Aplikace matematiky

Václav AIda

On $0-1$ measure for projectors. II

Aplikace matematiky, Vol. 26 (1981), No. 1, 57-58

Persistent URL: http://dml.cz/dmlcz/103894

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON 0-1 MEASURE FOR PROJECTORS, II

Vaclav Alda

(Received May 6, 1979)

As stated in [1], the non-existence of a non-trivial measure with only the values 0 and 1 on the orthocomplemented lattice of projectors in a Hilbert space is a corollary of Gleason's theorem [2]. However, Gleason's theorem is valid only for σ-additive measures and hence this conclusion is not right (this fact is mentioned in [3]). According to [3], the question of an additive $0-1$ measure on projectors in an infinite dimensional Hilbert space is open. In this remark we shall show that the nonexistence of such a measure is an easy consequence of the non-existence of this measure in E_{3} and this can be demonstrated without Gleason's theorem [4], [5].

The infinite dimensional Hilbert space \mathscr{H} is given as the direct sum

$$
\begin{equation*}
\mathscr{H}=\oplus E^{l} \tag{1}
\end{equation*}
$$

with 11 summands E^{l} and for each summand there is an isomorphism φ^{l} with the space E_{3}.

Given a projector P in E_{3}, we denote by $M(P)$ the subspace in \mathscr{H} which is generated by subspaces $\varphi^{l}(P) \subset E^{l}$ (if x is a vector in $E_{3}, M(x)$ is the subspace generated by $\left.\varphi^{l}(x)\right)$ and we identify the projector with its range.

Now,
(2) if $P \perp Q$ in E_{3}, then $M(P) \perp M(Q)$ in \mathscr{H} and vice versa,
(3) if $x, y, z \in E_{3}$ are orthogonal, then $M(x) \vee M(y) \vee M(z)=\mathscr{H}$.

Both the assertions are obvious.
For a $0-1$ measure μ in \mathscr{H} we set

$$
v(P)=\mu(M(P)) .
$$

If μ were non-trivial, then by (2) and (3), v would be non-trivial measure in E_{3}, which is impossible.

By [4] or [5] the non-existence of a $0-1$ measure in E_{3} is demostrated by giving a finite set of vector x_{1}, \ldots, x_{n} such that no measure is possible for the set of pro-
jectors P_{1}, \ldots, P_{n} generated by x_{1}, \ldots, x_{n}. Consequently, there is a finite set of projectors in \mathscr{H} for which the definition of a nontrivial $0-1$ measure is impossible. The number of these projectors is independent of the cardinality of \mathscr{H}.

Finally, let us mention that in [6] it is unnecessary to consider separately the finite dimensional and the infinite dimensional case when imbedding the lattice of projectors in the Boolean algebra.

References

[1] N. Zierler, M. Schlessinger: Duke Math. Journal 32 (1965), 251-262.
[2] A. M. Gleason: Journal of Math. and Mech. 6 (1957), 885-893.
[3] R. Wright: in Math. Foundations of Quantum Mechanics, ed. by A. R. Marlow, Acad. Press 1978.
[4] S. Kochen, E. P. Specker: Journal of Math. and Mech. 17 (1967), 59-67.
[5] V. Alda: In print in Aplikace matematiky 25 (1980).
[6] F. Kamber: Nachrichten der Akad. der Wissen. Göttingen, Math.-Phys. Klasse 10 (1964), 103-124.

Souhrn

$0-1$ MÍRA PRO PROJEKTORY, II

Václav Alda

Neexistence additivní 0-1 míry (netriviální) na množině projektorů v nekonečně dimensionálním Hilbertově prostoru je důsledek neexistence takové míry pro projektory v E_{3}.

Author's address: Doc. Dr. Václav Alda, CSc., Matematický ústav ČSAV, Žitná 25, 11567 Praha 1.

