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SVAZEK 26 (1981) APLI K ACE M ATE M ATI K Y ČÍSLO 3 

SIMILARITY MOTIONS IN F3 WITH PLANE TRAJECTORIES 

ADOLF KARGER 

(Received April 6, 1979) 

In this paper we shall classify all similarity motions in E3 which have all trajectories 
plane curves. We shall also give explicit expressions for each equivalence class of such 
motions. 

Let E3, E3 be two Euclidean spaces of dimension 3. By a frame in E3 or E3 we mean 
any sequence 0t = {AUfi,f2,f3} or 0t = {A,f1f2f3}, where A e E3 or A e E3 is 
a point and j \ or f i = 1, 2, 3, are pairwise orthogonal vectors in E3 or E3, 
respectively, of the same length. Let us further fix a frame 0to = {A0, (f) 0} or &0 = 
= {A0, (f) 0}, i = 1, 2, 3, in F3 or E3, respectively. The Lie group S3 of all similarity 
transformations of E3 or E3 can be regarded as the group of all 4 x 4 matrices 

g = ( ), where / is a column with 3 entries, y and E are 3 x 3 matrices, yyT = XEy 

X e 0t and E denotes the identity matrix. 
S3 acts also naturally as the group of all similarity transformations from F3 into 

E3 by the rule g(^0) = 0to . g for g eS3. A curve g(t) on S3 regarded as a one-para­
metric system of similarity transformations from F3 into F3 is called a similarity 
motion in F3 (and we shall always suppose a sufficient degree of differentiability 
of all functions, whether given or constructed). By a lift of a motion g(t) we mean 
a set of pairs [&(t), 0t(tj] of frames such that g(t) ($(t)) = 0t{i), where M(t) is a frame 
in F3 and 0t(t) is a frame in E3. 

Let further [0t(t), M(tj] be any lift of a given motion g(t). Denote 0t' = &(p, 
M' = 0t^\t, 2co = (p — i//, 2rj = cp + \\J. If 6 3 is the Lie algebra of S3, then co, rj e S 3 . 

Let A be a fixed point in F3. Then A = MX and g(A) = MX is the trajectory of A 
in E3 during the motion g(t) . X is the column of coordinates of A in 0t and also the 
column of coordinates of a point of the trajectory of A expressed in the frame 0t. 
Denote by Qk the operator of the k-th derivative of the trajectory of the point A, 
which is defined by the formula [g(A)](k) = 2 ^ X . 

Direct computations give 

(1) Q, = cO , Qk+1 = (cO + rj) Qk + Qk(co - rj) + Q'k . 

To find all motions with all trajectories planar means to find all solutions co(t) and 
t](t) of the equation 

(2) det \QXX, Q2X, Q3X\ = 0 for all X. 
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Denote further 

o, o \ /o, o\ /o o 
CO0, COJ V?<0> nj \A> ®k 

Then 

(3) 3 , = »o , 9 k + ) = (©, + i7j)St + 0A(a)o - ifo) + 3 ; , 

© . = © , , ©*+, = («j + IJ,)©* + ©»(<», - j?,) + ©; , 
where 

Uj12, co, 

Û ) n , ш 2 

- C 0 7 Ч , Û>i 

Write also X = 

First, let con = 0 . Then we can change the lift of g(t) in such a way that also 
o/n = 0 . This means that in this case we get all Euclidean motions in E3 with plane 
trajectories (taken with respect to the equivalence in S3). They are known, see for 
example [1]. All of them are cylindrical motions (the spherical image is only a rota­
tion around a fixed axis) and there are only three cases possible: a) planar motion 
in parallel planes, b) composition of a rotation around a fixed axis with some trans­
lation along this axis, which gives elliptical trajectories in parallel planes, c) composi­
tion of the elliptical motion in a plane with some translation in the direction per­
pendicular to this plane — a motion originally described by Darboux. Its trajectories 
are again ellipses. 

Consequently, from now on we can suppose o j n + 0. Then CJX is a regular matrix 
and so we can change the lift of g(t) and the parameter t in such a way that 

/0, 0, 0, o\ 

(4) - = o ; i ;" i , ' o l w h e r e " * ° -
\o , 0, 0, 1/ 

The subgroup of S3 which preserves such lifts for /( + 0 consists of all elements 
g € S3 of the form 

1, 0, 0, 0 
0, oc, -ß, o 
0, ß, a, 0 
0, 0, 0, V(«2 

(5) 0 - l n ' в ľ n I- a ^ є R -
+ ñ! 

2 Let us suppose for a moment that r/13 -f- " 2 3 4= 0. Let first \i -V 0. Then we can 
change the lift of g(t) and get r/23 = 0. Direct and uninteresting computation of (2) 
shows that then also rj13 = 0, which is not possible. We leave the details out. If 
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/( = 0, we change the lift of g(t) to get tjl3 = t]23 = 0 and the remaining group is 
again given by (5). So we can suppose t]l3 = tj23 = 0. 

Case 1. Let ^ i + nli * 0. Then we can change the lift of g(t) to get t] in the form 

10, 0, 0, <)\ 
11, a, -b, 01 

( 6 ) " = 0, b, a, 0 
\p, 0, 0, a] 

and for /t + 0 this lift is unique. Direct computation now gives 

(7) 

0, 0, 0, 0\ 
-V 2 - 2/r2, ~ 4 a - /i', 0 1 
-/i, 4/i + ///, 2 - 2/(2, O r 

K-P, 0, 0, 2/ 

0 0, o, o\ 
3/i2 - 3 + txfo - a , 4 - 12/i2 ~ 6/x/x', 4/i3 - 12/i - 6D' - /i", 0 i 

-6/i - b - a^i - 2/i\ - 4 / i 3 + 12/i + 6ft' + /i", 4 - 12^2 - 6/i/r', 0 ' ' 
-3p-af}-ir, 0, 0, 4/ 

After a simplification, (2) takes the form 

x\ — A1* 2- — 2/L2x1 — (2/i + a') X 2 — 1, 

\ixx + x2, (2/i + /i') x t — 2/i2x2 — /i, 
x 3 , ~ / i 

— 6/i/i'x, + (4/i3 + 4/i - /i") x 2 + 3 + 3/i2 + jib - O I 

— (4/i3 + 4/i — /i") Xj — 6\i\i!x2 —• b — af.i — 2/i' | = 0 . 

3)9 - aP - /J' I 
This leads to the following equations: 

(8) 1. 2/i[4/i2(l + /i2) + 6[i\i! + 3(/i')2 - wi"] = 0, 
2. 2/i' + (3/x + b)(l + ix2) = 0 , 
3. -5/ i 2 / i ' + 2fi(a - 1) (1 + ii2) - /i'(3 + lib - a) - \i" = 0 , 
4. 2/i(b + 3/i) (1 + /i2) + /z'(4/i + b + a/x - M') = 0 , 
5. iPufji' - P'(\ + /i2) = 0 , 
6. P[(ii2 + l)(2/i + 3/i') + 3/i2/i' + /i"] - (ajS + P')[2n(\ + /(2) + /a'] = 0 . 

Substituting from 2 into 4 we obtain 

4'. /i'(b + a/x - //') = 0. 

a) Let n + 0. Suppose /i' = 0. Then from 1 we get /i = 0, which is a contradiction. 
So /i' #= 0. From 4' we get b + a\i — \i' = 0. Denote /i = m" 1 / 2 . Then 

(9) a = 3-^(/^±iy /, = m - i / 2 / / _ ^ L _ _ 3 Y j-_c.
m+1 

2m \ m + 1 j \ m + 1 

C is a constant. 
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From 1 we get m" — 6m' + 8m + 8 = 0, so m = C{e
At + C2e

2t — 1, where C, 
and C2 are constants of integration. 

b) Let \i = 0. Then 2 of (8) implies 6 = 0. For the sake of convenience we change 
the lift of g(t) to have 

(10) fi = a = 6 = >7oi = ^02 = 0 - tfo3 is an arbitrary function . 

Case 2. >/01 = r/02 = 0, /j + 0. 

a) ^ 0 3 =j= 0. Then we can change the lift of g(t) to get rj03 = 1,6 = 0. Equation (2) 

takes the form 

Xj - џx2, -2џ2x{ - (2// + џ') x 2, -6џџ'xл + [4/г(l + /r) - ^"] x2 

/LXi + x 2, (2/i + //) x^ - 2/x2x2, -[4/г(l + џ2) - /ť'] x, - 6џџ'x2 

x3, — 1, 3 — я 
= 0 

As a result we get equations 1 and 6 from (8) with /? = 1; point 6 in (8) changes to 

6'. (2/z + /// + 2/r3) (3/i' + 3/J — a/n) = 0 . 

So we get two solutions: 

3m' 
(11) n = m " 1 / 2 , a = 3 , p = 1, 6 = 0, i/01 = >/o2 = 0 , 

2m 

(12) /i = m " 1 / 2 with C2 = 0 , /J = I , 6 = 0 , r/01=^02 = 0 , 

« is arbitrary, 

b) ?/0 = 0. We change the lift of g(t) to a = b = 0, /i = m~~1/2. So we obtain 

(13) >? = 0 , / f = m ~ 1 / 2 . 

Case 3. Here ;/01 = f/02 = jn = 0. This is b) of Case 1. 

Now we must solve the differential equations 

(14) M' = Mcp , M' = M\/J , where to = ri + co , i// = i] - co . 

The vector part of (14) can be formally written in the form ZT' = &". M, where 

/A, - B , 0\ 

(15) M= B, A, 0 , 

\0, 0, A) 

A, B are some functions, 3T = {eu e2, e3] is a base. We expect the solution in the 

form & = &~0. h, where 

( u cos v, — u sin v, 0\ 

u sin v, u cos v, 0 , 

0 0, uj 

where ^~0 = {f\,fi>f3} is a fixed base. 
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Then h lh' = M and so u'u l = A, v' = B. The solutions are the following 
(e = 1 for the fixed frame, e = — 1 for the moving frame): 

(9) : A = a + £ , B = 6 + eu , u = m~1/2(m + l ) " 1 exp [(3 + e) t] , 

v = (£ — 3) H(t) + 2 arctan yjm, H = J"J0 /t(t) df for a suitable t0. 

(10) : A = e , B = 0 , u = e£ t , v = 0 . 

(11) : A = 3 + £ — , B = £/i, w = m" 3 / 2 exp [(3 + e) t] , v = £H. 
2 m 

(12) : A = a + £ , B = gju , u = exp [F(t) + £t] , v = £H with C2 = 0 , 

F(0 = J ^ d L 

(13) : A = £ , B = 8/L , u = e £ f , v = £H . 

In all cases we can write the solution of (14) in the form 

g = \T )' W h e r e g = g i g i l > <^ = ' ^ c g i > ^ = ^ 0 0 2 , 

gi=(T 1, ^2 = fT )- ^ 0 , - ^ o are fixed frames. 

Then y = y 1 y 2
1 , T = T, - yF2. 

Denote by uu v, the expressions for u and v in the case e = 1, by w2, v2 in the case 
£ = — 1. Then 

(w icosv i , — Wj sin v,, 0 \ 
ut sin vf, ut cos v,-, 0 J, i = 1, 2, 

0, 0, u,/ 

( u^u^1 cos (v, — v2), —u^1 sin (vt — £>2), 0 \ 
u!u2

 x sin (v, — v2), u^ul1 cos (v! — #2)> 0 J . 

0, 0, Mi«rv 
Now we return to the cases (9) — (13) again: 

/ 2 - C2e
2', - 2 V m , 0 \ 

(9) : ? = (2^)"1 2 > , 2 - C / f , 0 , 
\ 0, 0, 2&e2t) 

3 3 

where 5 = (C, + ^C2)1 / 2 . Further, A' = J^n0ieh A' = £>oie„ 
i = i i - t 

where ^ = {A, e,}, J? = (A , e,}. Substitution from y, and ?2 gives 

A' = e2tS-Hm + I ) " 2 {m" 1 / 2 [m + 1 + \C2e
2\m - l)]f, + C,e4lf2} + 

+ cm-"vy3, 
198 



Џ-2Cm112 

A' = e2tm-ll2(m + l ) " 2 [1 + m (1 - i C ^ " 2 ) ] / ! - ^ " 2 ( m + 1)~2 C2m'f2 + 

+ Cm-3/V'f3, 

where t%0 = {A 0,f}, 5>0 = {A0,f}, i = V 2, 3. The solution is 

A = i « r * ( m + I ) " 1 mll2e2tfx - ^ ( m + l ) " 1 e2tf2 + 

+ | C O - 2 m - 1 / 2 ( C 2 ^ 2 f - 2 ) f 3 + A0, 

A = \b~2(m + I ) ' 1 m 1 / 2m^- 2 ff 1 + \d~2(m + J ) " 1 C 2 / 2 -

- | C ( 5 - 2 m - 1 / 2 m ^ - 2 r / 3 + A0. 

Further computation gives 

T = 

\ ^L 

In the end we substitute e2t = s and change the constants of integration. As a result 

we can write g(s) in the final form 

/ 1, 0, 0, 0 

/ i r j = c-i C2V
m> 1 - iC2s, ~Vm' ° 

1 ; ' ~ 2 c i 5 ~ c 2 , y/m, 1 - iC 2 s , 0 
\ Cy/m, 0, 0, O"s/ 

where m = Cts
2 + C2s — 1 is defined for s such that m > 0. 

R e m a r k . The differential equation for the trajectory X(t) of a point is in the case 

(9) :XW - (6 - 3m'lm)X" + (8 - lm'\m)X' = 0. The general solution of this 

equation can be written as X = A0 + f ^ 2 * + f2 yjm, where A0 is any point and 

/ i , / 2 are any two independent vectors. Hence the trajectories are conic sections. 

They are ellipses for Ci < 0, hyperbolas for Cx > 0 and parabolas for Ct = 0. 

The solution in the case (10) is 

/ l , 0, 0, 0^ 

( l 8 ) H o , 0,5,0, 
\G(s), 0, 0, sj 

where G(s) is an arbitrary function. Any plane curve can be a trajectory of this motion 

for suitable G(s). 

(11) is treated in a similar way as (9). As a result we get 

' 1 , 0 , o, o\ 

(19) g = Ô 
_d0 , l-ÌC2sty/m, 0' 

o, V"1- i - łc2s, o 
y^/m, 0, 0, s/ 

The differential equation for the trajectory is the same as in the case (9). 
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Now the case (12): We can change the parameter t to get Cx = 1, because C2 = 0 
and so C{ > 0. Then S = 1 and we can write yt and y2. Further. A = e* F(t)f3? 

A = e~* F(t)J3. Integration gives A = A0 + Fx(t)f3, A = A0 + F2(l)f3, where 
Fi = erF, F2 = e~"'F. Finally, we get for the components of T: Tx = T2 = 0 and 
T3 = F, - e2'F2 = Je' F(t) dt - e2f Je~ ' F(t) dt = i Js~ 1 / 2 F(s) ds - s/2 Is'212 . 
. F(s) ds = — []J(J:s~3 2 F(s) ds) ds]s=e2 t, where the substitution s = e2t and integra­
tion by parts was used. This shows that T3 can be an arbitrary function; let us denote 
it by G(s). The final form of g(s) is then 

(20) g(s) 

Any plane curve can be locally generated by a suitable motion of this type as its 
trajectory. To see it we compute for instance the trajectory of the point x0 = z0 = 0, 

yo -= » l . We get x = V(s2 - 1), y = - 1 , z = G(s). 

At last we get to the case (13): The motion can be written in the form 

1, 0, o, 0 
0, 1, 

o, V(*2 -
G(5), 0, 

- V ( * 2 -
- 1 ) , i, 

o, 

-1 ) , o 
0 

(21) g(s) = ô 

The differential equation for the trajectory is the same as in the case (9). 

Theorem. NOn Euclidean similarity motions in E3 with only plane trajectories arer 

up to the equivalence, exactly those given by (17) —(21). All of them are cylindrical 
(they preserve one direction) and the trajectories are affinely equivalent conic 
sections in the cases (17), (19) and (21), and arbitrary plane curves in the cases 
(18) and (20). 

Remark . Euclidean motions with only planar trajectories (apart from the case 
of the planar motion in parallel planes) have the following properties: They are 
cylindrical, trajectories are affinely equivalent and all of them are ellipses. The present 
paper shows that if we increase the group of transformations, such motions remain 
cylindrical, but the other properties are lost. It can be shown that in larger groups 
of transformations of the space even the last property will not be preserved. 

R e m a r k . Each cylindrical similarity motion can be written as a product of two 
motions, a plane similarity motion in a plane a and a similarity motion in a line 
perpendicular to the plane a. Let us study out motions (17) —(21) from this point 
of view. 

In the cases (18) and (20) the motion is a product of a plane similarity motion 
with one fixed point, let us denote it by P, with an arbitrary similarity motion in a 
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straight line. The planar motion in these two cases has all trajectories straight lines, 
in (18) all of them pass through the fixed point P, in (20) the trajectory of a point X 

is the straight line through P perpendicular to TX. 
In the cases (19) and (21) the planar motion is the same. It has again a fixed point 

P, all trajectories are similar conic sections with one axis passing through P. 
Finally, we shall concentrate on the general case (17). The corresponding plane 

similarity motion has conic sections as poloids. The trajectory of any point Q = A0 + 
+ xo/i + yo/2 *s a C O n i c section which degenerates in a straight line if 

*o + (yo + 2r32CJ1 - C2)
2 = 4c>4C2

 2 for C2 * 0 and x0 = const, for C2 = 0 . 

All these straight line trajectories pass through a fixed point if C2 4= 0, they are 
parallel for C2 = 0. This shows that the plane motion in the case (17) is a similarity 
analogue of the elliptical motion in the Euclidean plane which occurs in the Euclidean 
space motion discussed (the Darboux motion). We notice also that the motions 
(18) —(21) preserve a straight line which corresponds to the so called "special" Dar­
boux motion in the Euclidean case, while (17) corresponds to the "general" one. 
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Souhrn 

ADOLF KARGER 

V článku jsou nalezeny a explicitně popsány všechny podobnostní (ekviformní) 
pohyby v prostoru, které mají pouze rovinné trajektorie. Nejdříve jsou odvozeny 
diferenciální rovnice pro ekviformní pohyby s pouze rovinnými trajektoriemi. Tyto 
rovnice jsou použitím metody specialisace repéru zjednodušeny tak, že je lze expli­
citně řešit. Integrováním Frenetových formulí pro uvažované pohyby je pak získáno 
jejich explicitní vyjádření. Všechny tyto pohyby jsou cylindrické (zachovávají alespoň 
jeden směr) a dělí se na 5 různých typů. U 3 typů jsou trajektoriemi kuželosečky 
u zbývajících dvou typů může libovolná rovinná křivka být trajektorií. 
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