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SVAZEK 26 (1981) APLIKACE MATEMATIKY &isLo 3

SIMILARITY MOTIONS IN E; WITH PLANE TRAJECTORIES
ADOLF KARGER

(Received April 6, 1979)

In this paper we shall classify all similarity motions in E; which have all trajectories
plane curves. We shall also give explicit expressions for each equivalence class of such
motions.

Let E;, E; be two Euclidean spaces of dimension 3. By a frame in E; or E; we mean
any sequence # = {A,f,,[2.f3} or & = {A,f,f.f3}, where A€E; or AeE; is

a point and f; or f; i = 1,2, 3, are pairwise orthogonal vectors in E; or Ej,
respectively, of the same length. Let us further fix a frame 2, = {4, (f})o} or Z¢ =
= {Ao, (Ji)o}, i = 1,2,3, in E; or E5, respectively. The Lie group S5 of all similarity

transformations of E; or E; can be regarded as the group of all 4 x 4 matrices

g = (:’ 2), where 1 is a column with 3 entries, yand E are 3 x 3 matrices, yy' = AE,
5
4 € # and E denotes the identity matrix.

S, acts also naturally as the group of all similarity transformations from E; into
E, by the rule g(%Z,) = %, . g for g €S5. A curve g(1) on S, regarded as a one-para-
metric system of similarity transformations from E; into Ej is called a similarity
motion in E; (and we shall always suppose a sufficient degree of differentiability
of all functions, whether given or constructed). By a lift of a motion ¢(r) we mean
a set of pairs [%(t), #(t)] of frames such that () (%(1)) = 2(t), where %(t) is a frame
in E; and 2(1) is a frame in E;.

Let further [%(1), Z(t)] be any lift of a given motion g(t). Denote #' = R,
R =Ry, 20 = ¢ — Y,2n = ¢ + . If S, is the Lie algebra of S5, then w, n € S;.

Let A4 be a fixed point in E;. Then 4 = #X and g(A) = %X is the trajectory of A
in E; during the motion ¢(1) . X is the column of coordinates of A4 in # and also the
column of coordinates of a point of the trajectory of 4 expressed in the frame %.
Denote by Q, the operator of the k-th derivative of the trajectory of the point 4,
which is defined by the formula [g(A4)]* = 2%#Q,X.

Direct computations give

(1) Q =0, Qi =(@+n1)+ Qw—7n)+ 2.

To find all motions with all trajectories planar means to find all solutions (f) and
n(1) of the equation

() det |Q,X, 2,X, 2,X| =0 forall X.
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Denote further
0, 0> . (0,0> 0 0,0)
w = , = R = .
w()’ wl ’7()9 1’]1 k ‘9k) @k
Then

(3) 9 =wy, Ky = (wl + ’71)‘9k + 0wy — ’10) + 9,

7
0, =w,, O, = (0, + '71)9k + 0w, — ’71) + 0, ,
where
Woy Noi @y, Wy, W3
Wy =Wz |, Mo =1\{MNoz2|, W3 =|—W;5 Dy, Wr3],
Wo3 No3 —Wy3, —Wy3, Wy,
1
Migs N2> M3 X
: 1
N =\|—=M2 N N3] Writealso X = X
Niss —N23 Moy X

First, let w,;; = 0. Then we can change the lift of g(f) in such a way that also
11, = 0. This means that in this case we get all Euclidean motions in E; with plane
trajectories (taken with respect to the equivalence in S;). They are known, see for
example [1] All of them are cylindrical motions (the spherical image is only a rota-
tion around a fixed axis) and there are only three cases possible: a) planar motion
in parallel planes, b) composition of a rotation around a fixed axis with some trans-
lation along this axis, which gives elliptical trajectories in parallel planes, ¢) composi-
tion of the elliptical motion in a plane with some translation in the direction per-
pendicular to this plane — a motion originally described by Darboux. Its trajectories
are again ellipses.

Consequently, from now on we can suppose @, + 0. Then w, is a regular matrix
and so we can change the lift of g(r) and the parameter ¢ in such a way that

0, 0, 0, 0
0 _

(4) w = 0’ ;11, l; 8 , where u=0.
0,0, 01

The subgroup of S; which preserves such lifts for p = 0 consists of all elements
g € S; of the form
1 0
0, 0
= R.
() g 0 0 , o, fe
0, J
Let us supposc for a moment that nis + 11§3 =+ 0. Let first ¢ + 0. Then we can
change the lift of g(t) and get 23 = 0. Direct and uninteresting computation of (2)
shows that then also 7,3 = 0, Which is not possible. We leave the details out. If
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1 = 0, we change the lift of g(t) to get ;3 = Hp3 = 0 and the remaining group is
again given by (5). So we can suppose 13 = 23 = 0.

Case 1. Let n2, + n2, =+ 0. Then we can change the lift of g(t) to get 5 in the form

0,0, 0,0
1, a, =b, 0
) =10, b a0
B.0, O0,a
and for g # 0 this lift is unique. Direct computation now gives
0,0, 00 0, O, 0, 0
0,1, —p. 0 —1, 2 —=2u% —4u—yp, O
™ =1, w1, 0f L=l a e, 2-22 0
0,0, 0,1 -B, 0, 0, 2/
0o 0, 0, 0\
g = 3ut =3 4+ pb —a, 4 —12p% — 6y, 4pd — 12p — 6 — p’, 0
3T —6pu—b—ap—2p, —4p® + 12u + 6 + p", 4 — 12u% — 6puy, (N
=38 —aff = f, 0, 0, 4
After a simplification, (2) takes the form
Xy — pxy, =2pPxy — Q4 @) x, — 1,
pxy + xy Qe+ ) x, = 20’x, —
| X35 —H X
—6up'x, + (4 +4p — Py x, + 3+ 3’ + pb —a
—(4p + 4p — p") x; — Opp'x, — b —ap — 24 ' =0.

3B—ap - p ‘

This leads to the following equations:
(8) L. 2u[4p*(1 + p?) + 6up’ + 3(w')> — "] =0,
220 4+ (Bu+b)(1 + p?) =0,
30 =5uP 4 2u(a — )(1+ ) — B +ub—a)—p =0,
4. 2u(b + 3y (1L + p>) + wW(@u + b+ ap — @) =0,
5. 2B — (1 + ) =0,
6. Bl(r* + 1) (2u + 3p) + 32w + p'] — (aB + B)[2u(1 + p*) + W] = 0.
Substituting from 2 into 4 we obtain

4. @b+ ap — ) =0.

a) Let u # 0. Suppose p' = 0. Then from | we get g = 0, which is a contradiction.
So i # 0. From 4 we get b 4+ au — ' = 0. Denote ¢ = m~ /2. Then

) a=35m_(3m+1>’ b=m'”2< m —3>,B=Cm+l,
m

m + 1 m + 1 m

C is a constant.

196



From | we get m" — 6m’ + 8m + 8 =0, so m = C,e** 4 C,e*' — 1, where C,
and C, are constants of integration.

b) Let g = 0. Then 2 of (8) implies b = 0. For the sake of convenience we change
the lift of g(7) to have

(10) p=a=b=1ny =19, =0, 7no3is an arbitrary function .

Case 2. ng; =19, =0, u + 0.
a) 1y; + 0. Then we can change the lift of g() to get 703 = 1, b = 0. Equation )
takes the form
x, — pxy, =2p%xy = (2 + p) xp —6upxy + [4(1 + p?) — 1] x,
Xy X, u+ ) xy = 2%y, —[4u(l + p?) — ] %, — 6pu'x, | = 0.
| X3, —1, 3—-a
As a result we get equations 1 and 6 from (8) with # = 1; point 6 in (8) changes to
6. 2u+ 1+ 217) (30 + 3 —ap) =0.

So we get two solutions:

(11) p=m"12 a=3—§ﬂ, B=1 b=0, ny =ny,=0,
2m

(12) u=m1* with C, =0, B=1, b=0, 5, =1ny,=0,
a is arbitrary.

b) 7, = 0. We change the lift of g(1)to a = b = 0, p = m~1/2, So we obtain

(13) n=0, p=m Y,

Case 3. Here #y; = 79> = p = 0. This is b) of Case 1.
Now we must solve the differential equations

(14) R =Rp, R =Ry, where p=n+ow, y=n—o.
The vector part of (14) can be formally written in the form 7’ = J . M, where
A, —B, 0
(15) M=|B, A, 0],
0, 0, 4

A, B are some functions, J = {el, s, ¢3} is a base. We expect the solution in the

form I = T . h, where
ucosv, —usin v, 0
(16) h=/|usinv, wucosv, 0},
0 0, u

where 7, = {f,. /2. 5} is a fixed base.
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Then h™*h’ = M and so uw'u"' = A, v = B. The solutions are the following
(s = 1 for the fixed frame, ¢ = —1 for the moving frame):

(9):A=a+e, B=b+su, u=m"*(m+ 1) texp[(3+¢)t],

v = (e — 3) H(t) + 2arctan \/m, H = i, u(f) di for a suitable t,.
(10):4=¢, B=0, u=¢", v=0.

’
3m’

3+s—2——, B=¢eu, u=m>2exp[3+¢)t], v=2cH.
m

Il

(11):4

(12):A=a+¢, B=¢eu, u=cxp[F(t)+s&t], v=¢eH with C,=0,
F(t) = [i, adi.
(13):A4=¢, B=eu, u=¢", v=¢H.

E)

In all cases we can write the solution of (14) in the form

1,0 _ , o
g=<T y>, where g =g,9;', R=Rg,. &=R9>,

1, 0 I, 0 _
=1, , 9=\ . R, R, are fixed frames.
g1 (T], ?1) 2 (Tz’ %) 0 0

Theny = y,9; ', T=T, — yT;.

Denote by u,, v, the expressions for u and v in the case ¢ = 1, by u,, v, in the case
¢ = —1. Then

u;cosv;, —u;sin v;, 0

y; = |u;sin v;, w;cosv, 0], i=12,
0, 0, u;
uuy ' cos (v, — v,), —uu; " sin (v, — v2), 0
-1 . —
y = |uuz " sin (v, — vy),  wuy'cos (v, — v2), 0
0, 0, gy

Now we return to the cases (9)—(13) again:

2= Ce?, —=24m, 0
9): y=(25)"" 2m, 2 = Cye*, 0
0, 0,  26¢

>

3 3
where 0 = (C, + ;C3)"/2. Further, 4' = Y nge;, A =Y Moie;,
i=1 i=1
where Z = {A, e;}, # = {4, &;}. Substitution from y, and 72 8ives
A =e¥5  m + 1) {(m 2 [m + | + 1Ce*(m — V] f, + Cye'f,} +

+ Cm™3%e*f,
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A='m™ P m+ )72 [1+m(l = 3C367 )] f, — 30 ¥ (m + V)2 Com'f, +
+ Cm ™32,
where 2, = {A,, fi}, #y = { Ao, [}, i = 1,2, 3. The solution is
A=13" (m+ )" m'2, = 167 (m + 1) Y, +
+ 3CO72m T VA(Che? = 2) f5 + Ay,
A=5"2m+ 1) " mPme 2, + 07 (m + 1)1 Cof, —
- %Cé‘zm_”zm'e_z'f} + A, .
Further computation gives
1C0 *m!?

1¢-3 —
— _EO 3e 2t'n/
1572Cm! 2

In the end we substitute e?* = s and change the constants of integration. As a result
we can write g(s) in the final form

1, 0, 0, 0

(17) =51 C, \/m, 1 — 1Cys, —\/m, 0
g —2Cs — Cy, Jm, 1 —14Cys, 0|’

Ccm, 0 0, S

where m = C,s* + C,s — 11is defined for s such that m > 0.

Remark. The differential equation for the trajectory X(r) of a point is in the case
(9): X" — (6 = 3m'/m) X" + (8 — 3m’/m) X' = 0. The general solution of this
equation can be written as X = A, + f,e*' + f, \/m, where 4, is any point and
f1, /> are any two independent vectors. Hence the trajectories are conic sections.

They are ellipses for C, < 0, hyperbolas for C, > 0 and parabolas for C; = 0.
The solution in the case (10) is

| I, 0,00
\ 0, s, 0, 0

(18) 9=lo o 0|
G(s), 0, 0, s

where G(s) is an arbitrary function. Any plane curve can be a trajectory of this motion
for suitable G(s).

(11) is treated in a similar way as (9). As a result we get

L, o 0, 0
1[0 1= 1Cys, Ym, 0
(19) 9=2"1o, Um. L —1Cys, 0]
\/m, 0, 0,

The differential equation for the trajectory is the same as in the case (9).
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Now the case (12): We can change the parameter ¢ to get C; = 1, because C, = 0
and so C; > 0. Then § = 1 and we can write y, and y,. Further, 4’ = ¢' F(t) /3,
A" = e ' F(1) f;. Integration gives A4 = A, + F,(t)f5, A = A, + F,(t)fs, where
F| = ¢'F, F, = ¢ 'F. Finally, we get for the components of T:T, = T, = 0 and
Ty =F, —¢’F, = [e' F(t)dt — &*" [e " F(1)dt = § [s™'/> F(s)ds — s/2 [s 3%

CF(s)ds = = [J( }"s” 2 F(s) ds) ds],= .. where the substltutlon s = ' and integra-
tion by parts was used. This shows that Ty can be an arbitrary function; let us denote
it by G(s). The final form of g(s) is then

1, 0, 0, 0
0. I, —J(s*=1). 0
@0) 99=lo, Js-1. 1. 0
G(s), 0, 0, s

Any plane curve can be locally generated by a suitable motion of this type as its
trajectory. To see it we compute for instance the trajectory of the point x, = z, = 0,
yo=—1 Wegetx= /(s> = 1), y= =1,z = G(s).

At last we get to the case (13): The motion can be written in the form

1, 0, 0, 0

_ 1|01 =G, —/m, 0

(21) g(s) =0 0, \/m, 1 —-1C.s, 0
0, 0, 0, s

The differential equation for the trajectory is the same as in the case (9).

Theorem. Non Euclidean similarity motions in E5 with only plane trajectories are,
up to the equivalence, exactly those given by (17)—(21). All of them are cylindrical
(they preserve one direction) and the trajectories are affinely equivalent conic
sections in the cases (17), (19) and (21), and arbitrary plane curves in the cases
(18) and (20).

Remark. Euclidean motions with only planar trajectories (apart from the case
of the planar motion ia parallel planes) have the following preperties: They are
cylindrical, trajectories are affinely equivalent and all of them are ellipses. The present
paper shows that if we increase the group of transformations, such motions remain
cylindrical, but the other properties are lost. It can be shown that in larger groups
of transformations of the space even the last property will not be preserved.

Remark. Each cylindrical similarity motion can be written as a product of two
motions, a plane similarity motion in a plane o and a similarity motion in a line
perpendicular to the plane a. Let us study out motions (17)—(21) from this point
of view.

In the cases (18) and (20) the motion is a product of a plane similarity motion
with one fixed point, let us denote it by P, with an arbitrary similarity motion in a
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straight line. The planar motion in these two cases has all trajectories straight lines,
in (18) all of them pass through the fixed point P, in (20) the trajectory of a point X
is the straight line through P perpendicular to PX.

In the cases (19) and (21) the planar motion is the same. It has again a fixed point
P, all trajectories are similar conic sections with one axis passing through P.

Finally, we shall concentrate on the general case (17). The corresponding plane
similarity motion has conic sections as poloids. The trajectory of any point @ = A, +
+ xof, + Vof, is a conic section which degenerates in a straight line if

x5 + (v + 202°C3' — C,)* = 46*C;? for C, # 0 and x, = const. for C, = 0.

All these straight line trajectories pass through a fixed point if C, # 0, they are
parallel for C, = 0. This shows that the plane motion in the case (17) is a similarity
analogue of the elliptical motion in the Euclidean plane which occurs in the Euclidean
space motion discussed (the Darboux motion). We notice also that the motions
(18)—(21) preserve a straight line which corresponds to the so called ““special” Dar-
boux motion in the Euclidean case, while (17) corresponds to the “general” one.

References

[1] W. Blaschke: Zur Kinematik. Abh. math. Sem. Univ. Hamburg 22 (1958), str. 171—175.
[2] A. Karger: Darboux motions in E,. Czech. Math. Journ. 29 (104) (1979), str. 303—317.

Souhrn
ADOLF KARGER

V &lanku jsou nalezeny a explicitnd popsany vSechny podobnostni (ekviformni)
pohyby v prostoru, které maji pouze rovinné trajektorie. Nejdfive jsou odvozeny
diferencidlni rovnice pro ekviformni pohyby s pouze rovinnymi trajektoriemi. Tyto
rovnice jsou pouzitim metody specialisace repéru zjednoduseny tak, Ze je lze expli-
citné fesit. Integrovanim Frenetovych formuli pro uvazované pohyby je pak ziskano
jejich explicitni vyjadfeni. Vechny tyto pohyby jsou cylindrické (zachovavaji alespoi
jeden smér) a d&li se na 5 riznych typi. U 3 typh jsou trajektoriemi kuZelosecky
u zbyvajicich dvou typl mtze libovolnd rovinna kiivka byt trajektorii.
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