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SVAZEK 27 (1982) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

SOME FAST FINITE-DIFFERENCE SOLVERS 
FOR DIRICHLET PROBLEMS ON SPECIAL DOMAINS 

TA VAN DINH 

(Received April 20, 1979) 

Our aim is to prove the existence of asymptotic error expansions to some simple 
finite-difference schemes for Dirichlet problems on the so-called uniform domains. 
The Richardson extrapolation [1] then leads to fast finite-difference solvers for the 
problems mentioned. 

1. UNIFORM AND NEARLY UNIFORM DOMAINS 

In order to simplify the notation we shall consider only the two-dimensional 
geometry; the result can be generalized to the n-dimensional case. Let D be a bounded 
domain in the (x, y)-plane with a boundary G. For some real numbers x0, y0 let us 
consider a uniform grid over the (x, y)-plane: 

(!) (x{-, yj), xt = x 0 + ih , h = const > 0 , 

yj = yo + Jk 9 k = const > 0 , 

0 < const < h\k < const. 

The domain D will be called uniform if there exist two values x0, y0 and two sequen
ces of positive numbers {/?.) and {k} tending simultaneously to zero so that the grid 
lines x = x ; and y = yf cut the boundary G only at the points of the form (x„„ yn). 
Then the points (l) cover D with a uniform grid which consists of the set Dh of inte
rior grid points (xt-, y7) which belong to the interior of D and the set Gh of boundary 
grid points (xh yj) lying just on G. The domain D will ve called nearly uniform if 
there exist four real numbers a, b, c, d, a sequence of positive numbers [h\ tending 
to zero and two strictly increasing and smooth functions x(t), (a g t = c), y(t), 
(b = t = d), such that D lies in the rectangle x(a) = x ^ x(c), y(b) ^ y = y(d) 
and the lines* x = xt = x(a + ih) and y = yj = y(b + jh), i, j integers, cut the 
boundary G only at the points of the form (xm, yn), m, n integers. So we can cover D 
with a grid (x,-, yy), x- = x(a + ih), yf = y(b + jh), i, j = 0, 1, 2, 3, ..., which 
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consists of the set Dh of interior grid points (xh yj) which belong to the interior 
of D and the set Gh of boundary grid points (xh yj) lying just on G. This grid is not 
uniform but depends uniformly on one parameter h. 

2. THE DIFFERENTIAL PROBLEM 

On a uniform domain D consider the differential problem 

(2) Lu = — l(p(x, y) — j + — ((q(x, y) -1 \ - c(x, y) u = 

= f(x, y), (x, y) e D , 

u(x, y) = g(x, y), (x,y)eG, 

where p, q, c, f, g are given smooth enough functions with p = p0 = const > 0, q = 

= q0 = const > 0, c = 0. 

3. THE DISCRETE PROBLEM 

We cover D with a uniform grid Dh u Gh as described above and consider the 
following discrete problem with respect to the unknown v(xh yj): 

Lhv = (I//*2) [p(xt + 0-5h, yj) (v(xi+l, yj) - v(x„ yj)) -

- p(xt - 0-5/i, yj) (v(xh yj) - v(xt_u yy))] + 

+ (1/k2) [q(xh yj + 0-5k) (v(xh yJ+l) - v(xh yj)) -

- q(xi9 yj - 0-5k) (v(xf, yj) - v(x„ y7-i))] -

- c(x{, yj) v(xh yj) = f(xh yj), (xh yj) e Dh, 

v(xh yj) = g(xh yj), (xh yj) e Gh. 

It is clear that the operator Lh satisfies the maximum principle. 

4. MAIN RESULT 

Theorem 1. Assume that the problem (2) has a unique solution u(x, y) e C2n+4(D), 
p and q e C2" + 3(D), and that the problem 

Lw = F(x, y)e Cm(D), (x,y)eD, 

w(x, y) = 0 , (x,y)eG, 
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has a unique solution we 0+ 2 (D) . Then for h and k small enough there exist 
n(n + l)/2 - i functions w(j(x, y) independent of h and k so that 

v(xh yj) - u(xh y.) - h2 wl0(xh yj) - k2 w0l(xh y7) -

- h4 w20(xh y.) - h2 k2wlx(xh yj) - fc4 w02(xh yj) - . . . -

- h2n wn0(xh yj) - / . 2 - 2 fc 2 w„.ul(xh yj) - .. . - fc2" w0n(xh yj) = 

^ 0 ( / i 2 " + 2 + fc2" + 2 ) , (xhyj)eDh. 

Proof. For any w e C2 p + 4(5) we have by Taylor's formula: 

Lhw = Lw + /i2 G10(w) + fc2 G01(w) + /z4 G20(w) + fc4 G02(w) + ... + 

+ h2p Gp0(w) + k2p G 0 » + 0(h2p+2 + k2p+1), 

where Gij(w) depend only on w and its derivatives and belong to c2p+2~2ii^j)(D). 
Now for w^e C2n + 4-2^i+J\D) we put 

z = v — u — h2wl0 -* fc2w01 — /i4w20 — /i2fc2wn — 

- fc4w02 - . . . - fc\0 - /i2 'J-2fc2w0n_ul - . . . - k2nw0n. 

Then we have 

Lhz = /]2(-Lw i 0 + F10) + fc2(-Lw01 + F01) + 

+ h4(~Lw20 + F20) + . . . + h2n(-Lwn0 + Fn0) + 

+ h2n~2k2(-Lwn_ul + Fn_ul) + . . . + k2n(-Lw0n + F0n) + 

+ 0(h2n + 1 + fc2" + 2 ) , 

where F,7 depend only on u and wrs with r + s < i + j and Ftj e C2" + 2 - 2(I+-/)(D). 
Now we choose wy recursively by 

Lwtj = Fl7 , (x, y) e D , w0- = 0 , (x, y) e G , i + j = 1 , . . . , n , 

which exist by assumption and satisfy wtj e c2n+4~2{l+j)(D). Then we have 

Lhz = cp on Dh, z = 0 on G;., 
where 

^ = 0(h2n + 2 + fc2" + 2 ) . 

To evaluate z we consider the problem 

LB(x, y) = - 2 on D , B(x, y) = 0 on G . 

We deduce 
B g 0 , B(x, y) = M = const 

and, by Taylor's formula, 

L,.B = LB + 0(/i2 + fc2) on Dh. 
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Then for h and k small enough we have 

L„BS - 1 . 

Now we consider the problem 

LA(x9 y) = -2K on D, A(x9 y) = 0 on G , 

where K = max |cD| on D,.. Then we have 

A = KB, 0 ^ A = KB ^ Mmax\(p\ on D,, , 

and at the same time 

LhA = KLhB S ~K . 

Hence 

Lh(A ± z) S 0 on D,,, A ± z = 0 on G,,. 

Then by the maximum principle we have A ± z ^ 0, that is 

|-̂ j ^ A ^ M max \cp\ on D,.. 
Theorem 1 is proved. 

N o t e V If p = const > 0 and q = const > 0, the theorem is true without assuming 
that h and k are small enough. 

N o t e 2. The result is still available if the term cu in the differential equation is 
replaced by c(x, y, u) with dc\du ^ 0. 

N o t e 3. The result is still available if the domain D is nearly uniform. Then we use 
the grid Dh u Gh as described in Section 1. This grid is not uniform but depends 
uniformly on one parameter h and has all the boundary grid points just on the 
boundary G. We put ht = x(a + ih) — x(a + (i — 1) h), kj = y(b + jh) —• 
— y(b + (j — 1) h) and consider the discrete problem 

Lhv = [2l(hi + hi+i)] [p(xi + 0-5fci+1, yj)(v(xi+i9 yj) - v(xh yj))\hi+l -

- p(xt - 0-5hh yj) (v(xh yj) - v(x^l9 yy))//^] + 

+ [2\(kj + ky+1)] [q(xh yj + 0-5k /+1) (v(xt-, yj + 1) - v(x,-, yj))\kJ + l -

-q(*i, yj - 0'5kj) (v(xh yj) - v(xh y7-i))/k/] - c(*p y,) i^(xi5 y;) = 

= f(xi9 yj) , (xh yj) e Dh , v(xh yj) = g(xh yj) , (xh yj) e Gft . 

The result can be stated as follows: 

Theorem 2. Assume that the problem (2) has a unique solution u(x9 y) e C2" + 4(D) 
and p9qe C2" + 3(D), x(t) e C2n+2([a9 c]), y(t) e C2n+2([_b9 d]), and tfiat t/ie problem 

Lw = F(x9 y) e Cm(D) , (x, y) e D , 

w(x, y) = 0 , (x, y) e G , 
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has a unique solution w(x, y) e Cm + 2(D). Then for h small enough there exist n 
functions wf(x, y) independent of h so that 

v{xi> yj) - uixb yj) - h2 wx(xh yj) - ft4 w2(xh yj) - . . . - h2n w„(xi9 y;) = 

= 0(h2n + 1 ) . 

5. A NUMERICAL EXAMPLE 

Let D be a circle x2 + y2 < 1 with the boundary G. Consider the differential 
problem 

Au=f(x,y), (x, j / ) e D , w(x, y) = g(x, y) , (x, y) e G , 

where 
f(x, 3;) = —sin x — cos y , g(x, y) = sin x + cos y . 

The solution is u = sin x + cos y. Because the circle clearly is a nearly uniform 
domain, we use a one-parameter grid 

xt = cos 7r(l — ih) , yj = cos n(l — jh) , 

h = l/N, N being an even integer > 0 , i,j = 0, N as in Section V 
We consider the discrete problem described in Section 3 and denote the appro

ximate value of u(xP, yP) calculated on this grid at a grid point P by v(P; ft). From 
Theorem 2 we deduce 

v(P; ft; ft/2) = f v(P; ft/2) - $ v(P; ft) = u(xp, yP) + 0(ft4), 

where P denotes a grid point common for the two grids with grid spacings ft and ft/2. 
The numerical results at the point 0(0, 0) are presented in Table 1. 

Table 1 

N= 1/h Number ^ h) v(0; h; h/2) u(0,0) 
of equations 

2 1 102015 100049 1. 
4 5 100541 

These results show the effectiveness of our algorithm. 
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S o u h r n 

RYCHLÉ ŘEŠENÍ DIRICHLETOVA PROBLÉMU 
NA SPECIÁLNÍ OBLASTI METODOU KONEČNÝCH DIFERENCÍ 

TA VAN DINH 

Autor dokazuje existenci mnohoparametrického asymptotického rozvoje pro chybu 
obvyklého pětibodového diferenčního schématu pro Dirichletův problém pro line
ární a semilineární eliptickou parciální rovnici na jistých speciálních (tzv. uniformních) 
oblastech. Tento rozvoj dává s použitím Richardsonovy extrapolace jednoduchý 
způsob zrychlení konvergence dané metody. Postup je ilustrován na numerickém 
příkladě. 

Authoťs address: Ta Van Dinh, Bo Mon Toan-Tinh, Khoa Toan-Ly, Truong Dai Hoc Bach 
Khoa, Ha-Noi, Vietnam. 
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