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CONTACT BETWEEN ELASTIC PERFECTLY PLASTIC BODIES

JAROSLAV HASLINGER, IVAN HLAVACEK

(Received March 17, 1980)

INTRODUCTION

Unilateral contact problems of two bounded bodies within the framework of
linear two-dimensional elasticity have been studied in the paper [1] If the material
of the bodies is elastic perfectly plastic, obeying the Hencky’s law, the formulation
in terms of stresses is more suitable than that in displacements. Thus we first extend
the well-known Haar-Kdrmdn principie to the case of a unilateral contact on the
boundary. This is carried out in Section 1 for the problems with 2 bounded contact
zone and with an enlarging contact zone.

Approximations to both types of contact problems are proposed in Section 2,
based on piecewise constant triangular finite elements. Convergence of the method
is proven for any regular family of triangulations. In Section 3, we present a simpli-
fication of the approximate problem with a bounded contact zone, which enables us
to employ methods of nonlinear programming.

1. EXTENDED HAAR-KARMAN PRINCIPLE

We assume:

— plane problems,

— bounded bodies,

— small deformations,

— zero friction,

— zero initial strain and stress fields,
— constant temperature field,

— Hencky’s law.

Let two clastic perfectly plastic bodies occupy bounded domains Q', Q" = R?
with Lipschitz boundaries. Henceforth one or two primes denotes that the quantity
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is referred to the body Q" and Q”, respectively. We shall use the Cartesian coordinate
system x = (x,, x,). The summation is implied over the range 1, 2 if an index is
repeated. H/(Q) will denote the Sobolev space W/*(Q) of functions with square-
integrable derivatives up to the order j in the sense of distributions.

Let R, be the space of symmetric 2 x 2 matrices (strain or stress tensors). Assume
that a yield function f: R, — R is given, which is convex and continuous in R
We introduce the following notations:

ar

S={t:Q-R,|r;e Q) Vijl, Q=QuQ".
{o, e) =J g;e;dx, ”a”o = (o, a)'/?.
Q

In the space S we introduce also the energy scalar product (o, 1) = (7o, 1),
o] = (o, 0)"/%, where ¢: S — S is the isomorphism defined by the generalized
Hooke's law:

0 = (<0 = CijxmCm -

Here ¢y, € L°(QM), M =","; ¢ and e are the stress and strain tensors, respec-
tively;
Ju >0, {(ce,e) = afe]; VeesS.

We introduce the set of plastically admissible stresses
B={teR,|f(x) =1}.
It is easy to see that B is convex and closed in R,.
We define the set of plastically admissible stress fields
={teS|1x)eB ae. in Q' UQ}.
The set P is convex and closed in S.

The Hencky’s law can be stated in the following way (cf. [2], [3]). Introducing the
the projection ITg(x): R, — B onto the set B with respect to the scalar product
(¢7!(x) 0);; T;, then

o = ITgx) ce.

Let us consider the actual strain tensor field e(u) e,
ei(u) = J(eufox; + cuylox;), where uMe[HY(QY)]?, M =""

and the actual stress tensor field o € S. (Suppose the existence of all these fields for
the time being).

Moreover, let IT : S — P be the projection onto the set P with respect to the energy
scalar product (o, 7). Then

(1T7) (x) = Tg(x) ()
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holds almost everywhere in Q" U Q" (see [3]). Hence we may write

(0.1) o = Ilce(u).
1.1 Bounded contact zone

In [1] — I we have distinguished two kinds of unilateral contact problems ac-
cording to the geometrical shape of the bodies: (i) problems with a bounded contact
zone, (ii) problems with an enlarging contact zone. Next let us consider the first
class of problems and recall their variational formulations (see [1] — I and III)

Defining the contact zone
[ =0Q noQ",

we have the following decompositions
0 =T, ol uly, Q" =Tyul!uTly,

where I'y, I'g, I'. and I'] are mutually disjoint open parts of the boundaries; assume
that I', and I'g have positive measure. The remaining parts may be either of positive
measure or empty.

We say that a unilateral bounded contact occurs on I'y if

(L.1) u, 4+ u, £0

holds a.e. on I'y, where

u,’,u = u?’n?’ , M=""

and n™ denotes the unit outward normal with respect to Q. (See [1] — I for the
derivation of the condition (1.1) of non-penetrating).

On I', we consider the displacement condition
(1.2) u = uj,
where ug € [H'(Q')]? is given such that ug, = 0 on I'g.
On I, the bilateral contact conditions are prescribed:
(1.3) u, =0, Tfo)=0,

where T(0) = o;n;t;, t = (—n, n;), denotes the tangential stress vector com-

ponent.

On I', = I', U I'] the tractions are prescribed, i.e.,
(L.4) T(o) =oyn; = P;, i=12,
where P; e I2(I",) arc given.

On I'y we have the condition (1.1) and

(1.5) T)(0) = T)(c) <0, T)(o)(u, +uy) =0, T, =T =0.
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The stress field o satisfies the equilibrium equations
O Py
(L.6) T Fi=0 in Y, M=,

0X;

where F; € I? (Q) are the body force components.

In the variational formulations we need the space
V={ve[H(Q)]* x [H'(Q)]*|v=0o0onT,, v,=0on Iy},
the cone of admissible virtual displacements
K={veV|v, + v, <0 on Iy}
and the set of statically admissible stress fields

K* = {teS|{ev), 1> = L{v) WeK},
where

L{v) = I F; dx +j P;ds.
Jo re.

Theorem 1.1. Assume that fields of displacements u and stresses ¢ (sufficiently
smooth) exist such that the conditions (0.1), (1.1), ... (1.6) are satisfied. Then the
stress field o solves the following problem

(2,) P(z) = 5|t|* — <eluy), ©) = min over K* A P.

Remark 1.1. This minimization problem represents an extension of the Haar-
Kdrmdn principle (cf. [2], [3]).

Proof. Instead of (0.1) we may write for any 7 € P
(1.7) 0=(ce(u)—0, t—0)={e(u), 1—0> —(0,7—0).

If we set u = u, + w, where u; = 0, then w e K and
(1.8) (e(w), oy = L(w) +J T, (o) (w;, + wy) ds
I'k

can be deduced by integration by parts. Since w, + w, = u, + u, holds on I,
it follows from (1.5), that the integral over I'y vanishes. Moreover, ¢ € K" can be
verified on the basis of (1.3), (1.4), (1.5), (1.6) and Lemma 1.6 of [1] — IIL

If te K", then

(1.9) (e(w), 7y — L(w) = 0.
Thus inserting into (1.7) from (1.8), (1.9), we may writc for te K* n P

(6,7 — o) = {e{ug), t — o) + {e(w), 1) — {e(w), o) = <e(uy), T — ).
Since K™ and P are convex sets and .% is a convex functional, the variational ine-

quality is equivalent to the problem (2).
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Theorem 1.2. Let the set K™ n P be non-empty. Then the problem (2,) has
a unique solution.

Proof. The sets K* and P are convex and closed in S, the functional & is quadratic
and strictly convex. Hence the existence and uniqueness follow.

Remark 1.2. The formulation in terms of displacements is more difficult to
handle, as far as the existence and uniqueness is concerned — see [2], [3] and [5]
for the classical boundary value problems.

1.2 Enlarging contact zone

If the bodies Q' and Q" have smooth boundaries in a neighbourhood of 0Q" n 0Q",
the contact zone can enlarge during the deformation process. We introduce (see
[L] = 1) a local Cartesian coordinate system (&, 1) at a point of ¢Q' n Q" such that
the &-axis coincides with the direction of n” and define the function

o) = f"(n) = f"(n), neda, by,
which describes the distance between the bodies before the deformation.
The condition (1.1) of non-penetrating is now replaced by
(1.10) u; —uz < ¢ Vneda, b

where (a, b) is an a priori estimate of the projection of the enlarged contact zone.

On I, we have the condition (1.2), where let (ug, ug) be such that ug, = 0 on I,
and up; — up: = ¢ on <a, b). The conditions (1.3) on I'y, (1.4) on I', and (1.6) in
Q' U Q" remain unchanged, whereas (1.5) on I'y is to be replaced by the following
three conditions
(L.11) —T{(o)(cos ') "' = T{(o) (cos «")"' £ 0,

To) = T)(e) = 0,
T (o) (ul — u; - 8) =0,

s

which hold at almost all points of I'y U I'y. with the same coordinates n € {a, b).
Here oM, M = ', ", denotes the angle between g-axis and the tangent to I'}.
We introduce the set of admissible virtual displacements

K, ={veV|v; — v, < ¢ Vyela, by}
and the set of statically admissible stress fields
K§ = {reS|e(v),r) = L{v) Ve K,},
(Ko = K, with ¢ = 0).
Theorem 1.3. Assume that fields of displacements u and siresses o exist (suf-

ficiently smooth) such that the conditions (0.1), (1.2), (1.3), (1.4), (1.6), (1.10), (1.11)
are satisfied.
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Then o solves the following problem
(2,) H(r) = ;“ruz — (e(uy), vy = min over Kg N P.

Proof. For any 7 € P we have (sec (1.7))

(1.13) (6,7 — o) = <e(u),t — 0a).
Considering any t€ P n K, we may write u = u, + w with w e K, and
(1.14) (e(u), T — o) = <e(uy), 7 — > + (e(w), T — o).

We can show that ¢ € K. In fact, for any v e K,
b
(e(v), o) = L(v) + j [v:T{ (o) (cos o) ™! + v/ T{ (o) (cos «") '] dy

can be deduced by integration by parts and using (1.6) and the boundary conditions.
By virtue of (1.11),, the last integral equals to

b
j T/(o) (cos ")~ (v} — vi)dn = 0,

a

which proves that ¢ € K. On the other hand, we have in particular:

Ti(o) (Wi — wi) = (u} — u; — &) T{(0) = 0 Vnela, by,
so that

(e(w), o) = L(w).
Thus we obtain for e K¢
(e(w),r — o) = (e(w), 7> — L(w) 20

and inserting into (1.13), we arrive at
(1.15) (0,7 — 0) = Ce(uy),t — ) VieK; nP.
The equivalence of (1.15) and (2,) is obvious, the set Ky being convex.

Theorem 1.4. Assume that the set K n P is non-empty. Then the problem (2,)
has a unique solution.

Proof. The sets P and K} are convex and closed in S, the functional % is quadratic
and strictly convex.

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS
We shall apply the finite element method to the approximate solution of the
problems (#,) and (2,), using the simplest possible model, i.e. piecewise constant

external approximations of the set of statically admissible stress fields.
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2.1 Approximations to the problem with a bounded contact zone

Assume that I'y, I', and I'y consist of straight segments only. Let us consider

triangulations .7 of Q" (M = ’,") such that their nodes on I'y coincide and the

triangles Te 7" adjacent to the boundaries Q™ may have curved sides along the

boundary I',.. We introduce the space of piecewise linear spline functions
Vi ={veV||re[P(T)]* VTe 7,},

where 7, = 7, U .7, and P(T) denotes the space of polynomials of the degree k,
defined on T. Let h denote the maximal diameter of all triangles in .77,. The minimal
interior angle of all triangles in 7, will be denoted by 9,,. (If the triangle T has a curved
side, then the interior angles are defined by the angles of the straight triangle with the
same vertices.) We say that a family {77}, 0 < h < h,, of triangulations is regular,
if 3, is bounded away from zero by a number 9, independent of h.

Introducing the space of piecewise constant stress fields
S, = {reS|tylre Po(T) Vi, j, VTe 7,},
we may define external approximations of the set K* as follows:
K, = {re S,/ Le(vy), v = L(v,) Vv, eK,}

where K, = KnV, = {veV,|v, + v, <0 on I'}.

Note that if the condition (1.1) of non-penetrating is fulfilled at the nodes of I',
it holds on the whole I'y, by virtue of the assumed shape of 'y and the linearity of
v eV, in any triangle.

Instead of the problem (9’1) we shall solve the approximate problem

(2.1) #(0,) = min over K, nP.

To analyze the solvability of the problem (2.1), we introduce a projection r;, : S —
— S, as follows:

=rnmtwmy =0 Vi, €S8,
Lemma 2.1. If te K* n P, then r,te K" n P.

Proof. It is obvious that

(2.2) r,,T|.,~ = L Tdx
mes T |

and it is well-known that
(2.3) [t —1fo >0 for h—0.
Then for any v, € K, we obtain e(v,) € S, and therefore

<e(vh)7 rhT> = <E(V/,), T> g L(vh) s
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making use of the fact, that v,e K, = K and 1 e K*. As a consequence, r,t € K, .
Since ©(x) € B a.e. and B is closed and convex in R,, from (2.2) it follows that
ri|reB VTed,
and therefore r,te P. Q.E.D.

Theorem 2.1. Assume that K* n P # 0 and there exists only a finite number of
points Ty NIy I, 0Ty, T’ 1. Then the approximate problem (2.1) has a unique
solution o, and

(2:4) oy — oo >0, h—>0,

provided that the family of triangulations is regular.

Proof. The set K,/ n P is closed and convex. By virtue of Lemma 2.1 it is also
non-empty. Hence the existence and uniqueness of g, follows.

To prove the convergence (2.4), we employ an abstract theorem (see [6] — chpt.
4 or [1] — 1I — Theorem 1.1) on the convergence of Ritz-Galerkin approximations.
Thus it suffices to verify the following two conditions

(i) ), 1,€eKy NP, 1, >0 in S for h - 0;
(ii) t,e K, N P, 1, — © (weakly) in S implies that te K* n P.
The first condition is satisfied with 1, = r,g, by virtue of Lemma 2.1 and (2.3).

To prove (ii), we consider an arbitrary element v € K. There exists a sequence {v,},
v, € K, such that

(2.5) v o v in [H'(Q)] x [H(@)], h-o.
In fact, we utilize first the fact that the set
K* = K A [Co@)]? x [c(@)]

is dense in K. The density follows from Lemma 3.1 of [1] — 1I., where the cases
I'ynl,+ 0 and I'y n Ty = 0 have been excluded. The proof, however, can be
completed by consideration of the cases mentioned above, as follows.

Appendix to the proof of Lemma 3.1 of [1] — II. Let the domain B contain
a point I'y n I, = P, which is at the same time a vertex of 0Q'. Using the skew
coordinate basis (see Fig. 1), we have

uM® = uyM pp M ="" p=12,
u, 4+ ul = w® _ y"m on @ .

As a consequence,

I < [= 0™ -y

IIA

0 on IV,

' cr,=u®=y® =0 on I®,
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Let Eu'‘"” be an extension of u’""~ into B — Q' such that Eu’") € H'(B), supp Eu''" <
< B, Eu'"" = 0in an angular domain between I', and I, (outside Q' U Q").
Let Eu"™ € H'(B) be an extension of u”") into B — Q" such that supp Eu"") = B,

Denote | the straight line containing I'") and
U = (u'" — u"V) .

Let E,% be an extension of % onto the whole line I, such that E, % is symmetric
with respect to the point P. Consequently, we have

E\% <0onl, suppE% < Bnl.
There exists a function v € H'(B), supp v = B such that

v=E%onl, v<0in B.
Then we may write

(2.6) Ev' — Eu"® =y + z on B,
where z € H'(B), suppz < B, z = 0 on I'"),
There exists a function w € H'(B) such that
w=zonI'Vur, w=0
in an angular neighbourhood of '™,

Let us define a shifted function
wl(x) = w(x + ).ez) , AeR, 1>0.
A positive C exists such that for a regularizing operator R, we have
Rw,=0o0on IV, if »<Ch,

(2.7) Rw,—w, A-0, x<Ci, in HY(B).
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We may write

”

Z=w+ 25, 20 = Zgpag € HY(B N Q")

and find

(2.8) 20, €CHBNQ"), zp, -z, x>0, in H(Bn Q).

Let us introduce
(Ew'™), = Eu'"(x + pe),

where e R, u > 0 and e is a unit vector in the direction of the axis between I'®

and I',. Then
R(Ew"), =0 on I'® for x<C
If we define
u = R(Eu'™), |0,

i

u;(l) = [Rx(Eu,(“)u - (va + Rxw). + :Ox)]ﬂ” 5

then it holds
uV —ul =Ry + Rw, + zo,]ri» <0 on I

u=0 on I'® for » < Cpu.
Moreover,

”“;c(” - u,(l)Hl,Q’ = HRx(Eu,(“),u - Eu/“)Hl,B -0, 4

WD — WO o < | RAEWD), — Ew' D,
+ B — B (R + Ry + 2,

where the last two terms tend to zero for u —> 0, 1 - 0,
a consequence of (2.6), (2.7) and (2.8).

) for x < CA,

-0, %< Cu,
Baor T

1,BAQ" >

x < min (C2, Cypu), as

The component u'‘? will be approximated like z, changing only I'" with I'®,

The component u”® can be extended arbitrarily and regula

rized.

Finally, let us consider the casc I'y n I’y #+ 0. For instance, let the situation be as
in Fig. 1, where I, is replaced by I'y and Q' by Q”. Then the condition u) = u"?) = 0

holds on I'y o I'®,

The components u™") can be approximated like in the 2
Lemma 3.1, the components u”?) like the function z there
can be recgularized arbitrarily.

To prove (2.5), it suffices to consider
v,eK”, |v,—v|, <¢f2
and Lagrange interpolations v, € K, of v,. Since it holds
”vxl - vu”l g C h}vnlz 5

(2.5) follows with v, = v,,.
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Then e(v,) — e(v) in S and
{th e("h)> = L(Vh) .

By passing to the limit in /1, we obtain T € K*. Since P is weakly closed, t € P.

2.2 Approximations to the problem with enlarging contact zone

To approximate the problem (£,), we employ again piecewise constant external
approximations of the set of statically admissible stress fields.

Let us consider triangulations 7 of Q¥, M =", ", such that the triangles adjacent
to the boundaries may have curved sides along the boundary and the vertices on I'ff
lie on straight-lines parallel with the &-axis. If I'}¥ contains a point of inflexion, than
there is always a vertex.

If a curved triangle Te 77, adjacent to I'} is convex, it will be divided by the chord
into a ‘“‘straight” triangle T, and a segment T, so that T= T, u T, If T,e 7,
adjacent to I'Y is non-convex, then one of its sides is parallel with the ¢-axis.

We define

V, = {ve VIv|r € [P(To)]* VT, = Te 7, adjacent to I'Y ,
0 . . M
Py =0 VT, c TeJ, adjacent to Iy ,
o Jr

.
<-»O~ v> = 0 for all non-convex triangles T, adjacent to I'y, v|; € [P,(T)]?* for all
T.

o0&
remaining triangles}.
In other words, ¥}, consists of piecewise linear vector-functions, which are extended
onto the segments and onto the non-convex triangles adjacent to I'y continuously by

constants in &E-direction.
Moreover, let us introduce

Il

Sh
Koy ={veV,|vi —v; £0 Vypela, by on I'y u Ty},

{teS|t1,;eP(T)VT* =T, T, T, T,€ T, i,j = 1,2}

+
K()h

I

'{T €S, I (t, e(vy)> = L(v,) Vv, e KOh} .

It is easy to sece that if the condition v; — v; < 0 holds at the nodes of r'¥,it holds
on the whole interval <{a, b) by virtue of the definition of V,.
Instead of (#,) we define the approximate problem

(2.9) &(t,) = min over Kg, 0 P.
We again introduce a projection mapping r,, : S — S, as follows

{t—mt, x>0 VyeS,.
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Lemma 2.2. If te K§ A P, then ryre Ky, 0 P.

Proof. It holds (2.2) for any T*e J, and (2.3). Let v, € K. Then e(v,) € S,
and we may write

(T, e(vy)y = <t e(v,)> = L(vy),
since Ko, = K,. Thus r,t € Kg, follows.

Since 7(x) e B a.e. and B is convex in R,, the mean values of 7 in T, Ty, T, T,
belong to B, as well. Therefore r,7 € P.

Theorem 2.2. Assume that f¥ e C*, M = "',”, in a neighbourhood of the interval
{a, by, Ty " T, =0, Ty n Ty =0, there exists only a finite number of points
Fal,T,nTyand Ky n P * 0.

Then the approximate problem (2.9) has a unique solution ¢, and
(2.10) loy — oo >0, h—>0
holds for any regular family of triangulations.
Proof. The set K3, n P is convex and closed in S,. Lemma 2.2 implies that it is

also non-empty. Hence the existence and uniqueness of o, follows.

To prdve the convergence (2.10), we employ the abstract theorem like in the
proof of Theorem 2.1. The condition (i) follows from Lemma 2.2 and (2.3) with
T, = 10.

Thus it remains to verify the condition (i) (where K, and K* is replaced by Kg,
and K, respectively). We shall need two auxiliary lemmas.

Lemma 2.3. Let the assumptions of Theorem 2.2 on I'f, I',, [y, I', be satisfied,
except that fMeC™a — 8, b+ 5),5 >0, m = 1.
Then the set
H =Ko n [C(@)]* x [en(@)]?
is dense in K.

Proof. Let {B;}i_, be a system of open domains, which covers Q" U Q" and such
that

B.

j
2

C =

Bo=Q, B, cQ', Tynlyc
J
Fyol,nB +0s2<i<k.

Let the union of arcs PQ" U PQ” (see Fig. 2) be contained in one and only one do-
main B;. Assume that the other domains contain at most one angular point of the
boundaries or a point ', n ", [y N T,.

Let us consider the corresponding decomposition of unity and construct a smooth
approximation to every function u/ = ugp;, where ue K, ¢; € C3(B;). We can use
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the same approach as in the proof of Lemma 3.1 of [1] — II, except the configura-
tions of the type depicted on Fig. 2. In such case we use the following technique.
By assumption, we have ¢; = 1 on I'y U I't n B;. Henceforth we omit the sub-

Fig. 2

scripts and superscripts j. Let us map Q' n B into the haifplane ¢ > 0 and Q" N B
into the halfplane & < 0 by means of the following two mappings:

R = T = (= ), =), M=
where x = (& 1), x = (& n).
Denote
B=T(@nB)uT(Q B,

and define

U, = (’Qgﬂ - ’2&1)‘&0 :
It is easy to see that
U, 20, i<b+ 4.

Let us define the extension Eﬁé‘f1 across the axis & = 0 as an even function of & and
&, = (Eig; — Eit;)"|s-0 -
Then it holds
U,—¢, <0, supp(U, —¢,) = Bn{é=0;

for sufficiently small A. Therefore a function o € H‘(@) exists such that & < 0 in B,
supp d = B and
ﬁ]£=0 =U, —¢.

Since &, = 0 for f < b + 1 and ¢, € H'/? on the -axis, there exists a function
W e H'(B) such that:
N

We=o = &,, suppw < B,
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W = 0 in a neighbourhood of the straight-line segment {# < b + 14, & = 0}. It is
readily seen that

Arr

Ed, — Eaj, — W = ¢ +

[

)

where

o

o= U, — ¢, — (U, —¢,) =0, 2eH'(B).
Regularizing # and %, we obtain for x - 0 R0 + 2, - 0 + 2 in H'(B), where
Ze=0 = 0, (R + 2,)[z=0 S 0.

We set

N

e = REG | g0,
iy, = [REGL, — RO — 2, — RW]pg .
On the axis & = 0 it holds
(2.11) @ — G, = RO+ 2, + RW=0, f<b, x<if2,
since R,Ww = 0 for §j < b, » < LA
Furthermore, we have for x - 0, A - 0, » < 1A:
i, > 4 in H'(Bn TVQ™), M =",".

Finally, we set (after a suitable extension)

M A
iy, = R,y
and define
M __ M n M _ M M
ué}x - u:ix o T 5 un/‘.z - unix o1 B

Since both T and (T")~' are Lipschitz mappings, it holds

M M M M
luie = gy on = Cllad, — @' |1 porsom = 0
for » < {4, 4 — 0 and a parallel assertion is true for u',‘,lm

As a consequence of (2.11) uf,, — uj,, <0 for n < b and therefore u;, € K.
Since fM e C™, u)t e [C"(QM)]%

Lemma 24. Let ve[H*(Q)]* x [H*(Q")]*, f™eC'(Ka, b)). If we define
a Lagrange linear interpolate v € V, by an obvious way, then
[vi—v|i00uer—0, h>0
holds for any regular family of triangulations.

Proof. Let V)? be the space of piecewise linear functions, continuous in Q™
(M =","), over the triangulation J,, where each convex curved triangle T =
= T, u T, remains undivided and the functions from ¥, are linear in the whole T.
Let v) € V2 denote the Lagrange interpolate of v.
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First we prove that

(2.12) lon = vllion S Chlofyou, M="".

2

In fact, there exists an extension Ev e H*(R?) such that

|Eo])s ke < Cllo])s.m -

For the curved triangles, adjacent to I'}, we define (see Fig. 3):

T = Ad,a;a, (ie. twice enlarged Ty)
if Tis convex,
T = Aaja;a, if Tis non-convex .

™
d, M }(%
/F\\/é a.
T T~ !
g 14 9 q;

Fig. 3

Let 7, denote the linear interpolation on T with the nodes a;, a;, a,. Making use of
the affine equivalence and the regularity of {7}, we derive the estimate

|m,Ev — Ev|, # £ Ch|Ev], 7,
where C is independent of h and Ev.
Since m,Ev = vp holds on 7, we may write

o= i = 3 o~ iflirs 3 B0~ mboli, <

Ted n Ted M

< Ch* Y

TeJ M

Ev

3.7 S 2C W Ev|3 e £ Cy 1?03 0m -

Second, we shall prove that
(2.13) oy = vpfigu =0, h>0, M="".
In fact, it is readily seen that
supp (v — o) © D, = UT, U T,

where D, is the union of all segments and curved non-convex triangles adjacent
to I'lY.

In each T or T, we have:

W& ) — v n) = o0& m) — v(Es)m) = (& — &s)) 2,
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(where the point (&(s), ) lies on the chord or at the straight side of 8D, = I'Y),

6= &)l =n,

0y 2
j (o) — vr)? dEdn < hZJ (%) dz dn
Ts Ts \ O¢C

and the same estimate for integrals over T,.

Furthermore, it holds

0 o o) 3 o dvy 0&(s)  |0&(s)
—(v) —v)) = , — (v —v) = — =L =22 =
Py (v 1) CH 1) | on

oc o & o’
where « is the angle between the y-axis and the chord or the straight side of 9D, = 'y,
respectively. Since I'y € C' and the family {7} is regular,

ltg a‘ = max (lfM|C'(<a.h>) ’ (Sin 9)_1) .

For sufficiently small h we obtain

0\ 2
100 = o, < (C + ) j (%5) az dn < C |,
Ts

and a parallel estimate for T,.

‘ = ltga

)

Thus we have

15 = vl £ T 1 = ok, + T Ik - ki,  Clelim

On the other hand,
loil 1.0, = ols0n + o8 = 0l p, >0, h—>0
holds by virtue of (2.12) and the fact that mes D, — 0.
Finally, from (2.12) and (2.13) the assertion of Lemma 2.4 follows.

Proof of Theorem 2.2 — continuation. Making use of Lemma 2.3, to any
ve K, we can find v, € i, such that

v = vl 0ronr < x.
From Lemma 2.4 it follows that
[var = Villi.0rver = 0, h—0.
Moreover, the interpolate v, ; € K,,. Altogether, we have

”vx, - vlll,Q’uQ” -0, h->0, 2-0.
If 7, € Kg,, then

{Ths e("xz)> 2 L(vxl) .
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Since 7, — 7 weakly in S and e(v,;) — e(v) in S, passing to the limit in s, we obtain

{t,e(v)) 2 L(v),
ie, teKy.

Since P is weakly closed in S, 7 € P, as well. Q.E.D.

3. ON THE SOLUTION OF THE APPROXIMATE PROBLEMS

In the approximate problem (2.1), the set K, scems to cause difficulties, at a first
glance. We can simplify the situation, however, by eliminating the auxiliary test
functions v, as follows.

Let us denote

N
vi(x) =.Zl 4, () ,
i=
where g; are the values of displacement components at the nodes of the triangulation
T, If we write down the conditions (1.1) at the nodes of I'g, then precisely 4 com-
ponents {qy,, Gi,» Gi,» di,} Occur at each (double) node A, € Ig.

In fact, assume for simplicity, that I'y is a single straight-line segment with n’, #+ 0.

Then the condition (1.1) gives ’

where b; = njforj = 1,2and b; = n}_, for j = 3, 4. Introducing a linear transfor-
mation ¢ = F,y, F, : R* - R* by means of the relations

we find out that F, is regular. Let us consider the same transformation in each
quadruplet M, = {qi,> 9i,» s, 4}, k=1,..., 0, corresponding to each node
Q

A, e I'y. Setting also y, =g, for q, ¢ J M,, 1 £ p < N, altogether we have q = Fy,
F:RY > RY and k=t

(3.1)  veK,eqed ,syed, ={yeR" |y, 20, k=1..,0}.
Let Y, denote the characteristic function of the triangle Te 7 ,. Then we have

(3.2) € Sy = T(x) = > T(T) V(%)

TeTn

and denoting

(3.3) th = (Txl(T|)7 TZZ(TI)v sz(T:)9 1'11(712)a Tzz(T2)~, )
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the corresponding vector in R, we obtain

e = ¥ [ A1) aie(o) ax = (Et9),

TeJ y i=1
where E is a N x M matrix, (Et, q) = q"Et. (Note that N < M).

Since
N
L(vy) =Y q; L(¢) = (1.q) = q"1,

i=1

where Ie RY is a fixed vector, the condition 7 e K, can finally be rewritten in the
form
(- Et,q) <0 Vqex,.

This means that the vectors I — Et belong to the polar cone Jfg of the cone £,
Employing the mapping F, we obtain an equivalent condition

(3.4) (- Et,Fy) <0 Vyed,.

Let I be the set of all indices ky, k =1,2,...,Q and I, = {1,.., N} = I the
set of remaining indices. Since the cone .4, is generated by the vectors

{+e;, jely, —e,, mel}

where e; and e,, form an orthonormal basis in R", (3.4) is equivalent to the following
system

(3.5) gty =(1 — Et,Fe;) =0, | el,,
(3.6) gu(t)= (I — Et, —Fe,) <0, mel™.
Moreover, 1, € P if and only if
f(T) =1 VTeT,,
which may be written in the form
(3.7) ff) =150 VTeT,.

Finally, inserting (3.2) and (3.3) into the functional ¥(t,), we are led to the fol-
Jowing problem of nonlinear programming: &(t) = min over the set of te RM,
satisfying (3.5), (3.6) and (3.7).

Remark 3.1. If I' has a vertex, we define y,, = ¢,,,j = 1, 2,

4 4

yk3 = Z b;”qkj’ yk4 = Z bﬁ‘Z)qkj >

Jj=1 j=1
where b;” and b(iz) correspond to the normals n’, n” on both sides of the vertex.

Remark 3.2. A similar approach can be applied to the approximate problem (2.9).
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Souhrn

KONTAKT MEZI PRUZNE — DOKONALE PLASTICKYMI TELESY
JAROSLAV HASLINGER, IVAN HLAVACEK

Jednostranny kontakt dvou téles z materidlu, ktery se ridi zdkonem Henckyho,
je studovdn na zdkladé formulace v napétich. Nejprve je rozsifen zndmy Haartv-
Kdrmdnav princip na ulohy s jednostrannym kontaktem. Jsou navrzeny aproximace
metodou konecnych prvkia s funkcemi po cdstech konstantnimi na triangulacich.
Pro kazdy reguldrni systém triangulaci je dokdzdno, Ze metoda konverguje.
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