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SVAZEK 26 (1931) AP LI K ACE M ATE M ATI K Y ČÍSLO 1 

ON 0 - 1 MEASURE FOR PROJECTORS, II 

VACLAV A L D A 

(Received May 6, 1979) 

As stated in [1], the non-existence of a non-trivial measure with only the values 0 
and 1 on the orthocomplemented lattice of projectors in a Hilbert space is a corollary 
of Gleason's theorem [2]. However, Gleasoivs theorem is valid only for G-additive 
measures and hence this conclusion is not right (this fact is mentioned in [3]). 
According to [3], the question of an additive 0—1 measure on projectors in an in
finite dimensional Hilbert space is open. In this remark we shall show that the non
existence of such a measure is an easy consequence of the non-existence of this 
measure in E 3 and this can be demonstrated without Gleason's theorem [4], [5]. 

The infinite dimensional Hilbert space #£ is given as the direct sum 

(!) Jtf = ® El 

with m summands El and for each summand there is an isomorphism cpl with the 
space E3. 

Given a projector P in E3, we denote by M(P) the subspace in 2/f which is generated 
by subspaces (pl(P) <= El (if x is a vector in E3, M(x) is the subspace generated 
by (pl(x)) and we identify the projector with its range. 

Now, 

(2) if P ± Q in E3, then M(P) ± M(Q) in J f and vice versa, 

(3) if x, y, z e E3 are orthogonal, then M(x) v M(y) v M(z) = Jf\ 

Both the assertions are obvious. 
For a 0—1 measure /( in J f we set 

v(P) = n(M(P)) . 

If fi were non-trivial, then by (2) and (3), v would be non-trivial measure in E3, 
which is impossible. 

By [4] or [5] the non-existence of a 0—1 measure in E3 is demostrated by giving 
a finite set of vector x1? ..., xn such that no measure is possible for the set of pro-
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jectors Pi9 ..., Pn generated by xi9 ..., xn. Consequently, there is a finite set of pro
jectors in Jf7 for which the definition of a nontrivial 0—1 measure is impossible. 
The number of these projectors is independent of the cardinality of Jf. 

Finally, let us mention that in [6] it is unnecessary to consider separately the finite 
dimensional and the infinite dimensional case when imbedding the lattice of pro
jectors in the Boolean algebra. 
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S o u h r n 

0 - 1 MÍRA PRO PROJEKTORY, II 

VÁCLAV ALDA 

Neexistence additivní 0—1 míry (netriviální) na množině projektorů v nekonečně 
dimensionálním Hilbertově prostoru je důsledek neexistence takové míry pro pro
jektory v E3. 
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