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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y CISL01 

CONTACT BETWEEN ELASTIC PERFECTLY PLASTIC BODIES 

JAROSLAV HASLINGER, IVAN HLAVACEK 

(Received March 17, 1980) 

INTRODUCTION 

Unilateral contact problems of two bounded bodies within the framework of 
linear two-dimensional elasticity have been studied in the paper [ l ] . If the material 
of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation 
in terms of stresses is more suitable than that in displacements. Thus we first extend 
the well-known Haar-Karman principle to the case of a unilateral contact on the 
boundary. This is carried out in Section 1 for the problems with a bounded contact 
zone and with an enlarging contact zone. 

Approximations to both types of contact problems are proposed in Section 2, 
based on piecewise constant triangular finite elements. Convergence of the method 
is proven for any regular family of triangulations. In Section 3, we present a simpli­
fication of the approximate problem with a bounded contact zone, which enables us 
to employ methods of nonlinear programming. 

1. EXTENDED HAAR-KARMAN PRINCIPLE 

We assume: 

— plane problems, 
— bounded bodies, 
— small deformations, 
— zero friction, 
— zero initial strain and stress fields, 
— constant temperature field, 
— Hencky's law. 

Let two elastic perfectly plastic bodies occupy bounded domains Q\ Q" a R2 

with Lipschitz boundaries. Henceforth one or two primes denotes that the quantity 
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is referred to the body Q' and Q'\ respectively. We shall use the Cartesian coordinate 
system x = (xu x2). The summation is implied over the range 1, 2 if an index is 
repeated. Hj(Q) will denote the Sobolev space Wi,2(Q) of functions with square-
integrable derivatives up to the order j in the sense of distributions. 

Let Ua be the space of symmetric 2 x 2 matrices (strain or stress tensors). Assume 
that a yield function f : Ua —> R is given, which is convex and continuous in Ua. 
We introduce the following notations: 

S = {T : Q -> Ua | TU e L2(Q) Vi,j} , Q = Q' u Q" . 

<<т,e> a^ijáx , ||(j ||o = <G% tr> 1/2 

In the space S we introduce also the energy scalar product (a, T) = <c_1G, T>, 
||cr|| = (<r, cr)1/2, where c : S -> S is the isomorphism defined by the generalized 
Hooke's law: 

a = ceo atJ = cijkmekm . 

Here c//7.m e L°°(.QM), M = ', "; a and e are the stress and strain tensors, respec­
tively; 

3a > 0 , <ce, e> = a||e||2 Ve e S . 

We introduce the set of plastically admissible stresses 

B = {TGUa\f(T)^ 1} . 

It is easy to see that B is convex and closed in Ua. 

We define the set of plastically admissible stress fields 

P = (T G S | T(X) e B a.e. in Q' u Q") . 

The set P is convex and closed in S. 

The Hencky's law can be stated in the following way (cf. [2], [3]). Introducing the 
the projection IJB(x) : Ua -> B onto the set B with respect to the scalar product 
(c-1(x)a)ijTij, then 

a = nB(x) ce . 

Let us consider the actual strain tensor field e(u) e S, 

eu(u) = -(dUildxj + diijjdXi) , where uM e \Hl(QM)Y , M = \" 

and the actual stress tensor field a e S. (Suppose the existence of all these fields for 
the time being). 

Moreover, let 17 : S -» P be the projection onto the set P with respect to the energy 
scalar product (cr, T). Then 

(m) (x) = nB(x) T(X) 
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holds almost everywhere in Q' u Q" (see [3]). Hence we may write 

(0.1) a = llce(u). 

1.1 Bounded contact zone 

In [1] — I we have distinguished two kinds of unilateral contact problems ac­
cording to the geometrical shape of the bodies: (i) problems with a bounded contact 
zone, (ii) problems with an enlarging contact zone. Next let us consider the first 
class of problems and recall their variational formulations (see [1] — I and III) 

Defining the contact zone 
rK = dQ' n dQ" , 

we have the following decompositions 

dQ' = ru u F; u rK, dQ- = F0 u r; u rK, 
where Fu, F0, FT and F"x are mutually disjoint open parts of the boundaries; assume 
that Tu and TK have positive measure. The remaining parts may be either of positive 
measure or empty. 

We say that a unilateral bounded contact occurs on TK if 

(1.1) < + u"n S 0 

holds a.e. on rK, where 
uM = uMnM , M = ', " 

and nM denotes the unit outward normal with respect to dQM'. (See [ l ] — I for the 

derivation of the condition (1.1) of non-penetrating). 

On Fu we consider the displacement condition 

(1.2) u' = u0 , 

where u0 e [Hl(Q')Y is given such that u0n = 0 on FK. 

On F0 the bilateral contact conditions are prescribed: 

(1.3) un = 0, Tt(a) = 0, 

where Tt(o) = ounjth t = ( — n2,nl), denotes the tangential stress vector com­
ponent. 

On FT = FT u r" the tractions are prescribed, i.e., 

(1.4) Ti(o) = oijnj = Pi, 1 = 1,2, 

where Pt e L2(FT) are given. 

On rK we have the condition (1.1) and 

(1.5) Tn\c) = T » g 0 , T„'(a) (u'n + u"n) = 0 , T/ = T," = 0 . 
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The stress field o satisfies the equilibrium equations 

(1.6) ^ + F, = 0 in QM , M = ', " , 
dXj 

where Ft e L2 (£>) are the body force components. 

In the variational formulations we need the space 

V = {v e [Hl(Q')f x [ H 1 ^ " ) ] 2 | v = 0 on Tu, vn = 0 on F0} , 

the cone of admissible virtual displacements 

K = { v e V | v ; + v"n S. 0 on TK} 

and the set of statically admissible stress fields 

K+ = {T e S | <e(v), T> ^ L(v) Vv e K ] , 

where 

vf dx + P^v.« F;v; dx -| | P.V; ás . 
Q 

L(v) = 

Theorem 1.1. Assume that fields of displacements u and stresses o (sufficiently 
smooth) exist such that the conditions (0.1), (1.1), ...(1.6) are satisfied. Then the 
stress field o solves the following problem 

(^x) Sf(x) = \\z\2 - <e(u0), T> = min over K+ n P . 

R e m a r k IT. This minimization problem represents an extension of the Haar-
Karman principle (cf. [2], [3]). 

Proof. Instead of (0.1) we may write for any T e P 

(1.7) 0 ;> (c e(u) - <T, T - o) = <e(u), T - o > -(a, T - o) . 

If we set u = u0 + w, where u0 = 0, then w e K and 

(1.8) <e(w), G> = L(w) + I 7 » (w; + w;0 d^ 
JTK 

can be deduced by integration by parts. Since w'n + w'n = u,'. + u"n holds on FK, 
it follows from (1.5), that the integral over TK vanishes. Moreover, GeK+ can be 
verified on the basis of (1.3), (1.4), (1.5), (1.6) and Lemma 1.6 of [1] - III. 

If T e K + , then 

(1.9) <e(w), T> - L(w) ^ 0 . 

Thus inserting into (1.7) from (1.8), (1.9), we may write for T e K + n P 

(a, x - o) ^ <e(u0), T - G> + <e(w), T> - <e(w), o} ^ <e(u0), T - cr> . 

Since K+ and P are convex sets and SP is a convex functional, the variational ine­
quality is equivalent to the problem ( ^ : ) . 
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Theorem 1.2. Let the set K+ n P be non-empty. Then the problem (^i) has 
a unique solution. 

Proof. The sets K+ and P are convex and closed in S, the functional £f is quadratic 
and strictly convex. Hence the existence and uniqueness follow. 

R e m a r k 1.2. The formulation in terms of displacements is more difficult to 
handle, as far as the existence and uniqueness is concerned — see [2], [3] and [5] 
for the classical boundary value problems. 

1.2 Enlarging contact zone 

If the bodies Q' and Q" have smooth boundaries in a neighbourhood of dQ' n dQ", 
the contact zone can enlarge during the deformation process. We introduce (see 
[1] — I) a local Cartesian coordinate system (<f, rj) at a point of dQ' n dQ" such that 
the c~axis coincides with the direction of n" and define the function 

e(rj) = f'(n) - f"(n) , ^ ( a , / ) ) , 

which describes the distance between the bodies before the deformation. 
The condition (1.1) of non-penetrating is now replaced by 

(1.10) u\ - u, ^ e Vf/e<O, b> 

where <a, b> is an a priori estimate of the projection of the enlarged contact zone. 
On FM we have the condition (1.2), where let (w0, u0) be such that u0n = 0 on F0 

and u0v — u'0^ = s on <a, b>. The conditions (1.3) on F0, (1.4) on FT and (1.6) in 
Q' u Q" remain unchanged, whereas (1.5) on TK is to be replaced by the following 
three conditions 

(1.11) - T:((J) (cos a ' ) - 1 = T;(O) (cos a")"1 g 0 , 

F;(cr)=T» = 0, 

r ^ ) ( i i j - u j - e ) = 0 , 

which hold at almost all points of T'K u T"K with the same coordinates n e <a, b>. 
Here aM, M = ', ", denotes the angle between n-axis and the tangent to FJf. 

We introduce the set of admissible virtual displacements 

KE = {v e V | v'l — v\ ^ e Mrj e <a, b>} 

and the set of statically admissible stress fields 

K+ = {T G S\ <e(v), T> ^ L(v) Vv G K0} , 

(K0 = K£ with s = 0) . 

Theorem 1.3. Assume that fields of displacements u and stresses a exist (suf­
ficiently smooth) such that the conditions (0.1), (1.2), (1.3), (1.4), (1.6), (1.10), (1.11) 
are satisfied. 
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Then o solves the following problem 

(0>2) Sf(x) = \||T||2 - <e(u0), T> = min over K0
+ n P . 

Proof. For any x e P we have (see (1.7)) 

(1.13) (<X,T - o) ^ <e(u), T - o) . 

Considering any x e P n K^, we may write u = u0 + w with w e K0 and 

(1.14) <e(u), T - O> = <e(u0), T - G> + <e(w), T - a> . 

We can show that o e K0 . In fact, for any ¥ e K0 

<e(v), ff> = L(v) + [vlT^ (O) (cos a ')" * + i£7V'(<7) (cos a")" l] df/ 

can be deduced by integration by parts and using (1.6) and the boundary conditions. 
By virtue of ( l .H) l 9 the last integral equals to 

i 

T£(o) (cos a")"1 (vl - vj) dn ^ 0 , 
i 

which proves that o e KQ . On the other hand, we have in particular: 

T':(G) (W\ - w£) = (u", - u\ - e) Tl(o) = 0 \/n e <a, b> , 

so that 

<e(w), o) = L(w) . 

Thus we obtain for T e K0 

<e(vr), T - O> = <e(w), T> - L(w) ^ 0 

and inserting into (1.13), we arrive at 

(1.15) (o, T - o) ^ <e(u0), T - cr> VT e K^ n P . 

The equivalence of (1.15) and (^2) is obvious, the set K^ being convex. 

Theorem 1.4. Assume that the set KQ n P is non-empty. Then the problem (^2) 
has a unique solution. 

Proof. The sets P and KJ are convex and closed in S, the functional Sf is quadratic 
and strictly convex. 

2. APPROXIMATIONS BY PIECEWISE CONSTANT STRESS FIELDS 

We shall apply the finite element method to the approximate solution of the 
problems (0>^) and (0*2), using the simplest possible model, i.e. piecewise constant 
external approximations of the set of statically admissible stress fields. 
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2.1 Approximations to the problem with a bounded contact zone 

Assume that TK, Tu and F0 consist of straight segments only. Let us consider 

triangulations 3TM of QM, (M = ', ") such that their nodes on TK coincide and the 

triangles Te 3~M adjacent to the boundaries dQM may have curved sides along the 

boundary Fr We introduce the space of piecewise linear spline functions 

V, = { y e V | . | r e [ P 1 ( T ) ] 2 VT6.T,} , 

where ^Th = <T'h u ?T"h and Pk(T) denotes the space of polynomials of the degree k, 

defined on T. Let h denote the maximal diameter of all triangles in ZTh. The minimal 

interior angle of all triangles in 3Th will be denoted by Qh. (If the triangle Thas a curved 

side, then the interior angles are defined by the angles of the straight triangle with the 

same vertices.) We say that a family {^~h}, 0 < /i rg h0, of triangulations is regular, 

if &h is bounded away from zero by a number 8, independent of h. 

Introducing the space of piecewise constant stress fields 

Sh = {TE S\TU\T e P0(T) Vi,j, VFe <Th} , 

we may define external approximations of the set K+ as follows: 

K+ = {T G S„| <e(v„), T> ^ L(vh) W, e Kh) 

where Kh = K n Vh = {v e Vh | v'n + v"n g 0 on TK}. 

Note that if the condition (1.1) of non-penetrating is fulfilled at the nodes of FK, 

it holds on the whole TK, by virtue of the assumed shape of TK and the linearity of 

v e Vh in any triangle. 

Instead of the problem (^i) we shall solve the approximate problem 

(2.1) Sf(ah) = min over K+ n P . 

To analyze the solvability of the problem (2.1), we introduce a projection rh : S —> 

-> Sh as follows: 

<^ ~ W, Xh> = 0 \/xh e Sh. 

Lemma 2.1. If T e K+ n P, then rhT e Kh n P. 

Proof. It is obvious that 

(2.2) v \ т = — _ 
mes 7 

т dx 
т 

and it is well-known that 

(2.3) \\V-T\\O-^0 for h->0. 

Then for any vh e Kh we obtain e(vh) e Sh and therefore 

<eK), r,T> = < e ( n ) , T> ^ L(v,) , 
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making use of the fact, that vh e Kh c K and T e K +. As a consequence, ryr e i ( + . 

Since T(X) G B a.e. and B is closed and convex in Ua, from (2.2) it follows that 

rhT\TeB V T e ^ 

and therefore r̂ T e P. Q.E.D, 

Theorem 2.1. Assume that K+ n P #= 0 and there exists only a finite number of 

points rK n FT, FT n F0, FT n FH. Then the approximate problem (2.1) has a unique 

solution ah and 

(2 .4) \\ah - <T| | 0 -> 0 , h-»0, 

provided that the family of triangulations is regular. 

Proof. The set K+ n P is closed and convex. By virtue of Lemma 2.1 it is also 

non-empty. Hence the existence and uniqueness of ah follows. 

To prove the convergence (2.4), we employ an abstract theorem (see [6] — chpt. 

4 or [ l ] — II — Theorem 1.1) on the convergence of Ritz-Galerkin approximations. 

Thus it suffices to verify the following two conditions 

(i) 3{xh}, TheK+ n P, Th -> a in S for h -> 0; 

(ii) Th eKh n P, Th ~- T (weakly) in S implies that T e K+ n P. 

The first condition is satisfied with Th = rha, by virtue of Lemma 2.1 and (2.3). 

To prove (ii), we consider an arbitrary element v e K. There exists a sequence {vh}9 

vh e Kh such that 

(2.5) vh -> v in \_H\Q')Y x [H\Q")Y , h . -> 0 . 

In fact, we utilize first the fact that the set 

K00 = K n [C°°(.Q')]2 x [C™(Q")Y 

is dense in K. The density follows from Lemma 3.1 of [1] — II., where the cases 

FR n V» + 0 and FK n F0 #= 0 have been excluded. The proof, however, can be 

completed by consideration of the cases mentioned above, as follows. 

A p p e n d i x to the proof of Lemma 3.1 of [ l ] — II. Let the domain B contain 

a point rK n Fu = P, which is at the same time a vertex of dQ'. Using the skew 

coordinate basis (see Fig. 1), we have 

UM{P) = UM np M = \'\ p = 1, 2 , 

M; + u;' = u A ( p ) - U"lp) o n F ( p ) . 

As a consequence, 
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Let Eu'iu be an extension of u , ( 1- into B - Q' such that Fu,(1) e H\B), supp Fu,(1) c= 

c= B, Fw,(1) == 0 in an angular domain between FT and FM (outside O' u Q"). 

Let Fh',,(1) e H](B) be an extension of u"(1) into B - Q" such that supp Fu,,(1) c= B. 

Fig. 1 

Denote I the straight line containing F(1) and 

°U = ( u , ( 1 ) - u"{l)). 

Let E^U be an extension of °U onto the whole line /, such that E^ is symmetric 

with respect to the point P. Consequently, we have 

E^i ^ 0 on /, supp Ex°ll c= B n /. 

There exists a function v e Hj(B), supp v c= B such that 

v - F^?/ on /, v <; 0 in B . 

Then we may write 

(2.6) Fu,(1) - Fu,,(1) = v + z on B, 

where z e H\B), supp z c B, z = 0 on F(1). 

There exists a function w e HX(B) such that 

w = z on F(1) u FT, w = 0 

in an angular neighbourhood of F(1). 

Let us define a shifted function 

wA(x) = vv(x + Xe2) , X e R , A > 0 . 

A positive C exists such that for a regularizing operator Rx we have 

i^,wA = 0 0 n F(1>, if x < CX, 

(2.7) Rvw> , Л -> 0 , % < CЛ , in Я A ( B ) 
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We may write 
z = w + z 0 , z 0 = z 0 j B n r r e H0(B n (2") 

and find 

(2.8) z"0x e C0°(B n Q"), z 0 x - ^ z^ 3 x -> 0 , in Hl(B n Q") . 

Let us introduce 
(Eu' ( 1 ) ), = Eu'(i)(x + /ze), 

where fie R, n > 0 and e is a unit vector in the direction of the axis between F(2) 

and Ft. Then 

Rx(Ew'(1))/( = 0 on F(2) for x < C^i . 

If we define 

u^> = Rx(Eu^\\a,, 

K0) = [R*(Eu'<l\ - (Rxv + Rxwx + z0x)]0„ , 

then it holds 

u'({) - u'x
(i) = [Rxv + Rxwx + z 0 x ] r ( 1 ) ^ 0 on F(1) for x < CX , 

ux

(I) = 0 on F(2) for x < Cx/i . 

Moreover, 

,'(П|| 
I i , ß , ^ ||Rx(Eu/(1)),, - £u'(1)||1>fi -> 0 , /L ->0 , % < C/i, 

| |w"(i) _ M"(-) | | < || R (Fu,{1)\ - F / / ( 1 ) l l 4-
|| Ux U | | l , f t" = || KxyUU ) ] 1 &U | | 1 > B n f i " + 

+ ||Eu/(1) - E/y/(1) - (Rxv + RXW, + z 0 x ) | | l t B n O . , 

where the last two terms tend to zero for \i ~> 0, A -> 0, x < min (CX, C^/), as 
a consequence of (2.6), (2.7) and (2.8). 

The component u'(2) will be approximated like z, changing only F ( 1 ) with F(2). 
The component u"(2) can be extended arbitrarily and regularized. 

Finally, let us consider the case TK n F0 4= 0. For instance, let the situation be as 
in Fig. V where Tu is replaced by F0 and Q' by Q". Then the condition u"n = u"(2) = 0 
holds on F0 => F(2). 

The components uM(i) can be approximated like in the 2. group of the proof of 
Lemma 3.1, the components w"(2) like the function z there. The components u'(2) 

can be regularized arbitrarily. 

To prove (2.5), it suffices to consider 

vxeK*>, K - v U i <£ /2 

and Lagrange interpolations vxI e Kh of vx. Since it holds 

\\VXI ~ Vx\\l = C / l | V x | 2 5 

(2.5) follows with vh = vxI. 
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Then e(vh) -» e(v) in S and 

O/., e(vh)y _ L(v„) . 

By passing to the limit in h, we obtain T e K + . Since P is weakly closed, T G P. 

2.2 Approximations to the problem with enlarging contact zone 

To approximate the problem (^2)>
 w e employ again piecewise constant external 

approximations of the set of statically admissible stress fields. 
Let us consider triangulations ZTM of QM, M = ', ", such that the triangles adjacent 

to the boundaries may have curved sides along the boundary and the vertices on F^ 
lie on straight-lines parallel with the £-axis. If F^ contains a point of inflexion, than 
there is always a vertex. 

If a curved triangle Fe 9~h adjacent to TM is convex, it will be divided by the chord 
into a "straight" triangle F0 and a segment Ts, so that F = F0 u Ts. If Tc e 2Th 

adjacent to TM is non-convex, then one of its sides is parallel with the £-axis. 
We define 

Vh = | v e V|v|ro e [F^F , ) ] 2 VF0 cz Fe <Th adjacent to TM , 

~ y ] - o VTS c Te 3Th adjacent to TM , 
Ts 

— v ) = 0 for all non-convex triangles Tc adjacent to TK, v | r e [P i(F)]2 for all 
^ /Tc 

remaining triangles 

In other words, Vh consists of piecewise linear vector-functions, which are extended 
onto the segments and onto the non-convex triangles adjacent to TM continuously by 
constants in ^-direction. 

Moreover, let us introduce 

Sh = {T e S | iy G P0(F*) VF* = F, F0, T„ Tc e <Th, ij = 1, 2} 

K0h = {v G Vh | v\ - v\ _ 0 Mr] G <A, b> on F* u TK} , 

KH = 0 e S» | <^ *K)> _ L(vh) Vv„ G K0/I} . 

It is easy to see that if the condition v\ — v\ _ 0 holds at the nodes of TM, it holds 
on the whole interval <a, b> by virtue of the definition of Vh. 

Instead of (^2) w e define the approximate problem 

(2.9) ST(xh) = min over K0
+

7l n P . 

We again introduce a projection mapping rh : S -> Sh as follows 

<? ~ rhT, xh > 0 \fxh 6 S„ . 
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Lemma 2.2. If T e K0 n P, then rhx e K0h n P. 

Proof. It holds (2.2) for any T*e$~h and (2.3). Let vheK0h. Then e(vh) e Sh 

and we may write 
< V , e(v„)> = <T, e(vA)> ^ L(vh) , 

since K0h a K0. Thus ryr e K0h follows. 

Since T(X) e B a.e. and B is convex in Ra, the mean values of T in T, T0, Ts, Tc 

belong to B, as well. Therefore rhT e P. 

Theorem 2.2. Assume that fM e C2, M = ', ", in a neighbourhood of the interval 
<a, b>, T'K n Tu = 0, T'K n T0 = 0, th^re exists only a finite number of points 
T\ n F„, FT n F0 and K0

+ n P 4= 0. 

Then the approximate problem (2.9) has a unique solution ah and 

(2.10) \ah - or||0 -> 0 , h -+ 0 

hO/Js fOr Ony regular family of triangulations. 

Proof. The set K0h n P is convex and closed in Sh. Lemma 2.2 implies that it is 
also non-empty. Hence the existence and uniqueness of <yh follows. 

To prove the convergence (2A0), we employ the abstract theorem like in the 
proof of Theorem 2.1. The condition (i) follows from Lemma 2.2 and (2.3) with 
Th = rhu. 

Thus it remains to verify the condition (ii) (where K^ and K+ is replaced by K0h 

and K + , respectively). We shall need two auxiliary lemmas. 

Lemma 2.3. Let the assumptions of Theorem 2.2 on TM, Fu, F0, FT be satisfied, 
except that fM e Cm(a - 5, b + 6), 5 > 0, m ^ 1. 

Then the set 
Jf = K0 n [Cm(Q')f x [Cm(Q")Y 

is dense in K0. 

Proof. Let {BJ^=0 be a system of open domains, which covers Q' u Q" and such 
that 

k 

B0 c Q' , Bid Q" , T'KnT'K a\J Bj , 
1 = 2 

r i u T£ n JBf # 0 o 2 ^ i g fc . 

Let the union of arcs PQ' u PQ" (see Fig. 2) be contained in one and only one do­
main Bj. Assume that the other domains contain at most one angular point of the 
boundaries or a point Tu n FT, F0 n FT. 

Let us consider the corresponding decomposition of unity and construct a smooth 
approximation to every function uj = ucpj, where u e K0, <Pj e C0

o(Bj). We can use 
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the same approach as in the proof of Lemma 3A of [1] — II, except the configura­
tions of the type depicted on Fig. 2. In such case we use the following technique. 

By assumption, we have cpj = 1 on F^ u FK n Bj. Henceforth we omit the sub-

Ғig. 2 

scripts and superscripts j . Let us map QJ n B into the halfplane | > 0 and Q" n B 
into the halfplane | < 0 by means of the following two mappings: 

x = TMx = [lM = £ - fM(q), fjM = rj}, M = ', " , 

where x = (| , fj), x _ (c, ?/). 

Denote 

E = T(Qf n £?) u T"(„" n _ ) , 

DM(i) = u ^ T * 1 ) - 1 x) 
and define 

a"(l n) = uM(I tj-x), x > o, 

^A = ( % ~ WJA)|| = 0 ' 

It is easy to see that 

UA _ 0 , fl < 6 + A . 

Let us define the extension Eu^ across the axis | = 0 as an even function of | and 

eA = (Eu^ - F%) + | | = 0 • 
Then it holds 

UA - £A ^ 0 , supp (Ux - ek)cBn {I = 0} 

for sufficiently small X. Therefore a function v e Hl(B) exists such that v ^ 0 in _?, 
supp v c E and 

^U-o = ^A ~ eA. 

Since sA = 0 for /) < b + A and e A eH 1 / 2 on the |-axis, there exists a function 
VV e H\S) such that: 

4 - o = 8 A , SUPP vv c jg, 
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vv = 0 in a neighbourhood of the straight-line segment {n = b + \X, | = 0}. It is 
readily seen that 

Eu"^x — Eu^x — vv = v + Z , 

where 

Z||=0 = UA - £A - (U, - eA) =-= 0 , z e H<(B) . 

Regularizing v and z, we obtain for x -> 0 Rxv + zx -> v + z in Hl(B), where 

2*|| = o = 0,(Rxv + 4 ) | | = 0 = 0. 

We set 
U$Xx — ^X^U^X\T"Q" •> 

Uhx ~ [R*Eu'h ~ Rx» ~ ?x - K™\T'Q' • 

On the axis | = 0 it holds 

(2.H) uix - u\xx - RJ + K + ^ M = 0 , rj < b , x < A/2 , 

since ivxvv = 0 for ,7 < b, « < /̂L 

Furthermore, we have for x -> 0, X -*• 0, x < \X\ 

u, 
M v s.M •„ UÍÍŮ ^ rj^MnM 

Xx ûf in Hl{B n Tм-Qм), M = \» . 

Finally, we set (after a suitable extension) 

sM __ p -M 

and define 
, .M _ ~M rpm M _ -M TM 
u£Xx ~ u^Xx ° i J W ^ x — w^Ax ° 1 

Since both TM and (T M ) - 1 are Lipschitz mappings, it holds 

|L.M ..Mil <^ r - | | - M -Ml | /v 

| |W | / l* ~~~ U$ \\\,QM = H I W ^ * ~~ lk | | l , B n T M « M "* u 

for x < £A, /I -> 0 and a parallel assertion is true for uM
Xx. 

As a consequence of (2.11) u^ — u\Xx = 0 for >; < b and therefore u A x eK 0 . 

Since fM G Cm, uM e [Cm(DM)]2. 

Lemma 2.4. Let v e [H2(0 ')]2 x [H2(.Q")]2, fM e C1(<a, b». If we define 

a Lagrange linear interpolate vr e Vh by an obvious way, then 

\\vi - vl | i ,o'u<Y'->o, fc-+o 
holds for any regular family of triangulations. 

Proof. Let Vh° be the space of piecewise linear functions, continuous in QM 

(M = ', "), over the triangulation ZTh, where each convex curved triangle T = 
= T0 u Ts remains undivided and the functions from Vh are linear in the whole T. 
Let vh e Vh denote the Lagrange interpolate of v. 
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First we prove that 

(2.12) ||i?° - V\\UQM S Ch\\v\\2tQ„, M = ' , " . 

In fact, there exists an extension Ev e H2(U2) such that 

II^IUR2 ^ c I M k ^ . 

For the curved triangles, adjacent to FJf, we define (see Fig. 3): 

T = Adiajdii (i.e. twice enlarged T0) 

T = Aata^ak if Tis non-convex . 

-M 

if Tis convex, 

Fig. 3 

Let 7i2 denote the linear interpolation on Twith the nodes ah aj, ak. Making use of 

the affine equivalence and the regularity of {^Y}, we derive the estimate 

\\n2Ev — Ev\\uf :g C h|Ev|2jT , 

where C is independent of h and Ev. 

Since 7i2Ev = vh holds on T, we may write 

, 0 [I 2 
\v ~ vh \\,n™ - I Ь 

Tє;Гh™ 

< = Z \\Ev - ПlЩÌ.T 
TєJГh™ 

S C/i2 X l^ l lž T = 2C h2\\Ev\\22 RI ^ Ci h2\\v\\22 n™ • 
Te.Th™ 

0 , h. -> 0 , M = ', " . 

Second, we shall prove that 

(2.13) || vj - v;i||ltnA 

In fact, it is readily seen that 

supp (v7 - v°) cz Dh = UPs u Tc, 

where Dh is the union of all segments and curved non-convex triangles adjacent 

to r» 
In each Ts or Tc we have: 

v°h(z, n) - v,(c, n) = v°h(i, n) - v,(c(s), -) = (c - £(-)) °$, 
dc 
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(where the point (£(s), w) lies on the chord or at the straight side of dDh — FK), 

|« -« (s ) |g fc , 

' K - v ^ d c d ^ / ^ f f^YdUij 
J r_ J T_ \ c3c / 

and the same estimate for integrals over Tc. 

Furthermore, it holds 

iW -„,) = « , - . W - . „_ -_ t«B , 
O£ d£ 5/7 d£ drj 

дţ{s) 

дц 
= t g a , 

where a is the angle between the //-axis and the chord or the straight side of dDh - TK , 

respectively. Since PJf e C 1 and the family {^~h} is regular, 

I t g a l g m a x d / ^ ^ ^ ^ s i n S ) " 1 ) . 

For sufficiently small h we obtain 

K - |̂|_.r_ Si (C + &2)£ ^ J d . dq g c.KIIU 

and a parallel estimate for Tc. 

Thus we have 

IK - "/II..0- = X Ik. - "-IU + X K - f/||?.T_ s_ c||.?||U. 
T_6Dh TceDh 

On the other hand, 

KILDh^ Hli.Dh + H-v\\UDh-^o, h->o 

holds by virtue of (2.12) and the fact that mes Dh -> 0. 

Finally, from (2.12) and (2A3) the assertion of Lemma 2.4 follows. 

P roof of T h e o r e m 2.2 — continuation. Making use of Lemma 2.3, to any 
v e K0 we can find vx e Jf 2 such that 

p* - v\\ 
From Lemma 2.4 it follows that 

l|vvr ~ V- " 

->« < X . 

0 , /]. -> 0 rxl wx\\l,Q'vQ" 

Moreover, the interpolate vxJ e K0h. Altogether, we have 

If xh e K0h, then 

І1.OЧ.B--0, й - > 0 , и - > 0 . 

<тA, e(v_,)> â L(vw) . 
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Since Th -»• T weakly in S and e(vxf) -> e(v) in S, passing to the limit in h, we obtain 

<T, e(v)> ^ L(v), 

i.e., T eKo • 

Since P is weakly closed in S, T E P, as well. Q.E.D. 

3. ON THE SOLUTION OF THE APPROXIMATE PROBLEMS 

In the approximate problem (2.1), the set Kh seems to cause difficulties, at a first 
glance. We can simplify the situation, however, by eliminating the auxiliary test 
functions vh, as follows. 

Let us denote 
N 

**(*) = Z g* <?,{*) , 
i = l 

where qt are the values of displacement components at the nodes of the triangulation 
3Th. If we write down the conditions (1.1) at the nodes of FK, then precisely 4 com­
ponents {qkl, qkl, qk3, qk4} occur at each (double) node Ak e TK. 

In fact, assume for simplicity, that TK is a single straight-line segment with n"2 =# 0. 
Then the condition (1.1) gives 

i^^ = o, 
J = l 

where b} = n] forj = 1 , 2 and by = rcj_2 forj = 3, 4. Introducing a linear transfor­
mation q = Fky, Fk : P4 -> P4 by means of the relations 

J>*, = 4*,, 7 = 1 ,2 ,3 , 

4 

y*< = I M*i. 
j=l 

we find out that Fk is regular. Let us consider the same transformation in each 
quadruplet Mk = {qkl, qk2, qk3, qk4}, k = 1, ..., Q, corresponding to each node 

Q 

Ak e TK. Setting also yp = qp for qp $ \J Mk, 1 ^ p rg N, altogether we have q = Fy, 
F :RN -> RN and k=l 

(3.1) vheKhoqeJrqoye^y = {y E RN \ yli4 ^ 0, fc = 1, ..., Q} . 

Let i//r denote the characteristic function of the triangle Te 5",,. Then we have 

(3.2) T , 6 S f t ^ T / l ( x ) = £ T(T)l//7(x) 
Te.rh 

and denoting 

(3.3) tT = (T1X(Tl\ *2l{T,\ T12(T0, TU(T2), T22(T2), ...) 
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the corresponding vector in RM, we obtain 

<r, e(v„)> = £ I t(T) £ q, *(<pt) dx = (Et, q) , 
Te3ThjT i = l 

where E is a N x M matrix, (Et, q) = qTFt. (Note that N < M). 

Since 

E(v„) = J ,. Lfo() = (/, q) = qT/, 
1 = 1 

where / e RN is a fixed vector, the condition x e K^ can finally be rewritten in the 
form 

(/ - Et, q) g 0 Vq e Jf ̂  . 

This means that the vectors / — Et belong to the polar cone Jf ° of the cone X q. 
Employing the mapping F, we obtain an equivalent condition 

(3.4) (/ - Ft, Fy) ^ 0 Vy e j ry . 

Let I- be the set of all indices k4, k = 1,2, ..., Q and I0 = {1, ...,N} - I" the 
set of remaining indices. Since the cone Xy is generated by the vectors 

{±ej9 j e I 0 , - e m , m e I"} 

where e,- and em form an orthonormal basis in RN, (3.4) is equivalent to the following 
system 

(3.5) gj(t) = (/ - Et, Eey) = 0 , ; el0, 

(3.6) gjt) = (/ - Et, - Eem) ^ 0 , m e / " . 

Moreover, T,, e P if and only if 

f(Th(T))=\ V T e ^ » , 

which may be written in the form 

(3.7) fr(t)- 1 ^ 0 V T e ^ „ . 

Finally, inserting (3.2) and (3.3) into the functional 5^(TA), we are led to the fol­
lowing problem of nonlinear programming: 6^0(i) = min over the set of t e RM, 
satisfying (3.5), (3.6) and (3.7). 

R e m a r k 3.1. If FK has a vertex, we define yk. = qk , j = 1, 2, 

4 4 

y^I^'W y*4 = Z ^2)g/c^ 
j=l J = I 

where b(/} and by2) correspond to the normals n', n" on both sides of the vertex. 

R e m a r k 3.2, A similar approach can be applied to the approximate problem (2.9). 
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S o u h r n 

KONTAKT MEZI PRUŽNĚ — DOKONALE PLASTICKÝMI TĚLESY 

JAROSLAV HASLINGER, IVAN HLAVÁČEK 

Jednostranný kontakt dvou těles z materiálu, který se řídí zákonem Henckyho, 
je studován na základě formulace v napětích. Nejprve je rozšířen známý Haarův-
Kármánův princip na úlohy s jednostranným kontaktem. Jsou navrženy aproximace 
metodou konečných prvků s funkcemi po částech konstantními na triangulacích. 
Pro každý regulární systém triangulací je dokázáno, že metoda konverguje. 
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