Aplikace matematiky

Giri S. Lingappaiah

On the restricted range in the samples from the gamma population

Aplikace matematiky, Vol. 27 (1982), No. 2, 81-86

Persistent URL: http://dml.cz/dmlcz/103949

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE RESTRICTED RANGE IN THE SAMPLES FROM THE GAMMA POPULATION

G. S. Lingappaiah
(Received March 3, 1978)

1. INTRODUCTION

The range plays an important role as is well known in the statistical theory. The multiple range test is a useful test in the analysis of variance. In industrial applications, control charts are based on this statistic. Duncan [1] and Levy [5] have made use of the multiple range tests and similarly Nelson [6] uses the range for testing homogeneity of variances. The case of the range from the non-normal populations is dealt with by Singh [8]. McDonald [7] considers the range in samples from the uniform populations. Lawless [2] deals with the problem of prediction in the exponential population using order statistics, which for special values reduces to the range consideration. Lingappaiah [3], [4], deals with the range in the exponential and gamma populations. Here we consider the samples from the gamma population which are censored both above and below. Distribution of the range in such censored samples called the restricted range is put in a closed form. For few small values of n, r and s. the actual form of the distribution is given. This form of the distribution of this restricted range can be compared with the distribution of the range in the complete samples which is given in Lingappaiah [4].

2(a). DISTRIBUTION OF THE RESTRICTED RANGE

Consider a sample of size n drawn from a gamma population

$$
\begin{equation*}
f(x)=\mathrm{e}^{-\theta x} \theta(\theta x)^{\alpha-1} / \Gamma(\alpha), \quad x>0, \quad \theta>0, \quad \alpha=1,2, \ldots \tag{1}
\end{equation*}
$$

Let r observations below and s observations above among these n observations be censored. Then the joint density of the available observations $u_{r+1}, u_{r+2}, \ldots, u_{n-s}$,
where $u_{i}=x_{(i) n}$, the i-th order statistic in n observations can be put in the form

$$
\begin{gather*}
f(U)=c\left(1-\sum_{k=0}^{\alpha-1} \mathrm{e}^{-\theta u_{r+1}}\left(\theta u_{r+1}\right)^{k} / k!\right)^{r} \cdot\left(\prod_{i=r+1}^{n-s}\left[\mathrm{e}^{-\theta u_{i}} \theta \cdot\left(\theta u_{i}\right)^{\alpha-1} / \Gamma(\alpha)\right]\right) . \tag{2}\\
\cdot\left(\sum_{k=0}^{\alpha-1} \mathrm{e}^{-\theta u_{n}-s}\left(\theta u_{n-s}\right)^{k} / k!\right)^{s}
\end{gather*}
$$

where $U=\left(u_{r+1}, \ldots, u_{n-s}\right), c=n!/ r!s!$ and $F(x)$ from (1) is $1-\sum_{k=0}^{\alpha-1} \mathrm{e}^{-\theta x}(\theta x)^{k} / k!$. Now using Lingappaiah [4], we can write (2) in the following form.

$$
\begin{align*}
& f(U)=c \sum_{t=0}^{r}\binom{\mathrm{r}}{t}(-1)^{t} \mathrm{e}^{-t \theta u_{r+1}} \sum_{p=0}^{t(\alpha-1)} a_{p}(\alpha, t)\left(\theta u_{r+1}\right)^{p} \cdot \prod_{i=r+1}^{n-s}\left[\mathrm{e}^{-\theta u_{i}} \theta \cdot\left(\theta u_{i}\right)^{\alpha-1} / \Gamma(\alpha)\right] \tag{3}\\
& \cdot \sum_{q=0}^{s(\alpha-1)} b_{q}(\alpha, s)\left(\theta u_{n-s}\right)^{q} \mathrm{e}^{-\theta s u_{n}-s}
\end{align*}
$$

where $a_{p}(\alpha, t)$ is the coefficient of $(\theta u)^{p}$ in the expansion of $\left(\sum_{k=0}^{\alpha-1} \frac{(\theta u)^{k}}{k!}\right)^{t}$ and similarly $b_{q}(\alpha, s)$ is the coefficient of $(\theta w)^{q}$ in the expansion of $\left(\sum_{k=0}^{\alpha-1} \frac{(\theta w)^{k}}{k!}\right)^{s}$, where $u_{r+1}=u$ and $u_{n-s}=w$.

Now integrating out $u_{r+2}, \ldots, u_{n-s-1}$ (and noticing that $u \leqq u_{r+2} \leqq \ldots$ $\left.\ldots \leqq u_{n-s-1} \leqq w\right)$ in (3), we get the joint density of u and w as

$$
\begin{equation*}
f(u, w)=(B)\left[\sum_{i=0}^{a} A a_{i} \mathrm{e}^{-(a-i) \theta u} \mathrm{e}^{-i \theta w}\right] \tag{4}
\end{equation*}
$$

where $a=n-r-s-2, u={ }_{r+1}, w=u_{n-s}$ and

$$
\begin{gather*}
(B)=c \cdot\left[\sum_{t} \sum_{p} \sum_{q} \cdot\binom{r}{t}(-1)^{t} a_{p}(\alpha, t) b_{q}(\alpha, s)\right. \tag{5}\\
\left.\cdot \theta^{2} \cdot \mathrm{e}^{-\theta u(t+1)} \mathrm{e}^{-\theta w(s+1)}(\theta u)^{p+\alpha-1}(\theta w)^{q+\alpha-1} / \Gamma^{2}(\alpha)\right] .
\end{gather*}
$$

In (4), the terms $A_{a i}$ satisfy the following identies:

$$
\begin{align*}
& A_{a 0}=A_{a-1,0} d_{a} g_{a}+b_{a} g_{a}\left[\sum_{i=1}^{a-1} A_{a-1, i}^{\prime} c_{a}(i+1)\right] \tag{6a}\\
& A_{a 1}=A_{a-1,0}^{\prime} d_{a} h_{a}=A_{a 1}^{\prime} h_{a} \tag{6b}\\
& A_{a j}=-A_{a-1, j-1}^{\prime} b_{a} c_{a}(j) h_{a}=A_{a j}^{\prime} h_{a}, \quad j=2,3, \ldots, a, \tag{6c}
\end{align*}
$$

where $g_{i}=(\theta u)^{k_{i}} / k_{t}!, h_{i}=(\theta w)^{k_{i}} / k_{i}!, d_{i}=\sum_{k_{i}=0}^{\alpha-1}$,

$$
b_{i+1}=\sum_{k_{i+1}=0}^{k_{i}+\alpha-1}\binom{k_{i}+\alpha-1}{k_{i}}, \quad c_{i}(j)=j^{k_{i}} \mid j^{k_{i-1}+\alpha} \quad i, j=2,3, \ldots, a
$$

for example, $c_{4}(3)=3^{k_{4}} / 3^{k_{3}+\alpha}, A_{i 0}^{\prime}=A_{i 0}, i=0,1,2, \ldots, a, A_{00}=1$. From (6c),
by successive substitutions, we get

$$
\begin{equation*}
A_{a j}^{\prime}=(-1)^{j} A_{a-j, 0}^{\prime} d_{a-j+1} \prod_{r=0}^{j-2} b_{a-r} c_{a-r}(j-r) \tag{7}
\end{equation*}
$$

(6) and (7) can be used to find all the coefficients $A_{a i}, i=0,1,2, \ldots$, , recursively from A_{10}, A_{20} and so on. We give below a few values of $A_{a i}$ for $a=1,2,3$.
$a=1,(n-r-s=3)$:

$$
\begin{align*}
& A_{10}=A_{00} d_{1} g_{1}=d_{1} g_{1} \tag{8}\\
& A_{11}=-A_{00}^{\prime} d_{1} h_{1}=A_{11}^{\prime} h_{1}
\end{align*}
$$

$a=2,(n-r-s=4)$:

$$
\begin{align*}
& A_{20}=A_{10} d_{2} g_{2} \times b_{2} g_{2} A_{11}^{\prime} c_{2}(2)=d_{1} d_{2} g_{1} g_{2}-d_{1} g_{2} b_{2} c_{2}(2) \tag{9}\\
& A_{21}=-A_{10}^{\prime} d_{2} h_{2}=-d_{1} d_{2} g_{1} h_{2}=A_{21}^{\prime} h_{2} \\
& A_{22}=-A_{11}^{\prime} b_{2} c_{2}(2) h_{2}=d_{1} b_{2} c_{2}(2) h_{2}=A_{22}^{\prime} h_{2}
\end{align*}
$$

$a=3,(n-r-s=5):$

$$
\begin{align*}
& A_{30}=A_{20} d_{3} g_{3}+b_{3} g_{3}\left[A_{21}^{\prime} c_{3}(2)+A_{22}^{\prime} c_{3}(3)\right] \tag{10}\\
& A_{31}=-A_{20}^{\prime} d_{3} h_{3}=A_{31}^{\prime} h_{3} \\
& A_{32}=-A_{21}^{\prime} b_{3} c_{3}(2) h_{3}=A_{32}^{\prime} h_{3} \\
& A_{33}=-A_{22}^{\prime} b_{3} c_{3}(3) h_{3}=A_{33}^{\prime} h_{3}
\end{align*}
$$

Now (4) can be written as

$$
\begin{equation*}
f(u, w)=(B)\left[A_{u 0} \mathrm{e}^{-a \theta u}+\sum_{i=1}^{a} \mathrm{e}^{-(a-1) \theta u} A_{a i}^{\prime} \mathrm{e}^{-i \theta_{w}} h_{a}\right] ; \tag{11}
\end{equation*}
$$

here $A_{a 0}$ is free of h_{i} 's and contains only g_{i} 's, and similarly $A_{a i}^{\prime}$'s. Setting $R=w-u$ in (11), we have

$$
\begin{align*}
& f(u, R)=(Q)\left[\mathrm{e}^{-\theta(R+u)(s+1)}[\theta(R+u)]^{a+\alpha-1}\right] \\
& \cdot\left[A_{a 0} \mathrm{e}^{-a \theta u}+\sum_{i=1}^{a} A_{a i}^{\prime} \mathrm{e}^{-(a-1) \theta u} \cdot[\theta(R+u)]^{k a} / k_{a}!\right]
\end{align*}
$$

where $B=(Q)\left(\mathrm{e}^{-\theta w(s+1)}(\theta w)^{q+\alpha-1}\right)$.
Now from (12), we can integrate out u and get the distribution of R. However, integrating out u in (12) depends on $A_{a i}^{\prime}$'s, $i=0,1,2, \ldots$, a, which include g_{i} 's. For example, if $a=1(n-r-s=3), n=5, r=s=1, \alpha=2$, then using (3) and (8), we have (12) in the form

$$
\begin{gather*}
f(u, R)=(5!) \sum_{t=0}^{1} \sum_{p=0}^{1} \sum_{q=0}^{1}(-1)^{t}\binom{1}{t} a_{p}(2, t) b_{q}(2, s) . \tag{13}\\
\cdot \mathrm{e}^{-\theta u(t+1)} \mathrm{e}^{-2 \theta(R+u)} \theta^{2} \cdot(\theta u)^{p+1}[\theta(R+u)]^{q+1} . \\
\cdot\left[\sum_{k_{1}=0}^{1}\left(\frac{\mathrm{e}^{-\theta u}(\theta u)^{k_{1}}}{k_{1}!}-\frac{\mathrm{e}^{-\theta w}(\theta w)^{k_{1}}}{k_{1}!}\right)\right] .
\end{gather*}
$$

For $r=s=0$, that is, for the complete sample case, the distribution of R is given in Lingappaiah [4].

2(b). ALTERNATE FORM

Now, in the place of (12), we give another form which can also be used easily. Using (7), we can write (4) or (11) as

$$
\begin{equation*}
f(u, w)=(B)\left[A_{a 0} \mathrm{e}^{-a \theta u}+\sum_{i=1}^{a} A_{a-i, 0}(-1)^{i} D_{a i} \mathrm{e}^{-(a-i) \theta u} \mathrm{e}^{-i \theta w}\right], \tag{14}
\end{equation*}
$$

where $D_{a i}=d_{a-i+1} \prod_{r=0}^{i-2} b_{a-r} c_{a-r}(i-r)$. But now, $A_{r 0}$ has its own representation. That is,

$$
\begin{equation*}
A_{r 0}=g_{r} \phi_{r-1}\left(g_{1}, \ldots, g_{r-1}\right)=g_{r}^{r-1} \sum_{i=0} \sum z_{i} \prod_{j=1}^{i}\left(g_{l_{j}}\right)(-1)^{(r-1)-i}, \tag{15}
\end{equation*}
$$

where \sum is taken over all permutations of $g_{l_{j}}$'s, where $l_{j}=1,2, \ldots, r-1 . z_{i}$'s depend upon the permutations \sum and these include the operators d_{i}, b_{i} and the quantities $c_{i}(j)$. For example,

$$
\begin{align*}
A_{10}= & g_{1} d_{1}, \tag{15a}\\
A_{20}= & d_{1} d_{2} g_{1} g_{2}-d_{1} g_{2} b_{2} c_{2}(2)=g_{2} \phi_{1}\left(g_{1}\right), \\
A_{30}= & A_{20} d_{3} g_{3}+g_{3} b_{3}\left[-A_{10}^{\prime} d_{2} c_{3}(2)+A_{00}^{\prime} d_{1} c_{3}(3) \cdot b_{2} c_{2}(2)\right]= \\
= & g_{3}\left[d_{1} d_{2} d_{3} g_{1} g_{2}-d_{1} d_{3} b_{2} c_{2}(2) g_{2}-d_{1} d_{2} b_{3} c_{3}(2) g_{1}+\right. \\
& \left.+d_{1} b_{2} b_{3} c_{2}(2) c_{3}(3)\right]=g_{3} \phi_{2}\left(g_{1}, g_{2}\right) .
\end{align*}
$$

Similarly, using (7) in (6a), we have

$$
\begin{align*}
A_{40}= & A_{30} d_{4} g_{4}+b_{4} g_{4}\left[-A_{20}^{\prime} d_{3} c_{4}(2)+A_{10} d_{2} c_{3}(3) b_{3} c_{3}(2)-\right. \tag{16a}\\
& \left.-A_{00} d_{1} c_{4}(4) \cdot b_{2} c_{2}(2) b_{3} c_{3}(3)\right] .
\end{align*}
$$

Using A_{10}, A_{20} and A_{30}, we have

$$
\begin{align*}
A_{40}= & g_{4}\left[\left(d_{1} d_{2} d_{3} d_{4}\right)\left(g_{1} g_{2} g_{3}\right)-\left(d_{1} d_{3} d_{4}\right)\left[b_{2} c_{2}(2)\right] g_{2} g_{3}-\right. \tag{16b}\\
& -\left(d_{1} d_{2} d_{4}\left[b_{3} c_{3}(2)\right] g_{1} g_{3}-\left(d_{1} d_{2} d_{3}\left[b_{4} c_{4}(2)\right] g_{1} g_{2}+\right.\right. \\
& +\left(d_{1} d_{4}\right)\left[\left(b_{2} b_{3}\right) c_{2}(2) c_{3}(3)\right]\left(g_{3}\right)+\left(d_{1} d_{3}\right)\left[\left(b_{2} b_{4}\right) c_{2}(2) c_{4}(2)\right]\left(g_{2}\right)+ \\
& \left.+\left(d_{1} d_{2}\right)\left[\left(b_{3} b_{4}\right) c_{3}(2) c_{4}(3)\right]\left(g_{1}\right)-d_{1}\left(b_{2} b_{3} b_{4}\right)\left[c_{2}(2) c_{3}(3) c_{4}(4)\right]\right]= \\
= & g_{4} \phi_{3}\left(g_{1}, g_{2}, g_{3}\right) .
\end{align*}
$$

From (15) and (16a) it is seen that

$$
\begin{equation*}
A_{r 0}=g_{r} \sum_{i=0}^{r-1} z_{i}^{\prime} \phi_{i}\left(g_{1}, g_{2}, \ldots, g_{i}\right) \text { with } \quad \phi_{0}=1 \tag{17}
\end{equation*}
$$

where again $z_{i}^{\prime \prime}$'s include the operators d_{i}, b_{i} and the quantities $c_{i}(j)$'s.

Using (17), we can write (4) using (14) as

$$
\begin{align*}
f(u, R)= & (Q)\left[\mathrm{e}^{-a \theta u} g_{a} \phi_{a-1}\left(g_{1}, g_{2}, \ldots, g_{a-1}\right)+\right. \tag{18}\\
& +\sum_{i=1}^{a}(-1)^{i} \phi_{a-i-1}\left(g_{1}, g_{2}, \ldots, g_{a-i-1}\right) g_{a-i} D_{a l} . \\
& \left.\cdot \mathrm{e}^{-(a-i) \theta u} \mathrm{e}^{-i \theta(R+u)} \cdot[\theta(R+u)]^{k_{a}} / k_{a}!\right] . \\
& \cdot\left[[\theta(R+u)]^{a+x-1} \cdot \mathrm{e}^{-\theta(R+u)(s+1)}\right] .
\end{align*}
$$

From (18), we can get the dustribution of R by integrating out u depending on φ_{i} 's.

3. SPECIAL CASE $(\alpha=1)$

Since $k_{i}=0, i=1,2, \ldots, a$, we now have from (7) with $g_{i}=1, i=1,2, \ldots, a$

$$
\begin{equation*}
A_{a j}^{\prime}=(-1)^{j} A_{a-j, 0}^{\prime} / j!. \tag{19}
\end{equation*}
$$

Now using (19) in (6a), we get

$$
\begin{equation*}
A_{a 0}=A_{a-1,0}-\frac{A_{a-2.0}}{2!}+\frac{A_{a-3.0}}{3!}+\ldots+\frac{(-1)^{j-1} A_{a-j .0}}{j!}+\ldots+(-1)^{a-1} / a!. \tag{20}
\end{equation*}
$$

From (20), one recursively gets

$$
\begin{equation*}
A_{a j}^{\prime}=1 /(a-j)!j!, \quad j=0,1,2, \ldots, a . \tag{21}
\end{equation*}
$$

Hence (4) reduces to

$$
\begin{equation*}
f(u, w)=c \sum_{i=0}^{a}(-1)^{i} \theta^{2} \mathrm{e}^{-\theta u(a-i+1)}\left(1-\mathrm{e}^{-\theta u}\right)^{r} \mathrm{e}^{-b \theta w} /(a-i)!i!, \tag{22}
\end{equation*}
$$

where $b=s+i+1$.
Hence we have the $p d f$ of R as

$$
\begin{equation*}
f(R)=\sum_{i=0}^{a}(-1)^{i} \theta \mathrm{e}^{-b \theta R} \Gamma(n-r) / s!i!(a-i)!. \tag{23}
\end{equation*}
$$

If $s=r=0$, (23) reduces to the distribution of R in the complete sample case, which is

$$
\begin{equation*}
f(R)=\sum_{i=0}^{n-2}(-1)^{i} \theta \mathrm{e}^{-\theta R(i+1)}\binom{n-2}{i}(n-1) . \tag{24}
\end{equation*}
$$

In (24), it is to be noted that

$$
\begin{equation*}
\sum_{i=0}^{n-2}(-1)^{i}\binom{n-2}{i} \frac{1}{(i+1)}=\frac{(n-2)!}{\prod_{i=0}^{n-2}(i+1)} \tag{25}
\end{equation*}
$$

which provides a $p d f$ for (24).

References

[1] D. B. Duncan: Multiple range and multiple F-tests. Biometrics, 11 (1955), 1-42.
[2] J. F. Lawless: A prediction problem concerning samples from the exponential distribution with application to life testing. Technometrics 13 (1971), 725-730.
[3] G. S. Lingappaiah: Prediction in exponential life testing. Canadian Journal of Statistics 1 (1973), 113-117.
[4] G. S. Lingappaiah: Prediction in samples from the gamma distribution as applied to life testing. The Australian Journal of Statistics 16 (1974), 30-32.
[5] J. K. Levy: An empirical comparison of several multiple range tests for variances. Journal of American Statistical Association 70 (1975), 180-183.
[6] L. S. Nelson: Use of the range in testing homogeneity of variances. Journal of Quality Technology 7 (1976), 99-100.
[7] G. C. McDonald: The distribution of a variate based on independent ranges from a uniform population. Technometrics 18 (1976), 349-354.
[8] G. Singh: On the distribution of range of samples from non-normal populations. Biometrika, 57 (1970), 451-456.

Souhrn

O ROZPĚTí V CENSOROVANÝCH VÝBĚRECH Z GAMMA ROZLOŽENÍ

G. S. Lingappaiah

Mějme dány výběry z gamma rozložení, které jsou censorovány zdola i shora, tj. mezi n pozorováními chybí r pozorování zdola a s pozorování shora. V článku se studuje rozpětí v takto censorovaných výběrech a odvozuje se jeho rozložení; to lze porovnat s předchozími autorovými výsledky pro rozpětí v úplných výběrech.

Author's address: Prof. G. S. Lingappaiah, Department of Mathematics, Sir George Williams Campus, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1 M8.

