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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

CONVERGENCE OF DUAL FINITE ELEMENT APPROXIMATIONS 
FOR UNILATERAL BOUNDARY VALUE PROBLEMS 

IVAN HLAVACEK 

(Received October 27, 1978) 

1. INTRODUCTION 

In the papers [ l] , [2], [3] a dual finite element approach for some unilateral 
boundary value problems has been proposed. A priori error estimate have been 
proven under the assumption that the exact solution is sufficiently regular. This 
condition, however, is not satisfied in the case of general data — see e.g. [7] [8], 
[9]. Hence the following problem remained open: do the dual finite element approxi
mations converge if the solution is not regular enough? 

It was the aim of the present study to prove the convergence without any super
fluous regularity assumption. Assuming that the domain is in a subclass of convex 
polygons (cf. Theorem 2.2 for the definition of the subclass) the convergence can be 
proven for the following model problem: 

(1.1) 

u ^ 0 , - ^ 0 , u — = 0 on dQ . 
dv dv 

The problem (1.1) represents a class of semi-coercive unilateral problems of 
Signorini's type. 

Let Q be a bounded domain with a polygonal boundary dQ = F, feL2(Q), 
dujdv denotes the derivative with respect to the outward normal to F. 

We use the Sobolev spaces Hk(Q) ( = W2
k)(Q)) with the usual norm ||-|| fc and the 

following notation: 

x = (xl9 x2), (w, v)0 = uv dx , 
JQ 

((<?.*>)) = i (<?,-, P , ) O , ||q|| = ((</. q ) ) 1 / 2 • 
i= i 

Hl/2(F) will denote the space of traces yv of the functions v e Hl(Q) on the 
boundary F, 
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— Au = / in Q, 

дu õu 
— ^ 0 , u — 
ôv ôv 

= 0 



H 1/2(F) the space of linear continuous functional over HI/2(F). 
We introduce the space 

e = { q e [ L 2 ( ^ ) ] 2 | d i v c ? e L 2 ( ^ ) } 

and for any q e Q we define the "flux" q . v\r e H_I/2(F) by means of the relation 

<q • v, w> - ((q, grad v)) + (v, div q)0 , 

where v e HX(Q) is any function such that the trace yv = w. We write q . v| r ^ 0 if 

<q . v, w> ^ 0 Vw e HV2(F) = {w e H1/2(F) \w ^ 0} . 

The main tool used for the convergence proof will be the following abstract theorem 
(cf. [5] - chpt. 4 and [6] - Th. 3.1). 

Theorem 1.1 Let V be a Hilbert space with the norm | j - | | , K <= V a convex closed 
subset, h e (0, 1> a real parameter, Kh c K convex closed sets for any h. 

Let a differentiable functional f on V be given, the second differential of which 
satisfies the following inequalities 

(1.2) (x0\\.z\\2 ̂  D2 f(u; z, z) S C\\z\\2 MueK, zeV, 

where a0 and C are positive constants. 
Denote u and uh the minimizing elements of $ over K and Kh, respectively. 
Assume that vh e Kh exist such that 

(1.3) ||w - vh\\ -> 0 for h -> 0 . 

Then it holds 

(1.4) uh —> u in V for h -> 0 . 

In the approximations we use the a — ft — regu la r family of triangulations { ^ } , 
0 < h ^ 1 (i.e. positive numbers a and j5 exist such that for any h the minimal angle 
of all triangles is not less than a and the ratio of any two sides in ^~h is less than f$). 

2. THE DUAL VARIATIONAL FORMULATION 

First let us recall the definition of the dual problem. 
We define the set of admissible functions 

% = {q e Q | div q + / = 0, q . v|r ^ 0} 

and the functional (complementary energy) 
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The problem to find A0 e JU such that 

(2.1) Sf(X°) = Sf(q) V q e ^ 

is called dual to the primary problem. In order to define finite element approximations 
to the dual problem, we introduced an equivalent dual problem, as follows. 

Let 1 e Q be such that 

d i v l + f = 0 in Q. 

Moreover, let 2° e Q be such that 

div 2° = 0 in Q , 

z° . v | r = ~l . v|r - g0 , 

where g0 = (f, l)0/mes F = const. (We assume g0 g 0, in accordance with [3].) 
Note that the vector 1 can be found by a simple integration, whereas 2° = 

= { — dcojdx2, dcojdx^, if the function co e H2(Q) satisfies the boundary condition 

co(s) = - ( 1 . v + g0) dt Vs e F . 
J so 

Define the new set of admissible functions 

^ o = {<?/<* e Q, c/iV q = 0 in c , 

(q + A') . v|r = 0} , A/ = A + 2° , 

and the functional 

•l(q) = i|Iq«2 + ((^,q)). 

Then the problem to find a q° e %0 such that 

(2.2) J(<t°)^J(l) Vq6f/0 

is equivalent with the dual problem (2.1) and the solutions satisfy the relation 
X° = Xf + q°. Recall that -Xs . v|r = g0 and 

(2.2') q e %0 => <q . v, w> = g0 j w ds Vw e HV2(F) • 

We employed the spaces ./V,,(£-) of solenoidal finite elements (see [4]) to define 

K = {q e . ^ ( G ) |q . v| r ^ <70} = ^ 0 n JTh{Q) . 

Finally, a vector Xh = Xf + q'\ qh e %\ is called a finite element approximation to 
the dual problem, if 

(2.3) J(<lh)SJ(q) Vq6#0. 
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In the paper [3] the following results were proven: 

(i) the dual problem (2.1) has a solution if and only if 

(2-4) (/, l)o g 0 

and if (2.4) holds, the solution is unique; 

(ii) if u and X° are the solutions of the primary and of the dual problem, respectively, 

then 

(2.5) X° = grad u , 

Moreover, we obtained the following a priori error estimate: 

Theorem 2.1 Let Q be simply connected, (f, 1)0 < 0, let the solution q° Of the 
problem (2.2) belong to [H2(.Q)]2 and q° . v e H2(Tm)for any side Fm, m = V 2, . . . 
..., M, Oft/ie polygonal boundary F. Then for a — /? — regular family oftriangula-
tions {3Th} it holds1) 

M 

(2:6) ||A" - A°|| ^ Ch3/2{||q°|2,n + £ ||q° • v||2.rJ . 
W = 1 

Convergence of the dual finite element approximations 

As the regularity of the solution required in Theorem 2.1 cannot be expected in 
general (cf. [7], [8], [9]), we shall study the convergence of the dual finite element 
approximations under less restrictive assumptions. To this end we employ 
Theorem 1.1. 

The above theorem will be applied with: 

V= Q0(Q) = { q e G | d i v q = 0 in Q} , 

2 
2 ч l / 2 

N=(INo2) 
K = %0 , Kh = «* , / = J , u = q° , uh = q,! . 

It is not difficult to prove that °l/0 is closed in Q0(Q) and that the functional J 
satisfies (1.2) with a 0 = c = 1. 

The main problem, however, is to verify (1.3). We have to find ph e %h

0 such that 

lim ||q<> - p*|| = 0 . 
h->0 

To this end we choose the following approach. First we prove that a smooth 

vector q e tf/0 n [C°°(-3)]2 exists, which is arbitrarily close to q° in Q0(Q). 

l) In the right-hand side of (2.6) even the norms can be replaced by seminorms. 
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Theorem 2.2 Let Q be a convex polygonal domain such that the sum of any two 
neighbouring angles is not less than K. Assume that /J = X + z°e [H J (0)] 2 . 

Then for any n > 0 there exists a q £ °U0 n [C 0 0 ^ ) ] 2 such that 

(2-7) | | q 0 - , | < - . 

Remark 2.1 If Q is a convex polygon, the solution u of the primary problem 
belongs to H2(Q) (cf. Grisvard [9]). 

Proof of Th. 2.2 is based on several lemmas. 

Lemma 2.1 Let the assumptions of Th. 2.2 hold. Let Q* be a bounded polygonal 
domain such that Q* => Q, the sides of dQ* are parallel with those of dQ and denote 
G = Q* — Q. Let k, / c e ( l , k0) and x0 > 0 be real parameters; let the origin of 
the global coordinate system (xl9 x2) be in Q. 

Then there exists an extension p e Q0(G) of q° such that 

(2.8) p . v\r = q° . v|r , 

(2-9) p(z) . v(x) _ g0 

holds for almost all x e F and ze G, |z — kx| __ kx0, k e <1, k0). 

Proof. Let us introduce neighbourhoods Gm of the vertices of F such that the 
total "strip" G is divided by segments parallel with the sides of F into subdomains Gm 

and the trapezoidal domains Fm, m = 1, 2, ..., M (see Fig. 1). 

Fig. 1. 

Consider an arbitrary subdomain Gm. Introduce a skew coordinate system by 
means of the linear mapping 

/~ *~\ ,—/ \ f Vi = Xi sin a — x2 cos a , 
(2.10) Y = H*) = \ V _ ' 

( J 2 ~ X2 • 
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The system {jVJ'2} corresponds with a new basis {e1 sin ] a, e 2 sin 1 a} (see 
Fig. 2), where e 1, e 2 are unit tangential vectors. 

Then the segment F2 is mapped onto the positive yraxis, the segment F2 onto the 

positive y2-axis and the domain Q into the first quadrant {y1 > G, y2 > 0}. 

For any vector p we may write 

2 

(2.11) p = ] > > 0 V s i n _ 1 a • 
1=1 

Let nJ be the unit outward normal vectors. Since eJ . n7 = - sin a for j = 1,2, 

we have 

f><»= - f » . n > , . / = 1 , 2 . ' ) 

L) The p(j) are components of the contravariant vector. 

According to the definition, p e Q0(Gm) if 

p . grad v dx - 0 Vv e Co°(Gw) . 
I G 

Using the mapping J ^ - 1 inverse to :#", we obtain 

(2.12) 

I 
p . grad v dx = sin^ * a X P{i) — dy 

я а д ^ 1 дУj 

,. <^v 

where v(y) = v(^~ J(y)), v e Co°(#-(Gm)). 
Consequently, if the integral over #"(Gm) in (2.12) vanishes for all ve C$&((Gm))y 

then the corresponding vector 

P = (PuP2)
eQo(Gm)' 
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f = )° - }J .--- grad u - Xs e [H l (0)] 2 . Hence the traces yq° e 

e H1/2(F), / = 1, 2. Then we have 

yq0(J) = ~yq° . nJ e H1/2(F7) , j = V 2 

and we may set: 

(2.13) 

P' 

(i.e., for j ' i < 0, r2 > 0), 

(2.14) /><" 

' ( " (v 1 , v 2 ) = y í /«<n ( l .2) | 

^ ( . v„ y 2 ) = - 9 o i '" ^(G'" 

p < 2 , = ygOWfajf 

(i.e. for j ' , > 0, y2 < 0) and 

(2.15) p(1) = p(2) = - 0 o in &(G"m) (for yt < 0, y2 < 0) . 

Obviously, (p(1), p(2))e Q0(^(GW)); (2.8) and (2.9) can be verified for z e Gm, 
since it holds 

(2.16) - 7 q 0 0 ) ^ g o on F,-, j = l , 2 . 

In fact, to prove (2.16), we write (2.2') for any vv e H+
/2(F), supp w c 1"\. 

<q° . v, w> = q° . grad v dx = — v div q° dx + \vq° . v ds ^ #0 

J -Q Jo J r7 

Inserting q0 . v = —yq0(j) and div q° = 0 in Q, we obtain 

w ds 
Гj 

-yq°(J) - go) wds ^ 0 
'T, 

which implies (2A6). 
Next let us consider the trapezoidal domain Fm, m = V ..., M. If Fw is a parallelo

gram, we reduce it to a straight segment Gm n G m + 1 by extending Gm and G w + 1 . 
We set in (2A4), (2A5) and (2.13): 

(2.17) pil} = 0 in f ( G : u Q 

p(2) = 0 m ,f(G(;i + 1 uGl + 1 ) , 

(p 0 ) are components of the vector p in the local system of Gm + 1 ) . Thus we obtain 
the continuity of fluxes p . v on Gm n G w + 1 . 

Let us consider a general shape of the trapezoid Fm. Introduce a new coordinate 
system (y l 5 y2) by means of the mapping 

(2-18) x a 7 y s ( ^ ^ . 
(x 2 = y2, 
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where the origin of the local Cartesian coordinates (x l 5 x2) is situated at the inter
section of the straight lines AB and CD (see Fig. 3). Then the trapezoid 

Tm = {x e U2\ a < x,/x2 < b, 0 < c < x2 < d} 

is the image TMm of a rectangle 

0tm = {y e [R2| a < yt < b, O < y2 < d} . 

A-
ťi 

eV 

\ 
\ 
\ 

,D 

ñn 
fc 

i 

i *. 

E.g.3. 

Then we have 

p . grad v dx = p.gradvdx= £ p< -?-- y2 dy = - v( 
JE,„ ]mm

 t = 1 ^y/ J* m V 

õpl Õp2 

У2-- + У2—- + P2)dү 

where v(T(y)) = v(y) e Co°(^m), provided v e Co°(Fm), and 

ÕУІ ÕX: 
P' = >Zpkf, Pi = iZpkf-

k=i oxk k=i cyk 

It is obvious that 

(2.19) y2 divp + p2 = 0 in f m = > p e Q0(FM). 

Moreover, if 

(2.20) - P 2 = P V\AD = -P = go in 

and if p is defined by means of (2.13)-(2.15) in GnvGm+l, then (2.9) holds for 
z e G m u F m u Gm + 1. 
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yi ( T - + T-- ) + P2 - ° i n * « . 

Let us define 

(2.21) p> = y«f-(>.) + - - * - ( ^ - l ( 

(2 22) ,..-,.3ai±fL)+rT-^-l«,.,jl<l,. 
y2 J„ L ^y2 y2 J 

7q0 2(y i ) = 7 g 2 ^ l ) , *1 = y!d, 

where 

•* = goCVO + «2) + VO + &2)) + I /q°2(y i )dy , = const. 

Then the condition (2.19), i.e. 
(dl_ + ^ 
V^yi <^y2y 

can easily be verified. 
Moreover, since yq02

 = — g0, we have 

st £ g0(V(l + a2) + VO + *2) - (6 - a)) < 0 . 

Therefore 

(2.23) p2 £yq0
2(yi)£ -g0 , y e ^ m 

and (2.20) is satisfied. 
Finally, let us calculate the values of the boundary flux p . v on AB and CD, 

respectively. 
For yj = a we have 

(2.24) p» = - *- x/(l + a2) =-> - p . n1 = p«> = p«> — i - * - = - ^ , 
y2 V(l + a ) 

where n1 is the unit normal to AB (outward with respect to Fm). 
For y. = b we obtain 

(2.25) p<» = ^ V(l + b2) - - p . n2 = p<2> = -£<*> -1?^— = ~go , 
y2 VO + b ) 

where n2 is the unit normal to CD (outward to Fm) and p2 the component of p in 
the local system of Gm + 1. 

Comparing (2.14) with (2.24) and (2.13) (for Gm+1) with (2.25), respectively, we 
conclude that the flux p . v is continuous on the lines AB and CD. 

In this way the vector field p can be constructed, satisfying all conditions of lemma 
2.1. Q.E.D. 
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Next let us define the following extension of q°: 

(2-26) Eq0 ; , q° in Q 
p i n G 

Obviously, Eq°e Q0(Q*). 
Let fc = 1 + e, 0 g e < fc0 — 1 and define 

(2.27) 

for yek"1Q*. 
Regularizing q£, we obtain 

q%ү) = Еq°(/cУ) 

(2.28) q(x) = R„ q*(x) = f co„(x - y) q'(y) dy . 
J |x-y| <X 

Lemma 2.2 Let the assumptions of Theorem 2.2 /?O/d. Let q be defined by (2.26) 
tO (2.28) and p be the extension from Lemma 2.1. 

Then q e }U0 n ^ [ ( Q ) ] 2 and (2.7) holds for e and x = x(fi) sufficiently small. 

Proof. 1° Let 

Qd = {x | dist (x, Q) < d) , Qd c Q* 

Then q£ e Q0(Qd) for a sufficiently small. In fact, let ve Hl
0(Qd) and define v(y) = 

= v(y/fc). Since fcQd c Q* for sufficiently small E and v 6 H0(kQd), we can extend v 
by zero to obtain Pv e H0(Q*). Then 

q£ . grad v dx = Eq°(fcx) . grad v(x) dx = 
J Qd J «d 

Ш d 

£<?ľ (y) ~ àү = } ľ Eq° grad РD dy = 0 

follows, using Eq° e g 0(Q*). Hence q£ 6 Q0(^)-
Let us calculate 

ÕX; 
» = -

|x-y|<x ^y i 

If x < d, cox(x- •) G Co°(Qd) and div q(x) = 0. 
2° Since it holds 

go »Á* - Y) go dy Vx є F 
|x-у| <x 

we may write 

V;(x)g.(x) - go = 
| x - y | < * 

™ÁX - У) [>.(*) gi(У) - ř7o] dУ -

384 



It is obvious that 

F c k~lG Vk = 1 -f e > 1 . 

Consequently, if *: < dist (F, k~lT) and x < x0, then 

|y — x| < K => ky e G , |ky — kx| < I<K < kK0 , 

and using Lemma 2A, (2.9) yields that 

v,-(x) g"(y) = vf(x) p,(ky) ^ a0 . 

Since wx ^ 0, we obtain v . q(x) — a0 _ 0 Vx e F, i.e. 

q e ^ 0 n [ C » ( f 2 ) ] 2 . 

3° It remains to prove (2.7). There exists a sequence qn e [C0
J(£>)]2 such that 

qn -> q° in [L2(:Q)]2. Let F0a? be an extension of qn
h (i - 1, 2) by zero function 

outside Q, (qn)] (y) - E0q
n(ky). It holds 

(2.29) M - W k o ^ f i C ^ ) , 

(2-30) ||tf - (O")5||0<D g | t f - </? ||0,o + | | F O ? l o ^ ^ • 

For the proofs — see Lemma 4.1 and 4.5 in [10], respectively. 
Using (2.29), (2.30) and Eq° = p from Lemma 2.1, we obtain 

(2-31) |qE - q°fl ^ \\qc - (q"f\\ + \\(qj - q"\\ + \\q" - q°|| £ 

^ 3 j ] q " - q ° | + £C2(q") + | p | | ^ « . 

For a given n > 0, we can find q" and 8 (depending on qn) such that each of the three 
terms in the right-hand side of (2.31) is less than t//4. 

Finally, we choose K (depending on q£) sufficiently small and such that 

\\Rxq
e-qe\\ < > l / 4 . 

Using (2.28) and (2.31), we obtain 

||q - q°|| ^ j|X<f ™ 9e| + W -q°!<n Q .E .D. 

The Theorem 2,2 is a consequence of Lemma 2.1 and 2.2. 

Theorem 2.3 Let Q satisfy the assumptions of Theorem 2.2. Assume that )J e 
e[H\Q)Y and(f, l)0 g 0. 

Then for any a — ^-regular family of triangulations {-^r
/j}, the dual finite 

element approximations converge in [L2(:Q)]2, i.e. 

I A* - A01| -> 0 for h -> 0 . 
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Proof. It suffices to verify the assumption (1.3) of Theorem l.L Using Theorem 
2.2, we obtain q e JU0 n [C°°(í2)]2 satisfying (2.7) for any rj > 0. 

In the second step, we apply Lemma 4.2 of [3] to q and Lemma 5.3 of [ l ] to 
construct W" e °l/h

0 such that (cf. the proof of Theorem 4.1 in [3]) 

||q - W"|| ^ C(q)h3/2 . 

Finally, we may write 

||q° - W"|| ^ \\q° - q|| + ||q - W"|| g r] + C(q) / . 3 / 2 . 

Thus (1.3) is satisfied by vh = W". 
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S o u h r n 

KONVERGENCE DUÁLNÍCH APROXIMACÍ METODOU 
KONEČNÝCH PRVKŮ PRO JEDNOSTRANNÉ OKRAJOVÉ ÚLOHY 

IVAN HLAVÁČEK 

V článcích [ l ] , [2], [3] byly odvozeny apriorní odhady chyb duálních aproximací 
za předpokladu, že řešení je dostatečně hladké. V této práci se dokazuje konvergence 
metody bez zvláštního předpokladu regularity řešení pro jistou podtřídu konvexních 
polygonálních oblastí. 

Authoťs address: Ing. Ivan Hlaváček, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
Praha 1. 

386 


		webmaster@dml.cz
	2020-07-02T03:52:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




