 = 2] = 15 = 5],
and, in general,
(2.25) Izl = Is = 5|
Analogously, we get, for the division d,,,
(226) R Y A g
and, in view of the form of the Rothe functions,
(2.27) la(x, 1) = wlx, O = 5 = ]
for every t € [0, T]. Taking the square and integrating between 0 and T, we find
(2.28) l(8) = un()]| Lot racery = V(DS = s]10) -

Having in mind that u(t), or #(t) are weak limits, in L,(I, V'), and, consequently,
in Ly(I, L,(Q)), of the sequences u,(t), or 4,(t), respectively, we finally get

(2.29) la(t) = u(t)| Lot raceny = V(DS = 5]y 5
which expresses the required continuous dependence of the weak solution on the

initial condition from M.
Now, let uy € L,(2) and let {s;} be a sequence of M such that

(2.30) si—>up in Ly(Q).
In consequence of (2.29), the sequence of corresponding solutions u(t) is a Cauchy

sequence in L,(I, L,(Q)), thus converging, in L,(I, L,(Q)) to a function u(r) (uniquely
determined by the function u, because of the just proved continuous dependence).

Definition 2.2. The function u(r) is called the very weak solution of the problem
(1.1)=(1.3) with u, € L,(Q).

In this way, we came to the concept of a solution of(l .1)——(1 .3) without additional
assumptions (2.5).

Fromthe above constructionsit is easily seen that this is the only difference between
the very weak solution introduced by Def. 2.2 and the generalized solution introduced
in [1]. Except this, these concepts are identical.

In [1], some properties of the generalized solution are derived. Because the proofs
are based on the continuous dependence only, without using (2.5), they remain un-
changed for the case of our very weak solution. Thus we are not going to reproduce
these proofs here, and only summarize these properties in the following theorems:

Theorem 2.1. For the very weak solution 11(1) from Def. 2.2 we have

(2.31) u(t) e C(I, Ly(Q)) .
Further,
(2.32) u(0) = uy in C(I, Ly(Q)).
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Theorem 2.2. (Continuous dependence on the initial condition.) For u(t) from
Def. 2.2, the inequality (2.29) is preserved:
If uy(t), or uy(t) is the very weak solution of the problem (1.1)—(1.3) with
gy € Ly(Q), or ug, € Ly(Q), respectively, we have

(233) fuz(t) = i Lairzaon = V(T to2 = tor| Ly -
Moreover,
(2.34) ”“2(’) - “1(’)HC<1,L2(9>> = ||“02 - ”01”14(9) :

Theorem 2.3. The very weak solution u(t) from Def. 2.2 is the weak limit (in
L,(I, Ly(Q))) of the Rothe sequence {u,(t)}, where z; (or zj) in (1.9) (or (1.10)) are
the solutions of the problems (2.1)—(2.3) (or of similar problems corresponding to
the division d,). Moreover, we have
(2.35) lim u,(x, 1) = u(x, 1)

n-ow
strongly in L,(Q).

Remark 2.1. Obviously, the weak solution introduced by Def. 2.1 is a special
case, for u, € M, of the very weak solution introduced by Def. 2.2. The weak solution
by Def. 1.1 is a special case, for u, = 0, of the weak solution by Def. 2.1.

CHAPTER 3. NONHOMOGENEOUS INITIAL AND BOUNDARY

CONDITIONS
Consider, now, the problem
(3.1) Au+—(;i::f in 0=0x(0,7),
(3.2) u(x, 0) = uy(x),
(3.3) u—weVv,

where ug € L,(Q), and w € Wi*(Q) is a given function characterizing the nonhomoge-
neous boundary conditions. (For w = 0 we have the problem (1.1)—(1.3).)
The corresponding Rothe problems are

] (0, u; —uy) = (v, f), uy —weVv,

.(3.4) (v, uy)) + p

h
(3.5) (v, uy)) + /{(U, uy, —uy) = (v, f), u, —webv,
(3.6) ((u, up)) + %(v, u, — ”p~1) = (U,f) , u,—wel.

In Chap. 2 we have seen that if u, + 0 it is not possible to use the procedurc from
Chap. 1, because the apriori estimates (1.16), (1.18) do no more hold. The less can
this procedure be applied in the present case. Difficulties arise here even if u, = 0,
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because we cannot put v = u, into (3.4) to get an estimate analogous to (1.13), since
we have not u, € V. If we put u, = w + z, to reach z, € ¥, we get a term —((o, w))
on the right hand side which makes it again impossible to obtain estimates of the type
(1.16), (1.18). It seems to be natural to put u = w + z immediately in (3.1)—(3.3)
and to convert this problem, in this way, into a problem with homogeneous boundary
conditions. But such an approach requires additional assumptions on the operator A,
such as Aw e L,(Q) (see [2], [3], etc.). In this paper, we choose an other approach,
and will assume — throughout the paper — that the form ((v, u)) is such that

(3.7) (o, w)) = (0, w)) + (v, u)

is an equivalent scalar product in Wi¥(Q). (In details, (3.7) is a scalar product on the
elements of the space Wi¥(Q), and generates a norm equivalent with the norm of
this space.)

This assumption requires, first of all, the symmetry of the form ((v, u)). Neverthe-
less, it seems to be more natural than the assumption Aw € L,(Q) and, at the same
time, more suitable for applications. A trivial example is as follows: 4 = —A, V =
= Wi(Q).

Let us denote by W;*(Q) the space the elements of which are the elements of the
space W;*(Q) and in which the scalar product is given by (3.7). The space W{¥(Q)
is complete and the space V, provided with the same scalar product (3.7), is its
subspace. Thus, the function w from (3.3) can be uniquely decomposed, in W{¥(Q),
into the sum

(3.8) w=w +wy,, YweV, w,LV.
Especialy, we have

(3.9) (v, wp)) = —(v, w,) forall veV,
because

(3.10) (v, w2))) = ((v, wy)) + (v, w,) =0 forall veV.

Thus let (3.7) be an equivalent scalar product in Wi(Q). Put, in (3.4)—(3.6),
u; =1i; + 4;

and substitute the p problems (3.4)—(3.6) by 2p problems

(3.11) (0. 0)) + —:;(v,ﬁl W) =(0f), iy —weV,
(3.12) (0, i0y)) + %(U, iy — i) = (0f), @ —weV,
(3.13) ((v,ﬁ»)%—%(v,ﬁ,,—ﬁp_l):(v,f), i, —weV

assumption (3.7). See a new monography prepared by K. Rektorys on the considered method.
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and

(3.14) wjm+%@J“%%—wm=0,meK
(3.15) (v, ﬁz))+lll(v,ﬁ2—z?l)=0, d,eV,
(3.16) (v, @) + - (v,u —d,.4) =0, a,eV

(to be satisfied for all v e V).

Obviously, the problems (3.11)—(3.13), or (3.14)—(3.16) correspond to be prob-

lems

(3.17) Ai+ o 0= x(0.7),
ot

(3.18) i(x,0) = w,,

(3.19) i—weV,

or

(3.20) Au+%g—0 in 0=0x(0,T),
ot

(3.21) i(x,0) = ug — wy,

(3.22) nev,

respectively.

Remark 3.1. Let us note here that the function w, plays an auxiliary role here,
in theoretical considerations only. As concerns numerical methods (see Chap. 5),

the decomposition w = wy; + w, is not to be carried out.

Let us put, in (3.11)—(3.13),

(3.23) d;=Z,+w,, j=1,2,..,p.
We get (note that w — w, € V)

. 1, . .
(3.24) (v, 2y + wy)) + —h-(v, ) =(vf), Z eV,
etc., or substituting — (v, w,) for ((v, w,)) according to (3.9),

- 1, . N
(3.25) (v, 2)) + ~ (v, 2)=(,f+w), Z eV,
(3.26) (v, 22)) + -~ (v I = Z)=(o.f +wy), Z,

N | . -

(3.27) (v, 2,) + l;(v, Z,— Zm) = (0. f +wy), 2,
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(for all v e V). But these are Rothe problems of the form (1.6)—(1.8) with f + w,
instead of f. Consequently, the corresponding Rothe sequence converges weakly in
L,(I, V) to a function Z(r) which is the weak solution, according to Def. 1.1, of the
problem

(3.28) AZ+~§§=[+W2 in 0=0x(0,T),
(3.29) 5(x,0) = 0,

(3.30) ZeV.

Especially, 2(t) satisfies

(3.31) 50) =0 in C(I, L,(Q))

and

(3.32) j :((v(t), (1) di + f :(v(t), (1) di = .[:(v(t), S+ wa)di

for all v(r) e L,(I, V). The function

(3.33) ii(t) = 2(t) + w,

will then have similar properties (see (1.21)—(1.23); especially we shall have i(t) —
— wy e Ly(I, V), ii(t) € Ly(I, L,()), ii(t) € C(I, L,(R))) and will satisfy

(3.34) i0) = w, in C(I, Ly())

and
(3.35) J :((u(z), a(1) dt + J:(U(t), #/(1) d = j :(u(z), £)dt

for all v(r) e Ly(I, V). (Note that (v(t), w,) = —((v(t), w,)) for almost all 1€ [0, T]
and that 2'(r) = @'(1).)

Definition 3.1. The function ii(t) is called the weak solution of the problem (3.17)—
(3.19).

The problems (3.14)—(3.16) are Rothe problems of the type (2.1)—(2.3) with
uy — w,, or 0 instead of u,, or f, respectively. According to Chap. 2, the correspond-
ing Rothe sequence converges weakly in L,(I, L,(Q)) to the very weak solution
ii,(1) of the problem (3.20)—(3.22).

Definition 3.2. The function
(3.36) u(t) = a(r) + i)
is called the very weak solution of the problem (3.1)—(3.3).

This concept — intuitively clear, because the problem (3.1)—(3.3) is the “sum”
of problems (3.17)—(3.19) and (3.20)—(3.22) — deserves a more detailed discussion.
Especially, uniqueness of this very weak solution — inclusive its independence of
the possible choice of the functions w (characterizing the same boundary conditions)
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and thus of the corresponding functions w, — is to be shown. To clarify these ques-
tions and to derive some properties of this very weak solution is the purpose of the
next chapter.

CHAPTER 4. THE DEFINITION 3.2 ESTABLISHED. SOME PROPERTIES
OF THE VERY WEAK SOLUTION OF THE PROBLEM (3.1)—(3.3)

Let w (and thus w,) be fixed.

Let, first, uy — w, € M (on the set M see the text related to (2.7), p. 60). Then
the very weak solution #(t) of the problem (3.20)—(3.22) turns into the weak solution
according to Def. 2.1. Thus, it has the properties (1.21)—(1.23) and satisfies

(4.1) a(0) = uo — w, in C(I, Ly())
and

(4.2) J ((v. (1), a(1))) dt +J (1), @(1)) d
for every v(t) € Ly(I, V). Consequently, the function

(4.3) u(t) = a(r) + a(r)

will satisfy

(4.4) u(t) — wye Ly(1, V),

(4.5) u'(1) e Ly(I, L,(Q)),

(4.6) u(r) e C(I, L,(Q)) (even absolutely continuous),
(4.7) u(0) = uy in C(I, Ly(Q)),

(49 [ @ umar+ [ w0 w@)ar = | el a

for all v(t) € L,(I, V). The properties (4.4) and (4.7) correspond to the conditions
(3-3) and (3.2), respectively, the equation (3.1) is fulfilled in the sense (4.8). Thus,
in the case uy — w, € M, the term (very weak) solution of the problem (3.1)—(3.3)
for this function is justified. Such a solution is unique: Let us have two functions with
properties (4.4)—(4.8). Then their difference satisfies (1.21)—(1.25) with f = 0 and,
consequently, is equal to zero (see [1], Theorem 1). Moreover, the solution (4.3)
depends continuously on the initial conditions: Let ug; € L,(Q), uy, € Ly(Q) be such
functions that .

(4.9) Ugy — Wo €M, g, — w,eéM

(w is always kept fixed). Let u,(t), u,(t) be corresponding solutions. Then their
difference

(4.10) u(t) = uy(1) — u(r)

is the weak solution of the problem (2.1)—(2.3) (p. 59) with f = 0 and with uy, —
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— uy, € M instead of uy, € M. Thus we may apply (2.29) and get

(4.11) lua(t) = (O] acrracon = V(T) (02 = o] 1,00, -
Let, now, u, — w, ¢ M. Then we can find such a sequence of functions s; € M that
(4.12) s; > Uy — wy in Ly(Q)
(ie.
(4.13) si+ wy > uy in Ly(Q)).

Corresponding solutions u (1) of the problem (3.1)—(3.3) with u, replaced by s; + w,
then satisfy (4.4)—(4.8) with u,(0) =s; + w, in C(I, L,(2)). In consequence of
(4.11), the sequence {u(1)} is a Cauchy sequence in L,(I, L,(2)), and thus converges,
in Ly(1, L,(2)), to a function u(r) € L,(I, L,(2)). Because of the above mentioned
continuous dependence, this function is uniquely determined by the function u, (it
does not depend on the choice of the sequence {s; € M} with the property (4.12)).
From the construction of this function and of the function # from Chap. 3 it im-
mediately follows that u(t) coincides with the very weak solution of the problem
(3.1)—(3.3) introduced by Def. 3.2.

Thus, w being fixed, uniqueness of the very weak solution of the problem (3.1)—
(3.3) is shown.

To give the full establishment of Def. 3.2, we show that u(r) does not depend on
the choice of the function w (in the sence of Theorem 4.4). But first of all we present
Theorems 4.1 —4.3 which are analogues of theorems 2.1 —2.3 for the very weak
solution of the problem (2.1)—(2.3) (Def. 2.2). We get them immediately from these
theorems, having in mind that the function (3.36) is the sum of the very weak solution
a(t) of the problem (3.20)—(3.22) (for which thus these theorems are valid) and of the
function @(r) which is itself the sum of the weak (and thus very weak) solution Z(r)
of a similar problem and of the “constant™ function w,.

Theorem 4.1. For the very weak solution u(t) from Def. 3.2 we have

(4.14) u(t) e C(I, Ly(Q)) .
Further,
(4,15) u(O) =u, in C(I, LZ(Q)).

Theorem 4.2. (Continuous dependence on initial conditions.) For the very weak
solutions uy(t), u,(t) of the problem (3.1)—(3.3), with initial conditions ugy, ug,,
respectively, we have

(4.16) ““2(0 - “1(’)!‘1‘7_41,1‘)(:2)) = \/(T) H“oz - ”01“1‘2«»-
Movreover,
(4.17) H“z(’) - “1(’)“(‘(1@(9}) = “Uz - ”01” .

Theorem 4.3. The very weak solution u(t) from Def. 3.2 is the weak limit, in
Ly(I, Ly(Q)), of the Rothe sequence {u,(t)}, where z; (or z%) in (1.9) (or (1.10)) are
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solutions of the Rothe problems (3.4)—(3.6) (or of similar problems corresponding
to the division d,).

Movreover, we have
(4.18) limu,(x, t) = u(x, 1)

strongly in L,(Q).

Now, we formulate the announced Theorem 4.4.

Theorem 4.4. The very weak solution from Def. 3.2 does not depend on the function
w characterizing the boundary conditions. In detail: Let we Wz(")(Q) be another
Junction such that W — w e V. Then for the very weak solutions u(t), or ﬁ(t) of the
problem (3.1)—(3.3) with the boundary functions w, or W, respectively, we have
(4.19) u(t) = i(t) in Ly(I, Ly(Q)).

The proof is very simple: The solutions u(t), #(t) are weak limits, in L,(1, L,(Q)),
of the Rothe sequences u,(t), i,(t), respectively. But these sequences are identical.
Indeed, if w — w e V, then, as well known, the solutions of (3.4)—(3.6) (or of similar

problems for the division d,,) are the same, independently of the choice of the function
w or w.

CHAPTER 5. APPLICATION OF THE RITZ METHOD.
(VARIATIONAL-DIFFERENCE METHODS)

To approximate solving of problems of the type (3.4)—(3.6), direct variational
methods can be used. We shall consider the Ritz method here, although other methods
with similar properties can be investigated as well. As before, we assume V-ellipticity
of the form ((v, u)) as well as that (3.7) is fulfilled (implying symmetry of the form
(v, w))- -

Thus, consider the Rothe problems(3.4)—(3.6) which will be writen here in the form

(5) (02 + (02 = 20) = (o), 2= we
' (52) (z2) 4 vz = 2) = (f)s 22— we b,
(5.3) (v, z,)) + %(z), Zp— Zpm1) = (0.f), z,—wevV,

(to be fulfilled for all ve V; z, = u,). Let vy, ..., v;... be a base in V. Solving the
problem (5.1) by the Ritz method, choose a positive integer | and denote by

(5:4) Zy (X)) = w + :Z1al’il,i(x)
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the Ritz approximation of the solution z,.') Thus, a, ; are correspodning Ritz
coefficients. (We should have denoted them by ai‘fi more precisely.) Putting z, , .
instead of z, into (5.2) and choosing r} (ry = ry is not excluded), we get similarly
the Ritz approximation z,,, of the solution z, of the problem (5.2) (with z,, .
substituted for z,). Going on in this way, we come to the Ritz approximation Zp ot
of the solution z, of the problem (5.3) with z,_, , . | substituted for z,_,.

Let us construct, similarly as in (1.9), the Ritz-Rothe function (corresponding to the

division d,)
t—t;
(5.5) ul,,,:,,,_,,px(x, 1) = z{,y,ll(x) + —hfj [Zj+1,r,-+,1(x) - Zj,r,*(x)]

for

I

IIA

t

IIA

tiers J=0,..,p—1, z,,=0.

Let us turn to the division d,. We have

(56) (@020) + (st = ) = (), 2= weV,

(57) (0.25) + (02t = 2) = (f), 2= weV,

(58) (05 + o (0 25— ) = (0f) Z = weV
1

(for all ve V; z§ = u,).

Solve, again these problems by the Ritz method, choosing positive integers rj, ...
.., and substituting z§ in (5.7) by the Ritz approximation z, , . (cf. (5.4)), etc.,

and construct the corresponding Ritz-Rothe function

(59) un,r'; ,,,,, r:"(x’ t) ‘

A question arises, of course, how “close” is this function to the very weak solution
u(t) = u(x, t) of the problem (3.1)—(3.3).
We show that to an arbitrary ¢ > 0 it is possible to find such n and such positive

5, that

integers ry, ..., 1},

(510) “u(xa t) - un‘r';,...,r;"(x’ t)HLz(Q) <éE.

Having proved it, we say that the Ritz-Rothe method for the problem (3.1)—(3.3)
is convergent.

1y In what follows, theoretical considerations concerning the convergence of variational-
difference methods take place. Practically, it is not necessary, of course, to use the ‘‘classical”
Ritz procedure (5.4), where the function w is to be known.
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To the proof we use the idea from [1]: First, in consequence of (4.18), to /2 it is
possible to find such an m that for all n > m we have

(5.11) e, ) = s Dy <

where u,(x, t) is the Rothe function from Theorem 4.3. Thus it remains to prove that
to s/2 such positive integers 77, ..., 5 can be found that

&
(5.12) lux, 1) = ot gy < :

Because of the form of the functions u,,(x, t), u
it is sufficient to prove that

(5.13) 125(x) = 20,2 g <

forevery j =1, ..., p,.

- (they are piecewise linear in 7)

n
B ey

&

2JT
Let r] be sufficiently large in order that

(5.14) 123(x) = 21,2 (3) | oy < 6 -

(This can be always reached, even in V.) Put z, ,» instead of z{ into (5.7) and denote
the solution of this problem by Z3. Thus, Z solves the problem

_ 1 . \ .
(5.15) (v, 23)) + ;(v, =z ) =(vf), B —weV, vel.

Substract (5.15) from (5.7) and put v = z — Z3. (This is possible, because z5 —
— Z3 e V.) We get

(25 =25, 25 =2 = (21— 2,7) S0
and, consequently,

(5'16) “Zg - Z;HLZ(Q) = ”2'1' — I

L@y < 0.
Let 1} be sufficiently large, so that
(5.17) 125 — 22,8 Laiy < 85

- replace 2 in the third of the problems (5.6), (5.7) by z,,% and denote the solution
of this problem by z3. Because of (5.16), (5.17) we have

|25 - Zz,r';”Lz(m <25,
so that we get, similarly as in (5.16),
|25 = 23 o) < 26
Going on in this way, we get, choosing r%, 1}, ... sufficiently large,

(B Zn,r;.'HLz(m <jé, j=1,..py-
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To fulfill (5.13) it is thus sufficient to choose

In this way, (5.10), and thus the required convergence theorem is proved:

Theorem 5.1. The Ritz-Rothe method for the problem (3.1)—(3.3) is convergent.

Remark 5.1. It is easy to see that the function w,(x) from the decomposition
(3.8), which plays a significant role in theoretical considerations, does not appear
in the numerical process (when applying the Ritz-Rothe method) at all.

Remark 5.2. The ideas of this paper can be well utilized in considering more
general problems.

’
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Souhrn

POZNAMKA K NEHOMOGENNIM POCATECNIM A OKRAJOVYM
PODMINKAM V PARABOLICKYCH PROBLEMECH, RESENYCH
ROTHEHO METODOU

KAREL REKTORYS a MARIE LUDVIKOVA

Pii feSeni parabolickych problémt Rotheho metodou (viz K. Rektorys [1]) &ini
po teoretické strance uréité obtiZe nehomogenni pocateéni a okrajové podminky.
Tyto potize se feSi zpravidla tim, Ze se vyslovi nékteré dodatecné predpoklady,
tykajici se pfislusné bilinearni formy a potatecnich i okrajovych funkci (srov. [1],
[2], [3] atd.).

V tomto &lanku je ukdzano, jak lze tyto dodatecné predpoklady odstranit (v p¥ipadg
pocate¢nich podminek — kap. 2), resp. nahradit jednodus§imi a pfirozen&jsimi pred-
poklady (v ptipad& okrajovych podminek — kap. 3; viz zejména pfedpoklad (3.7),
str. 64).

V zavéru &lanku se zkouma pouZiti Ritzovy metody (resp. pfibuznych piimych
metod) k pfibliznému feSeni vzniklych eliptickych problém.
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