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INTRODUCTION

A numerical analysis of the Signorini problem in the plane elastostatics by finite
elements has been studied in [1] for boundary conditions which guarantee the
coerciveness of the strain energy functional over the whole energy space. It is the
aim of the present paper to extend the results to some semi-coercive cases, i.e. for
boundary conditions and external forces, which imply the coerciveness of the potential
energy over the subset of admissible displacements or over a subspace of the energy
space only.

In other words, we assume that if there exist admissible rigid displacements then
the resultants of the body forces and surface tractions have proper directions.

Moreover, we restrict ourselves to the cases, when the subspace of rigid virtual
displacements had the dimension one, in order to obtain uniqueness of the solution.

We prove a priori error estimates provided the solution is smooth enough. The
convergence will be proven even in the case of non-regular solution.

1. FORMULATIONS OF THE SIGNORINI PROBLEM

Let @ = R? be a bounded plane domain with Lipschitzboundary, occupied by an
clastic body. Let u = (u,, u,) e [H'(2)]* be displacement vectors. The strain tensor
¢ is defined by

u,  ou
(1.1) pfu) = L (244 ) =12,
2\0x;  0x;

By means of the generalized Hooke’s law we define the stress tensors

(1'2) Tii = Cijkiur» LJ = 1,2
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where the summation is implied over any repeated subscript over the range 1, 2, the
coefficients ¢;;,; € Lw(Q) satisfy the symmetry conditions

(1.3) Cijki = Cjikt = Ckrij
and there exists a positive constant ¢, such that
(]-4) Cijuifijfer = Cobijbij

holds for any symmetric ¢ almost everywhere in Q.

Under external loads (see Fig. 1) the body is in equilibrium and the stress tensor
satisfies the equilibrium equations

T

(1.5) Py p=0, i=1,2,
0x ;

J

where F; are components of the body force vector.
The stress vector T with the components

Ti = T..n.:

where n = (ny, n,) is the unit outward normal to the boundary 6Q = I', can be
decomposed into the normal component

T, = Tin; = 1y5n;n;

ijrritty

and the tangential component

T, =Tit;, = 1;;t;n

igtitty

where t = (t,, 1,) = (—n,, n,) is the unit tangential vector. We write also

u, = u

n N, U= ul;

for the normal and tangential displacement components.
Let the boundary I' consist of three mutually disjoint parts I',, I', and Iy, i.e.

(1.6) F=r,0l, uTl,,
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where I', contains a set open in I',

(1.7) T=T on T,,

(1.8) u, =0, T,=0 on I,
(I'o may be e.g. an axis of symmetry of the problem) and

(1.9) u, <0, T,£0, u,T,=0, T,=0 on I,

n = nin

(conditions of Signorini).

Assume that F e [L,(2)]* and T e [L,(I',)]* are prescribed body forces and surface
loads, respectively.
Let us introduce the following forms

Alu,v) = f o) ) dx,

L(v) =J Fv, dx +,[ Tv; ds .
2 I'e

and the functional of total potential energy
L(v) = 3A(v,v) — L(v).
Denote
V={ve[H(2)]*|v,=0 on I}
the space of virtual displacements and define the set of admissible displacements

K={veV|v,£0 on TI,}

a

Definition 1.1. An element u € K will be called a weak solution of the Signorini
problem if

(1.10) L(u) < L(v) VveK.

Lemma 1.1. Any “classical” solution of the problem, i.e. a solution of (1.1), (1.2),
(1.5), (1.7), (1.8), (1.9), is a weak solution. On the other hand, if the weak solution
is smooth enough, it represents a classical solution.

Proof is parallel to that of Lemma 1.1 in [1].
Let us discuss the existence and uniqueness of a weak solution. To this end, we
introduce the set of rigid body displacements:

R = {Q = (Q1>Qz)lQ1 =da; — bx;,0, = a, + bxl} >

where a,, a,, b are arbitrary real numbers.
Denote R’ = R n K and let R* be the subset of R’ of all “bilateral” vectors, i.e.
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(1.11) R* = {0eR'|ge R* = —geR*}.
It is easy to see, that R* is a linear manifold and
(1.12) R*={geR|g,=0 on I,uly}.
Introduce also the space
R, = R nV of virtual rigid displacements .

Theorem 1.1. Assume that

(1.13) R,=R* =R, dimR, = I
and let
(1.14) L(e) =0 VoeR,.

Denote by V = H @ R, the orthogonal decomposition of the space V.
Then

(1) the functional & is coercive on H;
(ii) there exists a unique solution 7 € K of the problem
(1.15) L(d) < #£(z) VzeK, K=KnH;
(iii) any weak solution u of the Signorini problem (1.10) can be written in the form
u=14¢4-+ o,
where i € R is the solution of the problem (1.15) and ¢ € R,;

(iv)if @ € K is the solution of (1.15), then u = & + o, where ¢ is any element of R,,
represents a weak solution of the Signorini problem (1.10).

Remark 1.1. An example, when the assumptions (1.13) are satisfied, is shown in
Fig. 2. ‘

Fig. 2.

Remark 1.2. From the numerical point of view it is convenient to introduce the
following scalar product in V (see [5] — 1., Th. 2.3):
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(u,v), = J e(u) e;;(v) dx + p(u) p(v),
o
where p is a linear continuous functional on V such that

{oeR,. ple) =0} =0 =0.
For instance, if

R, ={e]e; = a,eR', ¢, = 0}

(see Fig. 2), we can choose p(v) = J v, ds, where I'; = Q, mes I, > 0.
ry
Then (cf. [5] — I. Remark 4)
H=VOR,={veV|pv)=0}.

Proof of Theorem 1.1. (i) For any v € H the following inequality of Korn’s type
is valid see [5] — 1. Remarks 3 and 4)

(1.16) ciivll =
where || is the norm in [H'(2)]* and

(116) e = [ et ax.
Q
Then we have for any ve H

Lv) 2 Jeolv|* = L(v) = Cv]* — [[L] v

9’
and the coerciveness of % over H follows.

(ii) Since Z is Gateaux differentiable and convex, K being convex and closed. there
exists a solution # of the problem (1.15).
Let u' € K and u? € K be two solutions of (1.15). Then we may write

A(u', u? — u') = L(u? — u'),
A(v?, u' — ) 2 L(u' — u?).
Adding these two inequalities, we obtain

Au® — u',u' — u?)

v
o

and consequently,

I\

colu' — v £ A(u' — P u' —u) < 0=>u' —ureR,nH = {0}.
Therefore the solution is unique.

(iii) By virtue of (1.14) we have
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(1.17) L(v) = Z(v+0) YoeR,, VveV.
Moreover, it holds
(1.18) PyK)=KnH,

where Py is the projection onto H.
In fact, let v € K. Then using (1.12), (1.13), we obtain

PlIv:v—‘Pva’
(Puv)y = vy — (Pra¥)y =1, =0 on I',=PywveKnH.

The inclusion K n H = Py(K n H) Pu(K) is obvious.
Let u be a weak solution of (1.10). By virtue of (1.17) we may write

L(Pyv) = L(Pyv + Pry) = ZL(v) YveV;
furthermore, Pyue K n H,
L(Pyu) = L(u) < L(v) = L(Pyv) VvekK

and from (1.18) we conclude that Pyu is a solution of (1.15);
The uniqueness implies that Pyu = @, u = & + 9, g € R,

(iv) Let u = 4@ + ¢ where ¢ € R,. Then we have u € K (because ¢ € R*) and
(1.19) ZL(u) = L(4) £ #(z) VzeK.
Let v e K. Using (1.17) and the decomposition
v=~"Py+ Ppv,

we obtain for z = Pyv e Py(K) = K
(1.20) L(z) = ZL(v).
Finally (1.19) and (1.20) lead to the relation

L) £ Z(v) Vvek.

Theorem 1.2. Assume that

(1.21) R* = {0}, dimR, =1,
(1.22) L{o) # 0 VgeR, = {0}
and either R" = K n R = {0} or

(1.23) R = KnR+ {0},
(1.24) L(g) <0 VYoeKn R = {0}.

Then & is coercive on K and there exists a unique weak solution ue K of the
Signorini problem (1.10).
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Remark 1.3. An example, when the assuptions (1.21), (1.23) are satisfied, is shown
in Fig. 3. An example satisfying the assumptions (1.21) and R’ = {0} is presented
in Fig. 4.

Fig. 3. Fig. 4.
Proof of Theorem 1.2. (i) Let us comider the case R’ = {0}. We shall need the
following abstract result ([4] — Th. 2.2):

Proposition 1. Let |ul be a seminorm in a Hilbert space H with the norm Hu”
Assume that if we introduce the subspace

R={ueH]||ul =0},
then dim R < oo and it holds
(125) - ellul < Ju] + [Pl € cafu] VueH,
where Py is the orthogonal projection onto R.

Let K be a convex closed subset of H, containing the origin, K n R = {0},
B:H — R' a penalty functional with a differential, which is 1 — positively homo-
geneous‘) and such that

pu)y=0<=uek.
Then it holds
(1.26) [u]* + B(u) = c|ju]> VueH.
The Proposition 1. can be applied with: H = V, R = R,, |[v| defined as in (1.16’),

\ 1

Hoy =3 [ ddrs.
2)r,

To verify (1.25), we make use of the inequality of Korn’s type and of the decomposi-
tion V = Q @ R, to obtain
(1.27) lul> = |Poull* + [[Prul* = c[Poul* + |Pg.u]* =

= clu® + | Pe,ul?.

Y)Y Le., D(tu, v) = tDB(u, v) V't >0, u, v € H.
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From (1.26) it follows that
(1.28) lu]* = c|uf?> VueK.

Then one can deduce easily that . is coercive on K and the existence of a weak
solution u of the Signorini problem (1.10).

If u' and u? are two weak solutions of (1.10), using the same approach as in the
proof of Theorem 1.1 (ii), we obtain

o=u'—u?eR,. .
Moreover
L(u') = L(v?) = L(u') = L(u?) = L{o) = 0
and from the assumption (1.22) we conclude that ¢ = 0.
(ii) Let us consider the case (1.23), (1.24). We shall employ the following abstract
result ([4] — Th. 2.3):

Proposition 2. Let the assumptions of Proposition 1 be satisfied with the only
exception that K n R # {0}.
Moreover, let f be a linear bounded functional on H such that

(1.29) flv) <0 YveKn R = {0}. .
Then
(1.30) lu|2 + Bu) — f((u) 2 c1”u|| — ¢, YueH.

, B as previously and with

The Proposition 2 can be applied with the same H, R, ]

S(0) = L{v).
Then (1.30) implies that & is coercive over K. The existence and uniqueness of the
weak solution can be obtained in the same way as in the previous case (1)

Remark 1.4. We avoid the cases when the subspace R, of virtual rigid displacements
has greater dimension than 1.
In such cases the solution is not unique even in the subspaces of the type V' © R*

(cf. [3], [4]).

2. FINITE ELEMENT APPROXIMATIONS

Let the assumptions of Theorem 1.1 or Theorem 1.2 be satisfied. Henceforth let Q
be a polygonal bounded domain. Let us carve Q into triangles, creating a triangula-
tion J,.

Let the points I', n I",, I', n I’y and T, n I, coincide with some vertices of 7.
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A family {7,}, 0 < h < 1, of triangulations will be called regular, if a positive
constant « exists independent of h and such that no interior angle in .7, is less than a.
Let V, be the space of linear finite elements, i.e. the space of continuous functions in
Q, piecewise linear over 7 ,. We define:

Kin=Kn[V]*={ve[V,]*|v.=00nTy v, <0o0nTl,}
in case of Theorem 1.2 and
Ky=Kn[V])={ve[V])|pv)=0 v,=00n Iy v,<0o0n T,

in case of Theorem 1.1 (cf. Remark l.2).

A function u, € K, will be called a finite element approximation of the Signorini
problem, if

(2.1) L(u,) £ L(v) Vek,.
Lemma 2.1. There exists a unique solution of the problem (2.1).

Proof. The set K, is closed and convex subset of K and of H, respectively. Theorems
1.2 and 1.1 imply that the functional .Z is coercive over K,. Hence the existence of u,
follows. The uniqueness can be proved in the same way as in Theorems 1.1. and 1.2.

Let us derive an apriori estimate for the error u, — U, where U = iie K in the
case of Theorem 1.1 and U = u in the case of Theorem 1.2. We employ the method
proposed by Falk [2], which is based on the following lemma.

Lemma 2.2. Let || be the seminorm defined in (1.16").
Then it holds

(23) ColU —wu) £ (U —v,) + A(U.,v, — U) + A(u, — U,v, — U)
Vv, e K, .
Proof. Since
AU,v —U) = L(v - U)
holds for any v € K (any v € K, respectively), we may write
(2.4) A(U,U) < A(U,v,) + L(U — u,).
From the definition (2.1) it follows that
(2.5) A(uy, u,) < A(u,, v) + L(u, — v,) Vv, eK,.
Then (2.4), (2.5) and (1.4) imply
ColU — uy|> < AU — u,, U — u,) = A(U, U) + A(uy, u,) —
— 24(U, u,) £ L(U — v;) + AU, u,) + A(u,,v,) — 24(U, u,) =
=LU -v,) + AWU,v, — u) + Ay, — U,v, — U).
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Theorem 2.1. Let the solution U be such that the stress components t,(U) e H'(Q),
i,j=1,2Ue[H Q)]*and U, e H¥I', " I',,) holds for any side I, of the polygonal
boundary I'. Then we have the estimate
(2.6) U —u|=Ch,

where the constant C depends on U and not on h.

Proof. Integrating by parts and using the boundary conditions we obtain

AU,v, — U) + LU — v,) = f (BU), (v, — U), dx +

Fyv, — U);dx —f Ti(v, — U); ds =

Q2 I.

+ L 1(U)nj(v, — U);ds —J.
= L t(U)n; (v, — U); ds = L T,(U) (v — U,) ds ,

where

0 0 .

(Bu)j = - 1 (cijkmskm(u)) = - T[j(u) s J = 1, 2.

Ox; 0x;
Thus the right — hand side in (2.3) can be estimated as follows
(2.7) A(u, — U, v, — U) +f T(U) (v4, — U,) ds <

Ia
< chlaluh — U[2 + %;cla”[vh — UI2 + ¢,(U) “uh,, — U,,l]Ll(ra) .

with an arbitrary positive .

First let us consider the case of Theorem 1.1,i.e. U = #. Choosingv, = Py i, 1i.e.
the orthogonal projection of the Lagrangelinear interpolate of & on the triangulation
Ty, we can easily verify that v,e K, = Hn K n [V,]*. In fact, Py, = & — o,
0 € R*, consequently
(2.8) (Pyiy), = (dy), — 0, = (&), on IyuUT,.

It is readily seen that (&), = 0 on I'y and (&), < 0 on I',, so that Pyié, € K.
Since ¢ belongs to [V,]?, Py e[V,]*. Therefore Pui,e K,. Further we may
write

(2.9) |Pyuiiy — 4| = |d;, — & < Chl|d,,
(2100 [(Puiit)y — |l ycrey = (@) — il yray S CH? X|ln]l a2cranray »

where we have used the relation (2.8).
From (2.3), (2.7) and (2.9), (2.10) we obtain the estimate (2.6), choosing ¢ suffi-
ciently small.
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Finally, let us consider the case of Theorem 1.2, i.e. U = u. With the choice
v, = uy, we obtain v, € K, and the estimates of the form (2.9) and (2.10) for |u; — u|
and ||u,,, — u,,”,_z(rﬂ), respectively. Then (2‘6) follows as previously.

3. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATIONS
TO A NON — REGULAR SOLUTION

The a priorierror estimate (2.6) has been deduced under strict regularity assump-
tions. In general, however, such regularity of the solution cannot be expected for
domains with polygonal boundary (see [3], [4]). Therefore we shall study the con-
vergence of the finite element approximations in a general case, i.e. without any
regularity requirement imposed on the solution. The proof will be based on the fol-
lowing theorems.

Theorem 3.1. Let W be a Hilbert space with the norm H . “ and a semi — norm ]] . []
Let K be a closed convex subset of W,0 < h < 1 a real parameter, K, = K a closed
convex subset for any h.

(i) Let a differentiable functional ¢ be defined on W such that ¢ has a second
Gdteaux differential, satisfying the following condition: positive constants oy, C
exist such that

(3.1) %|z|? £ D2 #(u,z,z) £ C|z|* YueK, VzeW.

Let u(uy) denote the element minimizing # over the set K(K,).
Assume that for any h an element v, € K, exists such that

(3.2) [u—wv)] >0 for h—>0.
(3.3) Then it holds ||Ju — u,| — 0 for h — 0.

(i1) Let the functional ¢ be coercive on K and satisfies instead of (3.1) the inequalities
(3.4) aolz|> £ D*J(u, z,2) < C|z|* VueK, VzeW.

Let the unique minimizing element u(u,) exist and let the assumption (3.2) hold.
Then

u, —~u (weakly)in W,
]u—uh|—>0 for h—0.

Proof of the part (i) is given in [1] — Th. 3.1. The part (ii) can be proven by
a parallel approach.

Theorem 3.2. Assume that the number of points o~ T, ', Ty and I', T,
is finite. Then the set K n [C®(Q)]? is dense in K.
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Proof is analogous to that of Theorem 3.2 in [1]. The main results of the present
Section is contained in the following Theorem.

Theorem 3.3. Let the assumptions of Theorem 3.2, Theorem 1.1 and of Theorem
1.2, respectively, be satisfied. Let U denote the solution i of the problem (1.15) and
the solution u of the problem (1.10) respectively. Then

(3.5) u,->U in [H(Q)]?
holds for any regular family of triangulations and h — 0.

Proof. (i) Consider first the case of Theorem 1.1 and apply the part (i) of Theorem
3.1, setting u = 4,

W=H, K=K, =%, ”'HZH'H[HI(Q)P'

Then it is easy to verify, that (3.1) holds, making use of (1.4) and (1.16).
To verify also (3.2), we employ Theorem 3.2. There exists

weK n[C®(Q)]* suchthat |w — il <e¢ Ve >0.
Then
Pyw =w —0e[C®(Q)]*, (ee€R¥)
Pyw € K (cf. a similar argument in (2.6)), consequently
Pywe K n[C*(Q)]*.
Let us set
v, = P,,(P,,w)l S

where ( ); denotes the Lagrange linear interpolate over . Then the equivalence of
the norm ||| and the seminorm (1.16") in H (cf. (1.16)) yields that

[vh — Paw]| < C|Pu(Pyw), — Pyw| =
= C|(Pyw), — Pyw| £ C h|Pyw|,

holds for any regular family of triangulations.
Moreover, we have

[Paw — ] < ClPaw — il = Clw — il = C|w — i < Cz,.
Therefore we may write
[vi — @] = C,h|Pyw|, + Ce,
which results in (3.2).

Finaly, the convergence u, — uin H follows from (3.3).

(ii) Consider the case of Theorem 1.2. We may apply the part (ii) of Theorem 3.1,
setting
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w=[HQ], #F=2, (K=K).

Then (3.4) holds and the solutions are unique, & is coercive on K. The assumption
(3.2) can be verified on the basis of the density theorem 3.2. In fact, we choose
we K n[C?(Q)]* sufficiently close to u and set v, = wy. It is easy to see that
w, € K, and that v, converges to w for h — 0 (cf. the proof of Theorem 3.3 in [1]).

Theorem 3.1 (ii) implies that u, — u in W, |u, — u| » 0. Moreover, it holds (see
e.g. [5] — 1, Theorem 3.2)

(3.6) [v[> + [v[e = C|v]|* vvew,
where |||, denotes the norm in [L,(Q)]>.

Since u, —u (weakly) in [H'(2)]*, u, - u in [L,(Q)]* follows and the assertion
(3.5) is a consequence of (3.6).
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Souhrn

ANALYZA SIGNORINIHO ULOHY
V SEMI-KOERCITIVNICH PRIPADECH METODOU
KONECNYCH PRVKU.

IvAN HLAVACEK, JAN LOVISEK

Vysledky predchoziho ¢lanku [1] jsou rozsifeny na Glohy, kdy existuji netrividlni
pfipustnd posunuti télesa jako tuhého celku a vyslednice zatiZeni md spravny smér,
takZe existuje feseni ulohy. Kdyz prostor virtudalnich posunuti tuhého télesa md
dimenzi jedna, lze dokdzat i jednoznacnost feSeni a koercivitu potencidlni energie
na mnoziné pfipustnych funkci.

Odvozuji se odhady chyb v pripad¢ dostateéné reguldrniho feSeni, resp. samotnd
konvergence aproximaci k nereguldrnimu feseni.
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