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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

CONTACT BETWEEN ELASTIC BODIES — I. CONTINUOUS PROBLEMS 

JAROSLAV HASLINGER, IVAN HLAVACEK 

(Received June 5, 1978) 

INTRODUCTION 

In some technical and physical regions a problem arises to determine the displace
ment and stress fields in two solid bodies which are in a mutual contact. The classical 
analysis of this problem, started by Hertz [1] in 1896 was limited to simple geo
metries. The age of high — speed computers brought qualitative change also into the 
analysis of the contact problem. On the basis of a suitable discretization — by means 
of finite differences or finite elements — the problem can be solved approximately 
even for complex geometrical situations and boundary conditions. 

Many contributions are available in the literature dealing with the numerical 
solution of the plane contact problem. Linear finite elements on the triangulations 
have been applied most often and various discrete formulations proposed (see e.g. 
[2], [3], [4], [5]). The authors, however, do not present the formulation of the 
continuous problem, but start immediately with a discretized problem. As a con
sequence, errors can neither be defined nor analyzed. 

It is the aim of the Part I of our paper to formulate the continuous contact problems 
and to discuss the existence and uniqueness of (variational) solutions. In Part II we 
present a displacement finite element model for solving the contact problems, error 
estimates in case of regular solution, convergence proof for the case of irregular solu
tion and some algorithms. In Part III a dual variational approach will be discussed 
(a generalization of the Castigliano principle) for both the continuous problem and 
the finite element discretization. 

Throughout the paper we restrict ourselves to the case of zero friction. (The 
problem involving friction will be treated in a following paper by J. Necas.) 

1. FORMULATIONS OF THE CONTACT PROBLEMS 

Let us consider several kinds of contact between two elastic bodies. We start with 
problems without friction, which are much easier to deal with. First we present a set 
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of "local" conditions — equations and boundary conditions, defining a "classical" 
solution. Then we define "global" — variational — solution and prove that the clas
sical and variational solutions are equivalent in a certain sense. 

1.1 Classical formulations 

Throughout the paper, we assume for simplicity: 

— plane problem, 
— bounded bodies, 
— small deformations, 
— zero friction, 
— zero initial strain and stress fields, 
— a constant temperature field, 
— linear generalized Hooke's law for an anisotropic, nonhomogeneous material. 

Since the difference in the formulation of the contact problems and of the classical 
boundary value problems is only the boundary condition on the contact zone, the 
theory which follows, could be extended to other deformable bodies and an in
fluence of a given temperature field or of an initial strain or stress could also be 
involved. 

Let the two elastic bodies occupy the bounded regions Q', Q" <= R2 with Lipschitz 
boundaries. In the following, one or two primes denotes that the quantity is referred 
to the body Q' and Q", respectively. 

Let x = (x1, x2) be Cartesian coordinates. We seek the displacement vector field 
u = (ul, u2) over Q' u Q", i.e. u' = (u\, u'2) on Q' and u" = (it[, u"2) on Q" and the 
associated strain tensor field 

/. .\ / \ - (du: dii:\ . t _ 
(1.1) eu{u) = ~ _ ! + - - - ) , i =1,2. 

2 \Bxj dXiJ 

The stress tensor is related to the strain tensor by means of the following generalized 
Hooke's law 

(1.2) T.v = cukmekm, ij = V2, 

where a repeated index implies summation over 1,2. Assume that cijkm are bounded 
and measurable in Q' u Q", 

V / ijkm Cjlkm Ckmij , 

and a positive constant c0 exists such that 

(1-4) cijkmeijekm ^ c^^ij 

holds for any symmetric e{i, almost everywhere in Q' u Q". 
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The stress tensor satisfies the following equations of equilibrium in Q' u Q": 

(1.5) ^ + F. = 0 , i = l , 2 , 
dXj 

where Ft are components of a body force vector. 

Let the body Q' be fixed on a part Fu of its boundary: 

(1.6) u = 0 on TuczdQf. 

Let the tractions be prescribed on some parts of the boundaries, i.e., 

(1.7) Xij-nj = Pi, i = l , 2 , on T'x e dQ' and on Tx c dQ", 

where n denotes the outward unit normal to dQ' or to dQ"', respectively and Pt are 
given components of the surface traction. 

Assume that a part F0 of the boundary dQ" is subject to "classical" bilateral 
contact conditions, i.e., 

(1.8) w„ = 0 , Tt = 0 on T0czdQ'\ 

where 

Un = M.«., Tr = T^n / j , t = (flf t2) = (~n2, nt) 

are the normal displacement and the tangential stress vector components, respectively. 
Such conditions may occur e.g. on the axis of symmetry, enabling us to solve one half 
of the whole elastic system only. 

As the remaining parts of the boundaries dQ' u dQ" are concerned, we consider 
that a possible contact may occur there and distinguish two classes of contact prob
lems, as follows. 

1.1.1 Bounded contact zone 

First let us consider the case, when the contact zone cannot enlarge during the 
deformation process. Such an assertion is determined by the geometrical shape of the 
two bodies in a neighbourhood of the possible contact zone — see e.g. Fig. 1. 

Hence we may define the contact zone 

TK = dQ' n dQ" 

and we have the following decompositions: 

(1.9) dQ' = FuuF;uFx, 6^" = F;'uF0uFK, 

where FM, Tx, Tx and F0 are mutually disjoint open parts of the boundaries; 
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Fig. 1. 

assume that FM and rK have positive measure. The remaining parts may be either of 

positive measure or empty sets. 

We say that a unilateral bounded contact occurs on fK if 

(1.10) «•: + w'< o 

Let us describe a derivation of the condition (1A0). Suppose that before the 

deformation the bodies Q' and Q" were in contact along the whole arc rK (see Fig. 2). 

Let us put the xA — axis into the normal n" and the x2 — axis into the tangent t" 

at a point O e FK. During the deformation process the points O' e dQ' and O" e dQ" 

will displace by a different way, in general, but always the body Q" cannot penetrate 

into the body Q'. From this condition it follows that 

(1 H) мï(0, 0) S u[(xl9 x2) + n(x2), 
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where n is the function, describing the curve FA and x = (xl, x2) is a point of FA 

such that 
M2v*i» x2) + *2 = "2(0, 0) . 

The point x is unknown, of course, and (1.11) is too complicated condition. Therefore 
we simplify it by means of the following "natural" hypotheses: 

(1.12) rix2) = 0, 

(1.13) M ' i ( x „ x 2 ) - M i ( 0 , 0 ) . 

Obviously, (1.12) is true for a "flat" arc F^; (1.13) holds if e.g. the mutual "shifts" 
\u2 — u"2\ and the derivatives |dMi/djc2|

 a r e small in a neighbourhood of the origin. 
Inserting (1.12), (1.13) and u'[ — u'n,u\ — —u'n into (l. 11) we obtain the condition 

(1.10) at a point O e TK. 
Next let us consider the contact forces. By virtue of the law of action and reaction 

we have 

n = Tn , Tt = Tt on TK . 

On the other hand, the tangential components vanish because of zero friction and the 
normal contact force cannot be tensile, i.e. 

T; = T; = 0, T; - T; ^ o. 

Altogether, we define the boundary conditions on FK as follows: 

(1.14) «; + « ' ^ o , T;^T;^o, 

(1.15) K + < ) r ; - = o , 

(Vi6) T; = T;' = 0 . 

Instead of (1.14), (V15) we may write the following equivalent system: (VI4) and 

(1.16O M; + u:<o=>rM' = 0 , 

the meaning of.which is that at points without contact no contact force may occur. 

Remark VI Let one of the two bodies become rigid. Then the system (V14) —(V16) 
reduces to the well-known system of Signorini's conditions — cf. [8], [9], [10]. 
A particular geometrical case of the contact problem has been deduced in [7]. 

Definition 1.1 A function u will be called a classical solution of the problem 0>x 

with a bounded contact zone, if u satisfies the equations (VI), (1.2), (V5) in Q' u Q" 
and the boundary conditions (V6) on Tu, (1.7) on F'x u V"x, (V8) on F0 and (1.14), 
(1.15), (1.16) on TK. 
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1.1.2 Enlarging contact zone 

In some important cases the contact zone can enlarge during the deformation 
process. Such a situation occurs if the two bodies Q' and Q" have smooth boundaries 
in a neighbourhood of rK = dQ' n dQ". Then we must change the definition of the 
contact conditions. 

Let us consider the case of Fig. 3. We place a coordinate system (£, r/) in such 
a way that the c-axis coincides with the direction of n" and r/-axis with the common 

Fig. 3. 

tangent of dQ' and dQ" at a "central" point P e dQ' n dQ". The figure corresponds 
with the situation before the deformation. The parts of dQ' and dQ" which come into 
a contact during the deformation process, can be estimated as follows: 

r'K = {(Z,tj)\a£r,£b, Z=f'(r,)} 

r'K = {(i,r,)\a^ri^b, £ = f"(r,)} , 

where / ' and f" are continuous on <a, b>. (The interval <a, b> has to be chosen 
a priori.) 

Arguing similarly as in the derivation of the condition (1.10), we are led to the 
following condition: 

(1 .17) ufo) ~ ««00 ^ <*) V//e<a,fc>, 

where 

efoWfoWO.) 
is the distance of the two boundaries before the deformation and u*, u\ are projections 
of the displacement vectors into the direction of (positive) £-axis. 
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Using also the law of action and reaction, we come to the conditions 

(1.18) -T^'(cosa ')"1 = ^"(cosa") - 1 S 0 , 

(1.19) T; = F; = o , 

(1.20) Tl(u\ - u\ - e) = 0 , 

which hold at all points of fK u F^ with the same coordinates n e <a, b>„ Here 

(cos aMY l = [1 + (dfM/dn)2]1/2 , M = ', " , 

a' and a" being the angle between >/-axis and the tangent to F'K and F'K, respectively. 

Instead of (1.17), (1.18), (1.20) we may write the following equivalent system: 

(1.17), (1.18) and 

u\ — U^ < £ => T% = T^" = 0 , 

(i.e. at points without contact no contact force may occur). The conditions (V19) 
approximate the zero friction (after neglecting the projections T% sin a' and 
T irr • rr\ 

% s i n a ). 

Definition 1.2 A function u will be called a classical solution of the problem 0>2 

with an enlarging contact zone, if u satisfies the equations (1.1), (V2), (1.5) in 
Q' u Q" and the boundary conditions (1.6) on FM, (1.7) on f j u f", (V8) On F0 

and (1.17), (1.18), (1.19), (1.20) on T'K u FK. 
The following decompositions hold 

dQ' = Pu u F; u F'K , dQ" = F0 u F; u F* , F^ n supp P = 0 . 

1.2 Variational formulations 

To both the problems &x and 0>2 a variational formulation-principle of minimum 
potential energy — can be associated. Introduce the space of displacement functions 
with finite energy 

W = {u | u = (u', u") e [ H 1 ^ ' ) ] 2 x [Hl(Q")]2} , 

where Hl(Q') and Hl(Q") is the Sobolev space (H1 = W1'2), and the space of virtual 
displacements 

V = {ue W\, u' = 0 on FM, w'̂  = 0 on F0} . 

We use the functional of the potential energy 

(1.21) ^(v) = \A(v,v)~L(v), 
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where 

(1.22) 

(1.23) 

-4(u, • 1 Cijkm eu(u) ekm(v) áx , fí = fí' u ÍT 

Цv) F,v,dк + ľ P.-17, d.V . 
J Гt'uГţ" 

Let us consider the problem ^ with a bounded contact zone. Define the set of 
admissible displacements 

(1.24) к = (v є ҝ| (•; + i>;; ^ o on г к } . 

Definition 1.3 A function u e K will be called a weak (variational) solution of the 

problem &v with a bounded contact zone, if 

(1.25) Җu) g Jžř(v) Vv є К 

Theorem 1.1 Any classical solution of the problem 0>x is a weak solution of 0>x. 

If a weak solution of the problem 0>x is suficciently smooth, it is a classical 

solution of 0>

l, as well. 

Proof. L Let u be a classical solution. Then T I 7(U) = cijkmekm(u) satisfies the 

equations (1.5). Multiplying (1.5) by a test function we V and integrating over Q' 

and Q", we obtain 

0 = "xij(u)~ + Fiwi d x + Tu(u) nJwi d s = 
Q'uQ" L CXj J JdQ'ucQ" 

= -A(u, w) + FjWfdx + P^i ds + 
JQ'UQ" JE r 'ur t " 

+ I [Tn(u) wn + Tt(u) w j ds + 
J To 

+ f [T; (U) w'n + T;(U) W; + T » wf: + T » < | ds. 
J rK 

The integral over T0 vanishes by virtue of wn = 0, Tt(u) = 0. Using also (1.14) and 

(1.16), we have 

A(u, w) - L(W) = f Tt;(u) (w; + w;') ds . 
JrK 

Let us put w = v — u, v e K . At the points, where u^ + ŵ  < 0, Tn\u) vanishes 

(see (1.16')). At the points, where un + u"n = 0, 

< + < ^ ; + ̂ o , r;(u) ^ o. 
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Altogether, the integral is non-negative and we obtain 

(1.26) A(u, v - u) - L(v - u) ^ 0 Vv e K . 

On the other hand u e K satisfies (1.25) if and only if (1.26) is true. This follows 
from the convexity of K and if. Hence u is a weak solution of 0>

l. 

2. Let u e K be sufficiently smooth weak solution. It satisfies (1.26). Integrating 
in (1.26) by parts, and denoting v — u = w, we may write 

(1.27) 0 ^ A(u, w) - L(w) = - f (^lM + E \ w . d x _ 

~ f Pr^ 6s + f (T,.w„ + Ttwt) ds . 
Jr T 'ur t " jdn'Kjdn" 

If we choose v = u + w, where w{ e C*((2M), M = ', ", then v e K and the equations 
of equilibrium (1.5) follow. 

Let v = u ± w and let the support of the traces of wt on dQ' u dQ" belong to 
F^ u F./. Then we have v eK, 

0 = f (T - Р.) w; ds 
JT т 'uT t" 

and the boundary conditions (1.7) on T'x u T" follow. The conditions (1.6) and (1.8) 
for u and un, respectively, are satisfied by definition of u e K. 

Let v = u + w, where the support of the traces of wf belongs to F0 and w„ = 0 
on F0. Then v e K, 

- Í Ttwt ás , 
To 

and the second condition (1.8) follows. 
Thus we obtained from (1.27): 

(V28) 0 ^ [ ( P X + T>'t + X< + TM) ds . ѓ ľ (г>: 

Let us choose w such that 

w'n = —w'n = ±ij/ , w't = w"t = 0 on TK 

Then 

(1.29) o = f (T; - T;) iAds=> T; = T; on rK. 
JT* 

Next let us choose 

w'n = w"n = 0 , w'/ = 0 , wj = + ^ on F£ 
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Then 

;,/, ds => Tt' = 0 on Fx . o = í гл 
Jгк 

A parallel approach results in Tr" — 0 on FA. 

It remains to verify the conditions (1.14), (1.15). To this end let us choose a func
tion w such that 

w"n

: = 0 , n/ = \\J _ 0 on FK . 

Then v = u + w e K and (1.28) implies that 

0 _ f T > ds ViA _ 0 . 
JTK 

From there it follows that Tn _ 0 on FK. Using (1.29), we may write T'n _ 0 as 
well and (1.14) is true. 

Let u'n + u"n < 0 at a point x e Fx. Then a smooth function \j/ _ 0 exists on Fx 

such that ^(x) > 0 and u'n + u"n + ^ _ 0 on FK. There exists a w e V such that 
w'n = i/t, w^ = 0 on TK. Then v = u + w e l 

The conditions (1.28) and Tn _ 0 on TK result in 

0 < T'nф ds =^ TДx) = 0 , 
Tк 

which means that (1.15) holds. Q.E.D. 
Next let us consider the problem 0>2 with an enlarging contact zone. Define the 

set of admissible displacements 

K£ = {v e V| v\(n) — v',(t]) _ s(rj) for a. a. n e <a, b>} . 

Definition 1.4 A function u e KE will be called a weak (variational) solution of 

the problem 02 with an enlarging contact zone, if 

(1.30) JS?(o) _ Se(v) VveK £ . 

Theorem 1.2 Atzy classical solution of the problem 02 is a weak solution of &2. 
If a weak solution of the problem 02 is suficciently smooth, it is a classical solu

tion of 02, as well. 

Proof. 1. Let u be a classical solution. Multiplying the equations (1.5) by a function 
w e Vand integrating by parts, we obtain 

0 = - A ( u , w) + L(w) + f (T^w's + T>; ) ds' + f (T^wl + T%vQ ds" , 
JrK' JrK" 
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where the boundary conditions (1.6) on FM, (1.7) on F't u T"z and (1.8) on F0 have 
also been used. On the basis of (1.19) we may write 

A(u, w) - L(w) = [T^'w^cos a')"1 + T^'w^cosa")"1] dr/ . 

Moreover, let us employ the relations 

T:V; = Tl'(u't + e), 

Ti// // T">/ / / // / / \ m f f / // / \ 

, ws, = T* (v4 - II<) = T (v, - IU - e) , 
which follow from (1.20) for any w = v — u. 

Using also (1.18), we may write for any v e K£: 

TV(cos a ' ) - 1 (v* — w~) + T^"(cos a")"1 (v̂ ' — IU — e) = 

= ^ ' ( c o s a " ) " 1 ^ - </ - e) ^ 0 

on the interval <a, b>. Consequently, u e Ke and 

(1.31) A(u, v - u) - L(v - u) ^ 0 VvGKe , 

which is equivalent to the condition (1.30). 

2. Let u e Ke be a sufficiently smooth weak solution. Integrating in (1.31) by parts, 
we obtain that u satisfies the equations (1.5) and the boundary conditions (1.7) on 
r'T u T" and (1.8) on F0, as previously (see the proof of Theorem 1.1). 

Denoting v — u = w, we have then 

(i.32) o ^ f (T>; + T>;) ds' + f (T/>< + T>;)ds". 
JTK' J IV' 

Let us choose w such that 

vv* = w% = +«// , vv̂  = w'q = 0 

holds on the interval <a, b>. Then we may write 

0 = j ij/[Tz (cos a ' ) " l + T^"(cos a")~J] d^ 

which implies that 

(1.33) —T^(cosa') -1 = T^"(cos a")"1 . 

Next let 

Then 

w^ = w'% = 0 , w^ = 0 , w; = + ý . 

ÝT; ás => T; = o 0 = 
Ex' 

follows. An analogous approach leads to 77 = 0. 
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Let w be such that 
W'* = 0 , w" = \jj ^ 0 . 

Then 

0 g I ^77 ds" V</> ^ 0 = > T ^ 0 on F^ ž Í ФЦ' às" 
Jгк" 

and (1-18) follows, making use of (1.33). 
It remains to prove (1.20). Assume that 

at a point fj e <a, b>. Then a smooth function *// _ 0 exists on <#, b> such that 
ij/(rj) > 0 and 

iC — u\ + \jj <, £ V// e <a, b> . 

A function w e V exists such that w£ = i// on Fx, ŵ  = 0 on F^. Then we have v = 
= - + W 6 / \ r Since 77 _" 0 on F£, from (1.32) we obtain 

0 ^ 1 ij/T^ds" => Ti'(tj) = 0. 
J Ex" 

Consequently, (1.20) is verified. Q.E.D. 

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS 

In the present section we shall discuss the conditions, which guarantee the existence 
and uniqueness of weak solutions to the problems 0>x and 0*2, respectively. 

2.1 The problem with a hounded contact zone 

Let us introduce the subspace of rigid bodies displacements 

0t = [z e W\ z = (z', z"), zM = aM - bMx2, M = ', ", zM = aM + bMx1) , 

where aM e Rl, i = 1,2, and bM e Rl are arbitrary parameters. Obviously, etj(z) = 0 
Vz e M V/, j and therefore we have 

A(v, z) = 0 Vz e ,^ . 

Moreover, if p e W, c? (̂p) = 0 Vi, j , then p e l . (For the proof — see [11]). 

Lemma 2.1 Let there exist a weak solution of the problem &x. Then it holds 

(2.1) L(y) g 0 VyeKnM. 
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Proof. The weak solution u satisfies the condition (1.26). Inserting v = u + yf 

Y e K n ^£, we obtain v e K and 

0 - A(u, y) ^ L(y). 

Theorem 2.1 Assume that Vn ^ = {0} or 

(2.2) L(z) + 0 Vz G Vn # •-- {0} . 

Then there exists at most one weak solution of the problem ^3
1. 

Proof. Let u1, u2 be two weak solutions. Using (1.26), we may write 

A(u\ u2 - u1) ^ L(u2 - u 1 ) , 

A(u2, u 1 - u2) ^ L(ux - u2) . 

Adding these two inequalities leads to the following 

A(ux - u2 , u2 - u1) ^ 0 . 

Denoting z — u1 ~ u2, we have A(z, z) ^ 0. From (1.4) it follows that eu(z) = 0 
Vi, j , consequently zeVn@. If V r\ 0t ~ {0}, z = 0 and the solution is unique. 
If z #= 0, let us denote u2 = u, u1 = u + z. Then 

A(u, z) = A(z, z) = 0 , 

J^(u) = i ? (u + z)=> L(u) = L(u + z) => L(z) = 0 , 

which contradicts the assumption (2.2). Hence z = 0 again. 

E x a m p l e 2.1 Let F0 consists of straight segment parallel to the x^axis (see Fig. 
1). Then we have 

Vn 0t = {z | z' = (0, 0), z" = (a, 0), a e R1} . 

Assume that n'/ _ 0 on fx (almost everywhere) and there exists x e TK s^ch that 
n[(x) > 0. Then 

K n M = {y | y' = (0, 0), y" = (a, 0), a ^ 0} . 

In fact, YeKn@czVn@, 

Vn + yn = ani = 0 on Fx <=> a ^ 0 . 

From Lemma 2.1 it follows that a weak solution exists only if 

7 - ľ ғ, dx + ľ J 
J ӣ" J Гt" 

Қ" = I F! dx -f I P! ds ^ 0 . 
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Indeed, inserting y e K n M into the condition (2A), we obtain 

0 ^ L(y) = aV;f Va ^ 0 . 

From theorem 2.1 it follows that if VI + 0, there exists at most one weak solution. 
In fact, f o r z e F n i - {0} we have 

L(z) = aV'i , a + 0 

and if V; 4= 0, then L(z) #= 0. 
Let us present a general result on the existence of a weak solution of the prob

lem ^ , . 
Let us introduce the set of "bilateral" admissible rigid displacements 

^ * = { z e X n « | z e ^ * = > - z e ^ } . 

It is readily seen that 

(2.3) l * = { z e J n Vj ẑ  + z"n = 0 on FK} . 

Theorem 2.2 Assume that 

(2.4) L(y) ^ 0 VyeKn®, 

(2.5) L(y) < 0 V y e X n f - I * . 

Then there exists a weak solution u of the problem 0>v Any other weak solution u 
can be written in the form u — u + y, where y e 0t r\ V is such that u + y e K, 
Dy) = 0. 

Proof. Existence can be based on an abstract theorem by Fichera ([10] — Th. 
i.n). 

The nonuniqueness of solution, however, is a great obstacle in the numerical analysis 
of the contact problem. Moreover, in the proof of convergence (Part II) also the 
coerciveness of the functional $£ over the set of admissible functions will be required. 
Therefore we restrict ourselves to cases with one-dimensional spaces of rigid virtual 
displacements, in what follows (see Remarks 2A, 2.3 and 2.5). This enables us to define 
a contact problem, possessing a unique solution and the coerciveness property 
mentioned above. 

Theorem 2.3 Denote M n V = 0tv. Assume that: 

(2.6) 0t n K = mv 

and 

(2.7) L(y) = 0 V y e ^ . 
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Denote by 

v= н @ 

the orthogonal decomposition of the space V(with an arbitrary scalar product). 

Then 

(i) S£ is coercive on H, (i.e. S£(v) —> + oo for ||v|| —> oo, v e H). 

(ii) there exists a unique solution u e K of the problem 

(2.8) S£(u) = S£(z) Vz e K , K = K n H , 

(iii) any vv^ak solution of &x can be written in the form 

u = u + y , 

w/iere w e K is the solution of the problem (2.8) and y e ,#.,; 

(iv) if ue K is the solution of (2.8), then u = M + y, where y is any element of Mv, 

represents a weak solution of the problem 0>x. 

R e m a r k 2A Note that the assumption (2.6) can be satisfied only if dim $lv ig V 
In fact, dim 1 ^ 3 (since mes Fu > 0) and the case dim 0tv = 2 is not possible.*) 

Therefore, let us consider the case dim 0tv = 3, which implies F0 = 0 and 

®v = {Y = (Y'> f)\ y' = 0, y'{ = a, - bx2, y2 = a2 + bx,} , 

with at and b arbitrary constants. Consequently, the body Q" is completely free. 
Since the set I n K c 0tv is restricted by the condition y"n < 0 on TK, we have 
i# n K + 0t^ which contradicts (2.6). 

An example with dim ^ = 1, satisfying (2.6), is shown in Fig. 4. Then a2 = 
= b = 0, ax is arbitrary. If the force resultant 

v; = Í, Ғï dx + Eï ds = 0 

(£/ /£) 

Fig. 4. 

*) If Fo « 0 then dim 9tv == 3; if E0 N 0, dim #B ^ 1. 
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then 
L(y) = axV\ = O Sax e Rl 

and (2.7) is also true. 
Another example is given if both F0 and FA are parts of concentric circles. Then the 

rigid body Q" may rotate, and if the moment resultant 

I, M = (XlF'í - x2F'í)dx + (x{P2 - x2P'l)ds = 0 L 
then 

L(y) = DM = 0 Vb e R{ 

and (2.7) holds (provided the origin coincides with the center of the circles). 

R e m a r k 2.2 From the numerical point of view it is convenient to introduce the 
following types of scalar product in V (see [11] — I, Th. 2.3). For example, let 
dim $?„ = 1. We set 

(-,*), eij(u)eij(v)dx + P(u)p{y)> 

where p is a linear bounded functional on Vsuch that 

(2.9) { y 6 i * „ p(y) = 0 ] = - y = 0 . 

For instance, if 

@v = {v = (v\ f) | y' = o, yi' = a e n 

(see Fig. 4), we can choose 

Уг = 0} 

(2.10) 

where F- cz Q\ mes Tv > 0. 

Then(cf. [I l]-I, Remark 4) 

P(v) vi d.s 

(2.11) H = V âř„ = ( є VI p(v) = 0} 

Proof of Theorem 2.3 (i). The following inequality of Korn's type is true for any 

ve H (cf. [11]-1, Remarks 3 and 4) 

(2.12) C-HI g | v | -

where II • II is the norm in W and 

(2.13) eiÂv) eiÅv) d í 

J ffl'uffl" 
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Then we have for any v e H 

S£(y) = ic0\v\2 - L(v) = L||v||2 - ||L|| ||v|( 

and the coerciveness of S£ over H follows. 

(ii) Since S£ is Gateaux differentiable and convex, K being convex and closed, there 
exists a solution u of the problem (2.8). 

Let u1 G K and u2 e K be two solutions of (2.8). Arguing as in the proof of 
Theorem 2.1, we arrive at 

z = u{ - u2 eMv. 

Since z e H, we obtain zeH r\Mv = {0}. Therefore the solution w is unique, 

(iii) By virtue of (2.7) we have 

(2.14) S£(v) = S£(v + y) Vy e ^ . 

Moreover, it holds 

(2.15) PH(K) = K n II . 

In fact, let v e K. Then using (2.3) and (2.6), we obtain 

PHv = v - Pmy , ^ * = mv, 

(PHv); + (pHv): = v; + v: = o on rK, 

consequently P/fv e K n H. 
The inclusion K n H = PH(K n H) cz PH(K) is obvious. 
Let u be a weak solution of the problem ^>

1. By virtue of (2.14) we may write 

S£(PHv) = S£(PHv + P^v) = J2>(v) W e V , 

furthermore, P/fu e K n H, 

^ (P H u) = jSf (u) = jSf (v) = S£(PHv) W e K 

and from (2.15) it follows that PHu is a solution of (2.8). The uniqueness implies 
that PHu = ii, u = u + y, y e 0tv. 

(iv) Let u = w + y, where y e Mv. Then we have u e K, using (2.3), and 

(2.16) S£(u) = Se(u) = Jg?(z) Vz e £ . 

Let v e K. Making use of (2T4) and of the decomposition 

v = PHv + P#y, 

we obtain for z = P/fv e PH(K) = K n H = K 

(2.17) jSf(z) = Se(y). 
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Finally, (2A6) and (2.17) lead to the relation 

Jgf (u) = jSP(v) VV G K . 

Theorem 2.4 A.swt/me1 that 

(2.18) ^ * = {0} , # . 4= {0} , 

(2.19) L(y) + 0 V y e ^ - {0} 

a«!J either K n ;# = {0} Or 

(2.20) K n 0t 4= {0} , 

(2.21) L(y) < 0 VyeKnM --- {0} . 

The/? j£f is coercive on K and there exists a unique weak solution of the problem 0>
l. 

R e m a r k 2.3 The assumption (2A9) cannot be satisfied unless dim (MV :g 1. In 
fact, for F0 = 0 , dim 0tv = 3 (cf. Remark 2.1) and 

L(y) = axVx + a2V2 + bM = 0 

for any vector (a1? a2, b) orthogonal to (Vx, V2, M) in the space R3. An example 
with dim 0tv = 1, satisfying (2.18) and (2.20), is shown in Fig. 5. 

Another example with dim 01 v = 1, satisfying (2.18) and K n 01 = {0}, is presented 
in Fig. 6. 

/7^77777777/77777 

Fig. 5. Fig. 6. 

Let F0 be parallel to xx — axis and let V'[ > 0. Then 

y e « ^ W=>L(y) = «iV'{ 4=0, 

consequently (2.19) is satisfied. It is also easy to verify (2.21) in case of Fig. 5. 

P r o o f of Theorem 2.4 

(i) Let us consider the case K n i = {0}. We shall employ the following abstract 
result ([12] - Th. 2.2): 
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P r o p o s i t i o n 1. Let |u | be a seminorm in a Hilbert space H with the norm ||uj|. 
Assume that if we introduce the subspace 

R = {lie H | |u| = 0} , 

then dim R < oo and it holds 

(2.22) C,| |M|| S |W| + \\PRU\\ = c2| |« | | V u e H , 

where PR is the orthogonal projection onto R. 
Let K be a convex closed subset of H, containing the origin, K n R = {()}, 

p : H -> Rl d penalty functional with a differential, which is 1-positively homo
geneous, i.e. 

Dp(tu, v) = t Dp(u, v) Vt > 0 , u, v e H , 

and such that 

)8(M) = 0 O M G X . 

Then it holds 

(2.23) |u |2 4- j8(ii) ^ C||w||2 V i ieH . 

The Proposition 1 can be applied with: 

H = V, R = .^ n V = .#„, |v| defined as in (2.13) 

/*(«) = " f ( K + uJ]+)2ds. 
2 J r K 

To verify (2.22), we make use of the inequality of KonFs type [11] and of the 
decomposition V = Q © Mv to obtain 

| |,j| |2 _ | | p , . | |2 , \\p . i | 2 <- / ^ | p | . |2 , | | p ..112 _ /H..12 , 11 p ..112 

From (2.23) it follows that 

|u|2 ^ C||u||2 VueK . 

Then we can deduce easily that i f is coercive on K and the existence of a weak 
solution u of ^ V 

If u1 and u2 are two weak solutions of &u using the same approach as in the 
proof of Theorem 2A, we obtain 

y = u1 - u2 e Mv. 

Moreover, 

^ ( u 1 ) - J?(u2) => L(uJ) = L(u2) => L(y) = 0 

and from the assumption (2.19) we conclude that y = 0. 
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(ii) Let us consider the case (2.20), (2.21). We shall employ the following abstract 
result ([12] - Th. 2.3): 

P ropos i t i on 2. Let the assumptions of Proposition I be satisfied with the only 
exception that K n R 4= {0}. 

Moreover, let / be a linear bounded functional on H such that 

f(y) < 0 V>' e K n R - {0} . 
Then 

(2.24) |u |2 + p(u) - f(u) ^ Cx\u\ - C2 Mu e H . 

The Proposition 2 can be applied with the same H, R, |-|, j5 as previously and with 

jW = L(v) • 

Then (2.24) implies that i f is coercive over K. The existence and uniqueness of the 
weak solution can be deduced in the same way as in the previous case (i). 

R e m a r k 2.4 The simplest is the "coercive" case, i.e. the case Vn M = {0}. Then 
we have the inequality of Korn's type 

||v|| S C\v\ VVG V, 

so that i f is coercive on the whole space V The existence and uniqueness of the 
solution of £P{ is readily seen. 

2.2 Problems with enlarging contact zone 

Let us consider the cases of one-dimensional spaces of rigid virtual displacements. 
First we obtain a theorem analogous to Theorem 2.3. 

Theorem 2.5 Let us denote 

K0 = {v G V| v\ — v, rg 0 for a. a.ne <O, b>} . 

Assume that 

(2.25) Mv = K0 n J>, 

(2.26) L(/) = 0 V y e * p . 

Let V = H © ^ r be an orthogonal decomposition of the space V(with an arbitrary-
scalar product). 

Then 

(i) i f is coercive on H, 

(ii) there exists a unique solution u e KE of the problem 

(2.27) Se(u) S Se(z) \/zeKenH = K£; 
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(iii) any weak solution of 0*2
 can oe written in the form 

u = ii + y, 

where u e K is the solution of (2.27) and y e 0tv, 

(iv) ifueK is the solution Of (2.27), then u = u ~f y, where y is any element of Mv, 
represents a weak solution of the problem &2. 

Remark 2.5 Arguing in the same way as in Remark 2.1, one can prove that (2.25) 
can be satisfied only if dim 0tv ^ 1. An example, when the assumption (2.25) is 
satisfied, is shown in Fig. 7. Then 

®v = {y' = 0 , y" = (a,0), aeR1}, 

and if V'[ = 0, (2.26) is true. 

h? 

Pig. 7. 

R e m a r k 2.6 For the choice of a suitable scalar product in V, the approach of 
Remark 2.2 can be applied. 

P roof of Theorem 2.5 is quite analogous to that of Theorem 2.3. 

Theorem 2.6 Assume that F0 consists of straight segments parallel to the x^axis, 
cos (£, xt) > 0 (see Fig. 8) and 

(2.28) 

Fig. 8. 
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Then $£ is coercive on KE and a unique solution of the problem ^2 exists. 

Proof. Let us define 

PQ{V) = {v"s ~ v'z) dn , 

Vp = { v e V | p o ( v ) = 0 } . 
Then it holds 

(2.29) 3t n Vp = {0} . 

In fact, M n Vp c 0tv = {z' = 0, z" = (c, 0 ) , C G ^ } . If p0(z) = 0, then 

0 = z\ dn = c cos (£, xj) dn => c = 0 . 
J a J a 

Using (2.29), we can prove the following inequality of Korn's type (cf. [11]) 

(2.30) |v| = C||v| Vve Vp. 

Let v e Vand define y e Mv as follows 

y' = o , / ; = p0(v)d-1, y»2 = o9 

where 

d = cos (£, x^) dn . 

It is easy to verify that for Pv = v — y it holds 

Cb 

Po{Pv) = Po(v) ~ Po{y) = Po{Y) - Po{v) d~l cos (f, xx) dn = 0 , 
J a 

consequently Pv e Vp. 
Using (2.30), we may write 

(2.31) Seiy) = \ A(Pv, Pv) - L(Pv) - L(y) ^ C ^ v ) ! 2 - C2||Pv|| - yiVi' , 

where 

V; = I F! dx + i 'í = ľ Ғ, dx + ľ Р. 
J П" J i 

If ||v| -> co, at least one of the norms ||Pv|| and ||y|| tends to infinity. Moreover, 

we have 

(2.32) veK£=> p0(v) g s dn < + oo , 

(2.33) / І 
\ 1/2 

dxj = |p0( v)| d-^mesß "U/2 
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1° Let ||y|| -> +00 . Then (2.32) and (2.33) imply - p0(
v) -> +oo, and consequently 

— y'[ -> +G0. Since 

C\\\Pv\\2 ~ C2\\Pv\\ ^ C 3 > - o o , 

(2.31) and (2.38) lead to 

Seiy) -> + oo . 

2° Let ||Pv|| -> +oo. Then 

Se^Pv) = C j P v l 2 - C2\\Pv\\ -> +oo , 

J^2(X)= -y iV i 7 = -p0(
v)d-lV;^ -d-lV"xfedri> -oo -d _ 1 VІ ' Í £ 

holds, by virtue of (2.32) and (2.28). Finally, (2.31) yields 

S£(y) ^ Se^Pv) + S£2(y) -> +oo . 

Thus we have proved that S£ is coercive over K£. 

Since Kc is closed and convex, S£ convex and continuously differentiable, the solu

tion of ^ 2 exists. 

The uniqueness follows from (2.28). In fact, we prove that any two solutions ul 

and u2 differ by an element z e f p l such that L(z) = 0 (see the proof of Theorem 

2A). On the other hand, 

L(z) = cV/
1
/, CER1. 

Hence (2.28) implies that c = 0, i.e., z = 0. 
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S o u h r 11 

KONTAKT PRUŽNÝCH TĚLES - L SPOJITÉ PROBLÉMY 

JAROSLAV HASLINGER, IVAN HLAVÁČEK 

V práci je provedena podrobná analýza kontaktní úlohy v rovinné pružnosti. Je 
zkoumána situace, kdy v závislosti na geometrii úlohy nemůže dojít k rozšíření 
kontaktní zóny při deformaci a rovněž úloha, kdy zóna styku se může rozšířit během 
deformace. 

Od heuristických ,,klasických" formulací se přechází k formulacím ve tvaru va
riačních nerovnic. Pro ně se pak dokazuje existence řešení metodami konvexní 
analýzy, s důrazem na jednoznačnost řešení a na koercivitu energetických funk
ci onálů. 
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