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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

FINITE ELEMENT ANALYSIS OF THE SIGNORINI 
PROBLEM IN SEMI - COERCIVE CASES 

IVAN HLAVACEK, JAN LOVISEK 

(Received April 20, 1978) 

INTRODUCTION 

A numerical analysis of the Signorini problem in the plane elastostatics by finite 
elements has been studied in [1] for boundary conditions which guarantee the 
coerciveness of the strain energy functional over the whole energy space. It is the 
aim of the present paper to extend the results to some semi-coercive cases, i.e. for 
boundary conditions and external forces, which imply the coerciveness of the potential 
energy over the subset of admissible displacements or over a subspace of the energy 
space only. 

In other words, we assume that if there exist admissible rigid displacements then 
the resultants of the body forces and surface tractions have proper directions. 

Moreover, we restrict ourselves to the cases, when the subspace of rigid virtual 
displacements had the dimension one, in order to obtain uniqueness of the solution. 

We prove a priori error estimates provided the solution is smooth enough. The 
convergence will be proven even in the case of non-regular solution. 

1. FORMULATIONS OF THE SIGNORINI PROBLEM 

Let Q c R2 be a bounded plane domain with Lipschitz boundary, occupied by an 
elastic body. Let u — (« l 5 u2) e [ H 1 ^ ) ] 2 be displacement vectors. The strain tensor 
e is defined by 

/. ,\ / \ 1 l^ui duA . . , „ 
(M) •"M-ife + faJ- '''-1'2-
By means of the generalized Hooke's law we define the stress tensors 

(1-2) Tij = cijklskl, ij = 1,2 

273 



where the summation is implied over any repeated subscript over the range 1, 2, the 
coefficients cijkl e L^Q) satisfy the symmetry conditions 

(1-3) cijkl ~ cjikl — cklij 

and there exists a positive constant c0 such that 

(1.4) cuki^ifyi = co£ij£u 

holds for any symmetric a almost everywhere in Q. 

Under external loads (see Fig. 1) the body is in equilibrium and the stress tensor 
satisfies the equilibrium equations 

Л 

Fig. 1. 

(1.5) p l + Fi = 0, i = 1,2, 
CXj 

where F{ are components of the body force vector. 
The stress vector T with the components 

Ti = T^ 

where n = (nA, n2) is the unit outward normal to the boundary dQ •= F, can be 

decomposed into the normal component 

T = T-n'• = T • n n • 
J n J i'11 L ij 11 lj 

and the tangential component 

Tt = Ttt i = Xijtinj 

where t = (t l 5 t2) = ( — n2, n±) is the unit tangential vector. We write also 

un = utni, ut = utti 

for the normal and tangential displacement components. 

Let the boundary F consist of three mutually disjoint parts Fa, FT and F0 , i.e. 

(1.6) r= f f l u f t u f 0 ) 
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where Ta contains a set open in F, 

(1.7) T = T on FT, 

(1.8) M„ = 0 , Tt = 0 on F0, 

(F0 may be e.g. an axis of symmetry of the problem) and 

(1.9) un g 0 , T„^0, unTn = 0, Tt = 0 on Ffl 

(conditions of Signorini). 

Assume that F e [L2(.Q)]2 and Te [L2(FT)]2 are prescribed body forces and surface 
loads, respectively. 

Let us introduce the following forms 

A(u, v) = CiJkleij(u) ekl(v) dx , 
JA 

L(v) = J FM dx + j 7>. ds . 
J.Q JTr 

and the functional of total potential energy 

&(v) = iA(v, v) - L(v) . 

Denote 

V= {ve[H1(G)Y\vn = 0 on F0} 

the space of virtual displacements and define the set of admissible displacements 

K = {veV\vn^0 on Ffl} 

Definition 1.1. An element u e K will be called a weak solution of the Signorini 
problem if 

(1.10) tf(u) = $£{y) W e K . 

Lemma 1.1. Any "classical" solution of the problem, i.e. a solution Of(l.l), (1.2), 
(1.5), (1.7), (1.8), (1.9), is a weak solution. On the other hand, if the weak solution 
is smooth enough, it represents a classical solution. 

Proof is parallel to that of Lemma 1.1 in [1]. 
Let us discuss the existence and uniqueness of a weak solution. To this end, we 

introduce the set of rigid body displacements: 

R = {Q = (Ql9 QI) | Qi = «i - bx2, Q2 = a2 + bxj , 

where al9 a2, b are arbitrary real numbers. 
Denote R' = R n K and let R* be the subset of R' of all ' 'bilateral" vectors, i.e. 
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(1.11) K* = {O e R' I Q e R* => - O G K*} . 

It is easy to see, that R* is a linear manifold and 

(1.12) K* - {Q eR \Q„ = 0 on FauF0}. 

Introduce also the space 

Rv = K n V of virtual rigid displacements . 

Theorem 1.1. Assume that 

(1.13) /*, = £* = £ ' , dimP, = 1 

and let 

(1.14) L(O) = 0 V O e ^ . 

Denote by V = H ® Rv the orthogonal decomposition of the space V. 
Then 

(i) the functional $£ is coercive on H; 

(ii) there exists a unique solution u e K of the problem 

(1.15) Se{u) ^ Se(z) Vz e K , £ = K n H ; 

(iii) any weak solution u of the Signorini problem (V10) can be written in the form 

U = U + Q , 

where w G .rv is the solution of the problem (1.15) and O e Ky; 

(iv) if w G K is the solution of (L15), then u = w + O, where £ is any element of Rv9 

represents a weak solution of the Signorini problem (1.10). 

Remark 1.1. An example, when the assumptions (L13) are satisfied, is shown in 
Fig. 2. 

Fig. 2. 

Remark 1.2. From the numerical point of view it is convenient to introduce the 
following scalar product in V(see [5] — I., Th. 2.3): 
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(u, v)v = Г £ , » e,/y) dx + p(u) p(v), 
Jfl 

dx 

where p is a linear continuous functional on V such that 

{O G R„ p(O) = 0} => Q = 0 . 

For instance, if 

K«, = {£ | r?i = a j 6 K1,02 = o} 

(see Fig. 2), we can choose p(v) = vi ds, where Fx cz .Q, mes Fx > 0. 
J Ti 

Then (cf. [5] - I. Remark 4) 

H = VQRV = {veV\ p(v) = 0} . 

Proof of Theorem 1.1. (i) For any v e H the following inequality of Korn's type 
is valid see [5] — I. Remarks 3 and 4) 

0-16) ci\\v\\ = M. 

where || • || is the norm in [H^-^)]2 and 

(1.16') | v | 2 = f e,,.(v)£,.,(v) 

Then we have for any v e H 

L(v) = ic0 |v |2 - L(v) = C||v||2 - ||L|| ||v|| , 

and the coerciveness of 5£ over H follows. 

(ii) Since !£ is Gateaux differentiable and convex, K being convex and closed, there 
exists a solution M of the problem (1A5). 

Let u] e K and u2 e K be two solutions of (1.15). Then we may write 

A(ul, u2 - u1) = L(u2 - u 1 ) , 

A(u2, u1 - u2) = L(ux - u2) . 

Adding these two inequalities, we obtain 

A(u2 - u1, u1 - u2) = 0 

and consequently, 

colu1 - u2 |2
 = A(ul - u2, u1 - u2) = 0 => u1 - u2 e R, n H = {0} . 

Therefore the solution is unique. 

(iii) By virtue of (1A4) we have 
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(1.17) &(v) = S£(y + Q) VO e Rv, Vv e V. 

Moreover, it holds 

(1.18) PH(K) = KnH, 

where P H is the projection onto II. 
In fact, let v e K. Then using (1.12), (1.13), we obtain 

PHv = v - PRvv , 

(PHv)n = vH - (PR*v)„ = v„ ^ 0 on ra=>PHveKnH. 

The inclusion K n H = PH(K n H) c PH(K) is obvious. 

Let u be a weak solution of (1.10). By virtue of (1.17) we may write 

J?(PHv) = &(PHv + PRy) = 2(v) Vv G V; 

furthermore, PHu e K n H, 

JSf(PH«) = J^(«) ^ J^W = ^(P H v) Vv e K 

and from (1.18) we conclude that PHu is a solution of (1.15); 
The uniqueness implies that PHu = u, U = U + Q,QE RV. 

(iv) Let u = u + Q where Q e Rv. Then we have u e K (because £ e P*) and 

(1.19) JSf(u) = Se(u) ^ J?(z) Vz e K . 

Let v G K. Using (1.17) and the decomposition 

v = pHv + P^v, 

we obtain for z = PHv e PH(K) = K^ 

(1.20) jSf(z) = S£(y) . 

Finally (1.19) and (1.20) lead to the relation 

se(u) = se(y) vvGK. 

Theorem 1.2. Assume that 

(1.21) P* = {0} , d i m P , = 1 , 

(1.22) L(O) + 0 V O G R . - I O } 

and either Rf = K n R = {0} Or 

(1.23) P ' = KnP 4= {0} , 

(1.24) L(O) < 0 VO e K n P --- {0} . 

Then S£ is coercive on K and there exists a unique weak solution u e K of the 
Signorini problem (1.10). 
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Remark 1.3. An example, when the assuptions (1.21), (V23) are satisfied, is shown 

in Fig. 3. An example satisfying the assumptions (V21) and R' = {0} is presented 

in Fig. 4. 

Fig. 3. Fig. 4. 

P r o o f of Theorem 1.2. (i) Let us comider the case Rf = {0}. We shall need the 

following abstract result ([4] — Th. 2.2): 

Proposition 1. Let \u\ be a seminorm in a Hilbert space H with the norm ||w||. 

Assume that if we introduce the sub space 

R = {UGH I | u | = 0} , 

then dim R < oo and it holds 

(1.25) * cJlu l = |u | + \\PRu\\ = c21| ii I V u e H , 

where P^ is the orthogonal projection onto R. 

Let K be a convex closed subset of H, containing the origin, K n R = {0}, 

P : H —> R1 a penalty functional with a differential, which is 1 — positively homo­

geneous1) and such that 

P(u) = OoueK . 

Then it holds 

(1.26) |u | 2 + p(u) = c\\u\\2 Vu e H . 

The Proposition 1. can be applied with: H = V, K = jRy, |v | defined as in (1.16'), 

/J(«) = ^ | r ( K ] + ) 2 d s . 

To verify (1.25), we make use of the inequality of Korn's type and of the decomposi­

tion V = Q © Rv to obtain 

(1.27) i" i i 2 = i i F Q"ir + ii p R,"i i 2 = C\PQU\2 + iipRu"ii2 

= e|u|2 + \\PR u\\2 . 

Г.e., Dß(tu, v) = tDß(u, v) W > 0, u, v&H. 
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From (1,26) it follows that 

(1.28) |u|2 ^ c||u||2 yueK . 

Then one can deduce easily that !£ is coercive on K and the existence of a weak 
solution u of the Signorini problem (1A0). 

If u1 and u2 are two weak solutions of (1.10), using the same approach as in the 
proof of Theorem 1A (ii), we obtain 

Q = u1 - u2 e Rv . 

Moreover 

^(u 1 ) - &(u2) ==> L(ul) = L(u2) => L(Q) = 0 

and from the assumption (1.22) we conclude that O = 0. 

(ii) Let us consider the case (1.23), (1.24). We shall employ the following abstract 
result ([4] - Th. 2.3): 

Proposition 2. Let the assumptions of Proposition 1 be satisfied with the only 
exception that K n R #= {0}. 

Moreover, let f be a linear bounded functional on H such that 

(1.29) f(v) < 0 Vv e K n R -=- {0} . 

Then 

(1.30) |u |2 + £(u) - f((u) ^ CjJuH - c2 Vw e H . 

The Proposition 2 can be applied with the same H, R, |-|, /? as previously and with 

/(») = ! ( » ) . 

Then (1.30) implies that i f is coercive over K. The existence and uniqueness of the 
weak solution can be obtained in the same way as in the previous case (i). 

Remark 1.4. We avoid the cases when the subspace Rv of virtual rigid displacements 
has greater dimension than 1. 

In such cases the solution is not unique even in the subspaces of the type V © R* 
(cf. [3], [4]). 

2. FINITE ELEMENT APPROXIMATIONS 

Let the assumptions of Theorem 1.1 or Theorem 1.2 be satisfied. Henceforth let Q 
be a polygonal bounded domain. Let us carve Q into triangles, creating a triangula-
tion erh. 

Let the points FT n Pa, FT n F0 and Ta n F0 coincide with some vertices of&'h. 
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A family {^/,}, 0 < h ^ 1, of triangulations will be called regular, if a positive 
constant a exists independent of h and such that no interior angle in 3Th is less than a. 
Let Vh be the space of linear finite elements, i.e. the space of continuous functions in 
Q, piecewise linear over 3~h. We define: 

Kh = K n [V,]2 = {v G [V„]2 | v„ = 0 on F0, vn S 0 on Ffl} 

in case of Theorem 1.2 and 

Kh = K n [V,]2 = {v G [V,]2 | p(v) = 0, v„ = 0 on F0, vn ^ 0 on Fa} 

in case of Theorem 1.1 (cf. Remark 1.2). 

A function uh e Kh will be called a finite element approximation of the Signorini 
problem, if 

(2.1) &(uh)£X(v) VvGK„. 

Lemma 2.1. There exists a unique solution of the problem (2.1). 

Proof. The set Kh is closed and convex subset of K and of H, respectively. Theorems 
1.2 and 1.1 imply that the functional <£ is coercive over Kh. Hence the existence of uh 

follows. The uniqueness can be proved in the same way as in Theorems l.L and 1.2. 
Let us derive an apriori estimate for the error uh — U, where U = u e K in the 

case of Theorem 1.1 and U = u in the case of Theorem 1.2. We employ the method 
proposed by Falk [2], which is based on the following lemma. 

Lemma 2.2. Let |- | be the seminorm defined in (1.16'). 
Then it holds 

(2.3) C0\U - uh\
2 ^ L(U - vh) + A(U, vh - U) + A(uh - U,vh - U) 

W, e Kh . 

Proof. Since 

A(U, v - U) ^ L(v - U) 

holds for any v s K (any v e K, respectively), we may write 

(2.4) A(U, U) ^ A(U, vh) + L(U - uh). 

From the definition (2.1) it follows that 

(2.5) A(uh,uh)^A(uh,vh) + L{uh-vh) \vheKh. 

Then (2.4), (2.5) and (1.4) imply 

C0|U - u„Y ^ A(U -uh,U- uh) = A(U, U) + A(uh, uh) -

- 2A(U, uh) ^ L(U - vh) + A(U, uh) + A(uh, vh) - 2A(U, u„) = 

= L(U - vh) + A(U, vh-u) + A(uh -U,vh-U). 
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Theorem 2.1. Let the solution U be such that the stress components TtJ(U) e H1(Q), 
i,j — 1, 2, U e \H2(Qj\2 and U„ e H2(ra n Fw) holds for any side Fmof the polygonal 
boundary F. Then we have the estimate 

(2.6) \U - uh\ 5S Ch , 

where the constant C depends on U and not on h. 

Proof. Integrating by parts and using the boundary conditions we obtain 

A(U, vh-U) + L(U - vh) = f (BU)j (vh - U)j dx + 
J« 

f t,,.(U) nj(vh - U)t ds - f Fj(vh - U)j dx - ! Tj(vh - U)j ds = 
J T J Q J TT 

TU(U) nj (vh - U), ds =- f T„(U) (vhn - Un) ds , 

+ 

L Jгa 

where 

(Bu)j = - --- (c,7tm£tm(U)) = - A T,,.(U) , j = 1, 2 -
OXj Oxj 

Thus the right — hand side in (2.3) can be estimated as follows 

(2.7) A(u, - U, v, - U) + f T„(U) (t>„„ - U„) ds 5S 
J/"« 

^ ic l £ |uA - U|2 + i c l £ - > A - U|2 + c2(U) \\vhn - Un\\L2(ra). 

with an arbitrary positive s. 

First let us consider the case of Theorem IT, i.e. U = u. Choosing vh = PHu{,i.c. 

the orthogonal projection of the Lagrange linear interpolate of u on the triangulation 

3Th, we can easily verify that vheKh = H n K n [Vft]
2. In fact, PHul = Wj — D, 

D G R*, consequently 

(2.8) (PHWi)„ = (*,)„ - D„ = («-)„ on F0 u Ffl . 

It is readily seen that (u^ = 0 on F0 and (w^ ^ 0 on Fa, so that P^**! e K. 

Since D belongs to [V/,]2, PH«i e [V/,]2- Therefore PHux e Kft. Further we may 
write 

(2.9) |PHtt, - u\ = \u{ - u\ ̂  CA|«|2 , 

(2.10) \\(PH«i)n ~ »»||L2(ra) = ||(«i)» - »w||L2(Ta) ^ Ch2 EII*«IUa(r.nrm) > 
m 

where we have used the relation (2.8). 
From (2.3), (2.7) and (2.9), (2.10) we obtain the estimate (2.6), choosing s suffi­

ciently small. 
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Finally, let us consider the case of Theorem 1.2, i.e. U = u. With the choice 
vh = U-, we obtain vh e Kh and the estimates of the form (2.9) and (2.10) for |uj — u| 
and ||wlM — u„||L2(ra)> respectively. Then (2.6) follows as previously. 

3. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATIONS 
TO A NON - REGULAR SOLUTION 

The a priori error estimate (2.6) has been deduced under strict regularity assump­
tions. In general, however, such regularity of the solution cannot be expected for 
domains with polygonal boundary (see [3], [4]). Therefore we shall study the con­
vergence of the finite element approximations in a general case, i.e. without any 
regularity requirement imposed on the solution. The proof will be based on the fol­
lowing theorems. 

Theorem 3.1. Let Wbe a Hilbert space with the norm || • || and a semi — norm || • ||. 
Let K be a closed convex subset of W, 0 < h ^ 1 a real parameter, Kh cz K a closed 
convex subset for any h. 

(i) Let a differentiable functional f be defined on W such that f has a second 
Gateaux differential, satisfying the following condition: positive constants a0, C 
exist such that 

(3.1) a 0 | | z | 2
 = D2f(u, z, z) ^ C||z||2 Vw e K , \fzeW. 

Let u(uh) denote the element minimizing f over the set K(Kh). 
Assume that for any h an element vheKh exists such that 

(3.2) ||u - vh\\ -» 0 for h -» 0 . 

(3.3) Then it holds ||w - uh\\ -» 0 for h -> 0. 

(n)Let the functional Jf be coercive on K and satisfies instead of (3.1) the inequalities 

(3.4) a0 |z|2 ^ D2J(u, z, z) ^ C||z|2 V u e K , Vz e W. 

Let the unique minimizing element u(uh) exist and let the assumption (3.2) hold. 
Then 

uh -- u (weakly) in W, 

\u — uh\ —> 0 for h ~> 0 . 

P roo f of the part (i) is given in [ l ] — Th. 3.1. The part (ii) can be proven by 
a parallel approach. 

Theorem 3.2. Assume that the number of points F0 n Ta, FT n F0 and Pa n FT 

is finite. Then the set K n [C°°(-3)]2 is dense in K. 
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Proo f is analogous to that of Theorem 3.2 in [1]. The main results of the present 
Section is contained in the following Theorem. 

Theorem 3.3. Let the assumptions of Theorem 3.2, Theorem 1.1 and of Theorem 
1.2, respectively, be satisfied. Let U denote the solution u of the problem (1.15) and 
the solution u of the problem (1.10) respectively. Then 

(3.5) uh->U in [H\Q)f 

holds for any regular family of triangulations and h —> 0. 

Proof, (i) Consider first the case of Theorem 1.1 and apply the part (i) of Theorem 
3A, setting u = M, 

W=H9 K = K, / = .£?, H * || = H U f l w -
Then it is easy to verify, that (3.1) holds, making use of (1.4) and (1.16). 

To verify also (3.2), we employ Theorem 3.2. There exists 

weK n [C°°(.Q)]2 such that ||w - u\\ < et Vex > 0 . 

Then 

pHw = w - Q e [ C 0 0 ^ ) ] 2 , (Q e R*) 

PHw e K (cf. a similar argument in (2.6)), consequently 

PHw e K n [C°°(D)]2 . 

Let us set 

vh — PHVHW)I J 

where ( ), denotes the Lagrange linear interpolate over 3~h. Then the equivalence of 

the norm || • || and the seminorm (1.16') in H (cf. (V16)) yields that 

||v, - PHw|| S C\P^PHw)t - PHw| = 

= C|(PHw), - PHw| S C^IPnW^ 

holds for any regular family of triangulations. 
Moreover, we have 

|P H w - w|| S C\PHw - u\ = C\w - u\ <; C||w - u\ < Ce1. 

Therefore we may write 

\\vh - u\\ <; Cxh\PHw\2 + Ce1 

which results in (3.2). 

Finaly, the convergence uh -> u in H follows from (3.3). 

(ii) Consider the case of Theorem 1.2. We may apply the part (ii) of Theorem 3A, 
setting 
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W = [Hl(Q)f , / = <£ , (K = K). 

Then (3.4) holds and the solutions are unique, ££ is coercive on K. The assumption 
(3.2) can be verified on the basis of the density theorem 3.2. In fact, we choose 
WGK n [C°°(iQ)]2 sufficiently close to u and set vh = w{. It is easy to see that 
w{ e Kh and that vh converges to w for h -> 0 (cf. the proof of Theorem 3.3 in [ l]) . 

Theorem 3.1 (ii) implies that uh --» u in W, |oA — u| -> 0. Moreover, it holds (see 
e.g. [5] — I, Theorem 3.2) 

(3.6) |v|2 + ||v||2 £ C|v||2 MVEW, 

where || • ||0 denotes the norm in [L2(;Q)]2. 

Since uh -^u (weakly) in [ H 1 ^ ) ] 2 , uh -> u in [L2(0)]2 follows and the assertion 
(3.5) is a consequence of (3.6). 
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Ѕ o u h r n 

ANALÝZA ЅIGNORINIНO ÚLOHY 
V ЅEMI-КOERСITIVNÍСH PŘÍPADEСH METODOU 

KONEСNÝСH PRNKŮ. 

ІVAN HLAVÁČEК, ЈÁN LOVÍЅEК 

Výsledкy předchozího článкu [1] jsou rozšířeny nа úlohy, кdy existují netriviаlní 
přípustná posunutí t lesа jакo tuhého celкu а výsledníce zаtížení mа správný směr, 
tакže existuje řešení úlohy. Když prostor virtuаlních posunutí tuhého t lesа má 
dimenzi jednа, Ize doкаzаt i jednoznаčnost řešení а кoercivitu potenciаlní energie 
nа množině přípustných funкcí. 

Odvozují se odhаdy chyb v přípаd dostаtečně regulárního řešení, resp. sаmotná 
кonvergence аproximаcí к neregulаrnímu řesení. 
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