Aplikace matematiky

Antonín Lešanovský

Analysis of a two-unit standby redundant system with three states of units

Aplikace matematiky, Vol. 27 (1982), No. 3, 192-208
Persistent URL: http://dml.cz/dmlcz/103962

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ANALYSIS OF A TWO-UNIT STANDBY REDUNDANT SYSTEM WITH THREE STATES OF UNITS

Antonín Lešanovský

(Received May 12, 1980)

Many authors have been interested in various two-unit redundant systems in recent years - see e.g. [4, 7-11]. Many characteristics of the behaviour of such systems have been derived. The authors mostly suppose that the state of each unit at a given moment can be described by one of only two degrees - a unit either is able to operate or not.

In this paper we shall deal with a redundant system composed of two identical units. Each unit belongs to one of three qualitative classes (states) at every moment. Units in state I or $I I$ are able to work, units in state $I I I$ cannot work. In the system three is one repair facility. A unit may operate (O), wait for its repair (W), be repaired (R) or wait for its operative exploitation - be in reserve (S). Possible changes of the function of a unit are illustrated in Fig. 1 and are carried out by a switchover.

Units make their quality worse by working and improve it by being repaired. Thus at certain moments individual units are re-classified and change their states. We admit only the following state-transitions of a unit: $I \rightarrow I I, I I \rightarrow I I I, I I \rightarrow I$, $I I I \rightarrow I$. It means that a unit in state I cannot deteriorate in such a way that it enters state $I I I$ without first being in state $I I$ and that each unit is fully restored to the as-new condition (state I) upon repair.

About the organization of the system we suppose:

1) The states of units which are outside of the repair facility are monitored continuously, a unit in repair is keeping the state with which its repair started and at the moment when its repair finishes it is in state I.
2) An operating unit can stop its operation only at a moment of its change of state.
3) A repair cannot be interrupted.
4) The case of cold reserve is considered.
5) The switchover and the repair facility are perfect and instantaneous.
6) At a moment when a unit deteriorates from I to $I I$ and the other one is in state I, the former is put into repair while the latter one is switched into operation.
7) At the beginning of the operation of the system both units are in state I.
8) The system has only two states - operating and failed. The system is operating if and only if a unit is operating.
9) All random variables - time of work of a unit in state I and $I I$ and time of repair of a unit of the type $I I \rightarrow I$ and $I I I \rightarrow I$ (denoted by $\mathscr{A}, \mathscr{B}, \mathscr{M}$ and \mathscr{N}, respectively) - are positive with probability 1 , mutually stochastically independent and generally distributed.

The development of our system can be described as follows:

1) At the starting instant both units are in state I. We choose one of them. This one will enter state $I I$ after time \mathscr{A}.
2). At a moment when one unit deteriorates from I to $I I$:
a) in the case that the other unit is in state I, the former is given into repair and the latter starts to operate;
b) in the case that the other unit is in repair (and it will stay there because of assumption 3 above), the first unit goes on operating and after time \mathscr{B} it will deteriorate from $I I$ to $I I I$.
2) At a moment when one unit deteriorates from II to III:
a) in the case that the other unit is in state I, the former is given into repair and the latter starts to operate;
b) in the case that the other unit is in repair, the former starts waiting for its repair and the system interrupts its operation.
3) At a moment when a unit is waiting for its repair and a repair of the other one is finished, the former is given into repair, the latter starts to operate and the system starts its new operative period.

The aim of this paper is to find some characteristics (probabilities, distribution functions or their Laplace Stieltjes transforms, mathematical expectations) of the quality of the system described above. We consider probabilities that the first system failure occurs during a repair of a unit of the type $I I \rightarrow I$ or $I I I \rightarrow I$, random variables time to system failure and time of a non-operating period of the system and stationary state-probabilities of the couple of units of the system.

1. NOTATION

* sign of convolution,
$A(x)$ - distribution function (d.f.) of time of work of a unit in state I,
$B(x)$ - d.f. of time of work of a unit in state $I I$,
$M(x)$ - d.f. of time of repair of a unit $I I \rightarrow I$,
$N(x)-$ d.f. of time of repair of a unit $I I I \rightarrow I$,
$\mathscr{A}, \mathscr{B}, \mathscr{M}, \mathscr{N}$ - random variables with distribution functions A, B, M and N, respectively,
$\mathscr{Z}_{M}=\max \{\mathscr{M} ; \mathscr{A}+\mathscr{B}\}$,
$\mathscr{Z}_{N}=\max \{\mathscr{N} ; \mathscr{A}+\mathscr{B}\}$,
$C(x)=\int_{-\infty}^{x+0} M(y) \mathrm{d} A(y)$,
$D(x)=\int_{-\infty}^{x+0}\left(\int_{-\infty}^{x-y+0} M(y+z) \mathrm{d} A(z)\right) \mathrm{d} B(y)$,
$E(x)=\int_{-\infty}^{x+0} N(y) \mathrm{d} A(y)$,
$F(x)=\int_{-\infty}^{x+0}\left(\int_{-\infty}^{x-y+0} N(y+z) \mathrm{d} A(z)\right) \mathrm{d} B(y)$,
$c \quad=\mathrm{P}(\mathscr{A} \geqq \mathscr{M})=\lim _{x \rightarrow \infty} C(x)$,
$d=\mathrm{P}(\mathscr{A}+\mathscr{B} \geqq \mathscr{M})=\lim _{x \rightarrow \infty} D(x)$,
$e \quad=\mathrm{P}(\mathscr{A} \geqq \mathfrak{N})=\lim _{x \rightarrow \infty} E(x)$,
$f \quad=\mathrm{P}(\mathscr{A}+\mathscr{B} \geqq \mathscr{N})=\lim _{x \rightarrow \infty} F(x)$,
$\alpha, \beta, \gamma, \delta, \varepsilon, \varphi$ - Laplace Stieltjes transforms of functions A, B, C, D, E and F, respectively,
$X(t)$ - the random process describing the development of the system,
$\left\{\mathrm{e}_{P} ; \mathrm{e}_{S} ; \mathrm{e}_{L} ; \mathrm{e}_{R}\right\}$ - the state-space of the process $X(t)$,
$X_{n} \quad$ - the chain embedded into the proces $X(t)$,
Y_{n} - the chain describing the phases of the development of the system,
$\mathfrak{M}=\left\{\mathrm{e}_{S} ; \mathrm{e}_{L}\right\}$ - the state-space of the chain Y_{n},
V - the set of all possible states of the couple of units,
$\mathscr{P}_{X}(i)$ for $i \in\{P ; S ; L ; R\}$ - the condition that e_{i} was the initial state of the random process $X(t)$.

2. PROBABILITIES OF TYPES OF THE FIRST SYSTEM FAILURE

The behaviour of the system in question can be described by means of a random process $X(t)$ with four states $\left(\mathrm{e}_{P}, \mathrm{e}_{S}, \mathrm{e}_{L}, \mathrm{e}_{R}\right)$, which can change its state only a moments of the following three types: 1) when a unit deteriorates from I to $I I$ and the other one is in state $I ; 2$) when a unit deteriorates from $I I$ to $I I I ; 3$) when a repair of a unit is finished and the other unit is in state $I I I$ (hence it waits for its repair). Let t_{0} be such a moment. We define that at t_{0} the process $X(t)$ enters the state:
e_{P} - if at t_{0} the development of the system starts and both units are in state I;
e_{S} - if t_{0} is a time instant of the type 1 ;
e_{L} - if t_{0} is a time instant of the type 3 or if t_{0} is a time instant of the type 2 and the other unit is in state I at t_{0};
e_{R} - if t_{0} is a time instant of the type 2 and the other unit is not in state I at t_{0}.
In such a way the state of the process $X(t)$ has been determined with probability 1 at each moment except the moments when $X(t)$ changes its state. Let us define for the sake of completeness that the trajectories of $X(t)$ are right-continuous. Changes of states of $X(t)$ having positive probability are illustrated in Fig. 2.

It is easy to see that the moments when the process $X(t)$ enters the state e_{S} or e_{L} have the property that the development of $X(t)$ after t_{0} does not depend on the history of $X(t)$ until t_{0} because at t_{0}, a unit starts to operate and the other one is given into repair and because of the assumption 9 about the organization of the system. On the other hand, let the process $X(t)$ enter the state e_{R} at t_{0}. Then at t_{0} a unit starts to wait for its repair and a repair of the other one is in progress, i.e. it started before t_{0} and will be finished after t_{0}. The sojourn time of $X(t)$ in the state $\mathrm{e}_{R}\left(\right.$ from $\left.t_{0}\right)$ is hence equal to the time necessary for the completion of the repair of the second unit at t_{0} and is thus dependent both on the preceding state of $X(t)$ (i.e. on the type of the repair of the second unit) and on the sojourn time of $X(t)$ in the preceding state. Altogether
we obtain that the process $X(t)$ has the semi-Markov property on each time interval where it is operating.

Let X_{n} be the random chain embedded into the process $X(t)$, i.e. $X_{n}=\mathrm{e}_{i}$ if and only if $X(t)$ enters the state $\mathrm{e}_{i}, i \in\{P ; S ; L ; R\}$, after its n-th change of state. We know that if $X_{n}=\mathrm{e}_{R}$ then $P\left(X_{n+1}=\mathrm{e}_{L}\right)=1$ irrespective of the values X_{1}, \ldots, X_{n-1}. Thus the transitions of the chain X_{n} from the states e_{R} have the Markov property. The semi-Markov property of the process $X(t)$ on each time interval where the system is operating implies the Markov property of the chain X_{n} with transitions from states $\mathrm{e}_{P}, \mathrm{e}_{S}$ and e_{L}. Summarily, we obtain that the chain X_{n} is markovian. Its matrix of transition probabilities has the form

$$
\mathbf{X}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{2.1}\\
0 & \mathrm{P}(\mathscr{A} \geqq \mathscr{A}) & \mathrm{P}(\mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B}) & \mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M}) \\
0 & \mathrm{P}(\mathscr{A} \geqq \mathscr{N}) & \mathrm{P}(\mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B}) & \mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N}) \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Let $x^{(2)}, y^{(2)}, z^{(2)}$ and $x^{(3)}, y^{(3)}, z^{(3)}$ be probabilities of events that the first system failure occurs during the repair of a unit of the type $I I \rightarrow I$ or $I I I \rightarrow I$ under the conditions $\mathscr{P}_{X}(P), \mathscr{P}_{X}(S)$ and $\mathscr{P}_{X}(L)$, respectively.

Supplementary assumption: We shall consider only the case that a failure of the system comes with probability 1 under each of the conditions $\mathscr{P}_{X}(P), \mathscr{P}_{X}(S)$ and $\mathscr{P}_{X}(L)$, i.e. we shall suppose that the following condition is fulfilled:

$$
\begin{equation*}
x^{(2)}+x^{(3)}=y^{(2)}+y^{(3)}=z^{(2)}+z^{(3)}=1 . \tag{2.2}
\end{equation*}
$$

It can be easily seen that (2.2) is equivalent to

$$
\begin{equation*}
(1-c) \cdot(1-f)+e \cdot(1-d) \neq 0 . \tag{2.3}
\end{equation*}
$$

The restriction connected with this supplementary assumption is essential neither from the point of view of real systems, nor of the statements of this paper.

Theorem 1. The probabilities $x^{(2)}, y^{(2)}, z^{(2)}, x^{(3)}, y^{(3)}$ and $z^{(3)}$ have the values

$$
\begin{align*}
& x^{(2)}=y^{(2)}=\frac{(1-d) \cdot(1+e-f)}{(1-c) \cdot(1-f)+e \cdot(1-d)}, \tag{2.4}\\
& z^{(2)}=\frac{(1-d) \cdot e}{(1-c) \cdot(1-f)+e \cdot(1-d)}, \tag{2.5}\\
& x^{(3)}=y^{(3)}=\frac{(d-c) \cdot(1-f)}{(1-c) \cdot(1-f)+e \cdot(1-d)}, \tag{2.6}\\
& z^{(3)}=\frac{(1-c) \cdot(1-f)}{(1-c) \cdot(1-f)+e \cdot(1-d)} . \tag{2.7}
\end{align*}
$$

Proof. The Markov property of the chain X_{n} implies following equations

$$
\begin{align*}
& x^{(2)}=y^{(2)} \tag{2.8}\\
& y^{(2)}=\mathrm{P}(\mathscr{A} \geqq \mathscr{M}) \cdot y^{(2)}+\mathrm{P}(\mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B}) \cdot z^{(2)}+\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M}) \tag{2.9}\\
& z^{(2)}=\mathrm{P}(\mathscr{A} \geqq \mathscr{N}) \cdot y^{(2)}+\mathrm{P}(\mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B}) \cdot z^{(2)}
\end{align*}
$$

and
(2.11) $x^{(3)}=y^{(3)}$,
(2.12) $y^{(3)}=\mathrm{P}(\mathscr{A} \geqq \mathscr{M}) \cdot y^{(3)}+\mathrm{P}(\mathscr{A}<\mathscr{H} \leqq \mathscr{A}+\mathscr{B}) \cdot z^{(3)}$,
(2.13) $z^{(3)}=\mathrm{P}(\mathscr{A} \geqq \mathscr{N}) \cdot y^{(3)}+\mathrm{P}(\mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B}) \cdot z^{(3)}+\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})$.

The solution of the systems of equations (2.8) to (2.10) and (2.11) to (2.13) has the form (2.4) to (2.7).

3. TIME TO SYSTEM FAILURE

We denote the random variables "time to system failure under the conditions $\mathscr{P}_{X}(P), \mathscr{P}_{X}(S)$ and $\mathscr{P}_{X}(L) "$ by \mathscr{P}, \mathscr{S} and \mathscr{L}, respectively. The semi-Markov property of the process $X(t)$ implies the relations

$$
\begin{align*}
& \mathscr{P}=\mathscr{A}+\mathscr{S}, \tag{3.1}\\
& \mathscr{S}=\frac{\mathscr{T}_{S S}+\mathscr{S},}{} \begin{array}{ll}
\mathscr{T}_{S L}+\mathscr{L}, & \text { if } \mathscr{A} \geqq \mathscr{M}, \\
\mathscr{T}_{S R}, & \text { if } \mathscr{A}+\mathscr{B}<\mathscr{M}, \\
\mathscr{L}=\mathscr{B}, \\
\mathscr{T}_{L S}+\mathscr{S}, & \text { if } \mathscr{A} \geqq \mathscr{N}, \\
\mathscr{T}_{L L}+\mathscr{L}, & \text { if } \mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B}, \\
\mathscr{T}_{L R}, & \text { if } \mathscr{A}+\mathscr{B}<\mathscr{N},
\end{array}
\end{align*}
$$

where $\mathscr{T}_{i j}$ for $i \in\{S ; L\}$ and $j \in\{S ; L ; R\}$ is the random variable sojourn time of the process $X(t)$ in the state e_{i} under the condition that after this time $X(t)$ will enter the state e_{j}, the right hand sides are sums of independent random variables and the meaning of the symbols $\mathscr{A}, \mathscr{B}, \mathscr{M}$ and \mathscr{N} is as follows: $\mathscr{M}(\mathscr{N})$ is the time of the repair which started at the moment when the system was activated in the state $\mathrm{e}_{S}\left(\mathrm{e}_{L}\right) ; \mathscr{A}$ and \mathscr{B} are the times of work in state I and $I I$ of that unit which started to operate at the moment when the system was activated. Let $P(x), S(x)$ and $L(x)$ be the distribution functions of \mathscr{P}, \mathscr{P} and \mathscr{L}, respectively, and let $\pi(t), \sigma(t)$ and $\lambda(t)$ be their Laplace Stieltjes transforms.

Now we calculate the distribution functions of the random variables $\mathscr{T}_{i j}$:

$$
\mathrm{P}\left(\mathscr{T}_{S S} \leqq x\right)=P(\mathscr{A} \leqq x / \mathscr{A} \geqq \mathscr{M})=
$$

$$
=\frac{\int_{-\infty}^{x+0} \mathrm{P}(\mathscr{A} \geqq \mathscr{M} \mid \mathscr{A}=y) \mathrm{d} A(y)}{\mathrm{P}(\mathscr{A} \geqq \mathscr{M})}=\frac{C(x)}{\mathrm{P}(\mathscr{A} \geqq \mathscr{M})}
$$

and similarly

$$
\begin{gathered}
\mathrm{P}\left(\mathscr{T}_{L S} \leqq x\right)=\frac{E(x)}{\mathrm{P}(\mathscr{A} \geqq \mathscr{N})}, \\
\mathrm{P}\left(\mathscr{T}_{S L} \leqq x\right)=\mathrm{P}(\mathscr{A}+\mathscr{B} \leqq x / \mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B})= \\
=\frac{\int_{-\infty}^{x+0}\left(\int_{-\infty}^{x-y+0}[M(y+z)-M(z)] \mathrm{d} A(z)\right) \mathrm{d} B(y)}{\mathrm{P}(\mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B})}= \\
=\frac{D(x)-(B * C)(x)}{\mathrm{P}(\mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B})}
\end{gathered}
$$

and similarly

$$
\begin{gathered}
\mathrm{P}\left(\mathscr{T}_{L L} \leqq x\right)=\frac{F(x)-(B * E)(x)}{\mathrm{P}(\mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B})}, \\
\mathrm{P}\left(\mathscr{T}_{S R} \leqq x\right)=\mathrm{P}(\mathscr{A}+\mathscr{B} \leqq x \mathscr{A}+\mathscr{B}<\mathscr{M})= \\
\frac{\int_{-\infty}^{x+0}\left(\int_{-\infty}^{x-y+0}[1-M(y+z)] \mathrm{d} A(z)\right) \mathrm{d} B(y)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}= \\
=\frac{(A * B)(x)-D(x)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}
\end{gathered}
$$

and similarly

$$
\mathrm{P}\left(\mathscr{T}_{L R} \leqq x\right)=\frac{(A * B)(x)-F(x)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}
$$

After passing to the Laplace Stieltjes transforms we get from the formula (3.1)

$$
\begin{equation*}
\pi(t)=\alpha(t) \cdot \sigma(t) \tag{3.4}
\end{equation*}
$$

and from (3.2) and (3.3)

$$
\begin{align*}
& \sigma(t)=\gamma(t) \cdot \sigma(t)+[\delta(t)-\beta(t) \cdot \gamma(t)] \cdot \lambda(t)+\alpha(t) \cdot \beta(t)-\delta(t), \tag{3.5}\\
& \lambda(t)=\varepsilon(t) \cdot \sigma(t)+[\varphi(t)-\beta(t) \cdot \varepsilon(t)] \cdot \lambda(t)+\alpha(t) \cdot \beta(t)-\varphi(t) . \tag{3.6}
\end{align*}
$$

Theorem 2. The Laplace Stieltjes transforms of the distributions of the random variables \mathscr{P}, \mathscr{S} and \mathscr{L} have the form

$$
\begin{equation*}
\pi(t)=\left[\alpha \cdot \frac{(\alpha \beta-\delta) \cdot(1-\varphi+\beta \varepsilon)+(\alpha \beta-\varphi) \cdot(\delta-\beta \gamma)}{(1-\gamma) \cdot(1-\varphi+\beta \varepsilon)-\varepsilon \cdot(\delta-\beta \gamma)}\right]_{t}, \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
& \sigma(t)=\left[\frac{(\alpha \beta-\delta) \cdot(1-\varphi+\beta \varepsilon)+(\alpha \beta-\varphi) \cdot(\delta-\beta \gamma)}{(1-\gamma) \cdot(1-\varphi+\beta \varepsilon)-\varepsilon \cdot(\delta-\beta \gamma)}\right]_{t} \tag{3.8}\\
& \lambda(t)=\left[\frac{(1-\gamma) \cdot(\alpha \beta-\varphi)+\varepsilon(\alpha \beta-\delta)}{(1-\gamma) \cdot(1-\varphi+\beta \varepsilon)-\varepsilon \cdot(\delta-\beta \gamma)}\right]_{t} \tag{3.9}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta, \varepsilon$ and φ are the Laplace Stieltjes transforms of the functions A, B, C, D, E and F determined in Section 1.

Theorem 3. Let the random variables \mathscr{A} and \mathscr{B} have finite mathematical expectations. Then the mathematical expectations of the random variables \mathscr{P}, \mathscr{S} and \mathscr{L} have the form

$$
\begin{align*}
& \mathrm{E} \mathscr{P}=\mathrm{E} \mathscr{A}+\mathrm{E} \mathscr{B}+\frac{(1-c+d+e-f) \cdot \mathrm{E} \mathscr{A}+(d-c) \cdot \mathrm{E} \mathscr{B}}{(1-c) \cdot(1-f)+e \cdot(1-d)}, \tag{3.10}\\
& \mathrm{E} \mathscr{S}=\mathrm{E} \mathscr{B}+\frac{(1-c+d+e-f) \cdot \mathrm{E} \mathscr{A}+(d-c) \cdot \mathrm{E} \mathscr{B}}{(1-c) \cdot(1-f)+e \cdot(1-d)}, \tag{3.11}\\
& \mathrm{E} \mathscr{L}=\frac{(1-c+e) \cdot \mathrm{E} \mathscr{A}+(1-c) \cdot \mathrm{E} \mathscr{B}}{(1-c) \cdot(1-f)+e \cdot\left(1-\frac{d)}{}\right.} . \tag{3.12}
\end{align*}
$$

4. TIME OF NON-OPERATING STATE OF THE SYSTEM

We denote the random variables "the length of time of the first non-operating period of the system under the conditions $\mathscr{P}_{X}(P), \mathscr{P}_{X}(S)$ and $\mathscr{P}_{X}(L) "$ by $\mathcal{O}_{P}, \mathcal{O}_{S}$ and \mathcal{O}_{L}, respectively. Let us note that from the semi-Markov property of the process $X(t)$ and from Figure 2 the following two results are obvious:

1) The random variables \mathcal{O}_{P} and \mathcal{O}_{S} have the same distribution.
2) The distribution of \mathcal{O}_{L} and of the length of time of the second and all further non-operating periods of the system under an arbitrary condition about its initial state are the same.

Hence we can restrict our interest only to the variables \mathcal{O}_{P} and \mathcal{O}_{L}.
Let the first system failure occur at t_{0}, then the process $X(t)$ enters the state e_{R} at t_{0}. This transition can come either from e_{S} or from e_{L}. Let it come from e_{S} and let the last change of state of $X(t)$ before t_{0} occur at a moment t_{1}. Thus at the same instant t_{1} a unit began to operate in state I and a repair of the other one from state $I I$ started. Before this repair is finished such two deteriorations of the first unit occured that it changed its state from I to $I I$ and from $I I$ to $I I I$. At the moment t_{0} of the second deterioration the system interrupts its operation. Hence

$$
t_{0}=t_{1}+\mathscr{A}+\mathscr{B}
$$

On the other hand, the repair of the second unit will be finished at $t_{1}+\mathscr{M}$ and the system will operate again since this moment. The non-operating period lasts from $t_{1}+\mathscr{A}+\mathscr{B}$ to $t_{1}+\mathscr{M}$. Thus under the condition that the first system failure occurs during a repair of a unit from state $I I$ we have

$$
\begin{equation*}
\mathcal{O}_{P}=\mathcal{O}_{L}=\mathscr{M}-\mathscr{A}-\mathscr{B}, \tag{4.1}
\end{equation*}
$$

where the random variables \mathscr{A}, \mathscr{B} and \mathscr{M} must fulfil the inequality $\mathscr{A}+\mathscr{B}<\mathscr{M}$. Under the condition that the first system failure occurs during a repair of a unit from state III we similarly have

$$
\begin{equation*}
\mathcal{O}_{P}=\mathcal{O}_{L}=\mathscr{N}-\mathscr{A}-\mathscr{B}, \tag{4.2}
\end{equation*}
$$

where the random variables \mathscr{A}, \mathscr{B} and \mathscr{N} must fulfil the inequality $\mathscr{A}+\mathscr{B}<\mathscr{N}$. We obtain

$$
\begin{align*}
& \mathrm{P}\left(\mathcal{O}_{P} \leqq t\right)=x^{(2)} \cdot \mathrm{P}(\mathscr{M}-\mathscr{A}-\mathscr{B} \leqq t / \mathscr{A}+\mathscr{B}<\mathscr{M})+ \tag{4.3}\\
&+x^{(3)} \cdot \mathrm{P}(\mathscr{N}-\mathscr{A}-\mathscr{B} \leqq t / \mathscr{A}+\mathscr{B}<\mathscr{N}) \\
& \mathrm{P}\left(\mathcal{O}_{L} \leqq t\right)=z^{(2)} \cdot \mathrm{P}(\mathscr{M}-\mathscr{A}-\mathscr{B} \leqq t / \mathscr{A}+\mathscr{B}<\mathscr{M})+ \tag{4.4}\\
&+z^{(3)} \cdot \mathrm{P}(\mathscr{N}-\mathscr{A}-\mathscr{B} \leqq t / \mathscr{A}+\mathscr{B}<\mathscr{N}) .
\end{align*}
$$

Theorem 4. Let $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})>0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})>0$. Then for every $t<0$

$$
\begin{equation*}
\mathrm{P}\left(\mathcal{O}_{P} \leqq t\right)=\mathrm{P}\left(\mathcal{O}_{L} \leqq t\right)=0 \tag{4.5}
\end{equation*}
$$

and for every $t \geqq 0$

$$
\begin{equation*}
\mathrm{P}\left(\mathcal{O}_{P} \leqq t\right)=1+x^{(2)} \cdot \frac{g(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}+x^{(3)} \cdot \frac{h(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}, \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{P}\left(\mathcal{O}_{L} \leqq t\right)=1+z^{(2)} \cdot \frac{g(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}+z^{(3)} \cdot \frac{h(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}, \tag{4.7}
\end{equation*}
$$

where the numbers $x^{(2)}, x^{(3)}, z^{(2)}$ and $z^{(3)}$ have been determined by Theorem 1 and the functions $g(t)$ and $h(t)$ have for all $t \geqq 0$ the following expressions

$$
\begin{align*}
& g(t)=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} M(t+y+z) \mathrm{d} B(z)\right) \mathrm{d} A(y), \tag{4.8}\\
& h(t)=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} N(t+y+z) \mathrm{d} B(z)\right) \mathrm{d} A(y) . \tag{4.9}
\end{align*}
$$

Proof. The random variables \mathcal{O}_{P} and \mathcal{O}_{L} are evidently non-negative. This fact proves (4.5) for all negative t. For all non-negative t we have

$$
\mathrm{P}(\mathscr{M}-\mathscr{A}-\mathscr{B} \leqq t / \mathscr{A}+\mathscr{B}<\mathscr{M})=
$$

$$
\begin{gathered}
=\frac{\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}[M(t+y+z)-M(y+z)] \mathrm{d} B(z)\right) \mathrm{d} A(y)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}= \\
=\frac{g(t)-\mathrm{P}(\mathscr{M} \leqq \mathscr{A}+\mathscr{B})}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}
\end{gathered}
$$

and consequently,

$$
\begin{equation*}
\mathrm{P}(\mathscr{M}-\mathscr{A}-\mathscr{B} \leqq t \mid \mathscr{A}+\mathscr{B}<\mathscr{M})=1+\frac{g(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})} . \tag{4.10}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\mathrm{P}(\mathscr{N}-\mathscr{A}-\mathscr{B} \leqq t \mid \mathscr{A}+\mathscr{B}<\mathscr{N})=1+\frac{h(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})} . \tag{4.11}
\end{equation*}
$$

The relations (4.6) and (4.7) can be obtained by substituting from (4.10) and (4.11) into (4.3) and (4.4) with help of (2.2).

Note: If $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})=0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})>0$, then by Theorem 1

$$
\begin{aligned}
& x^{(2)}=z^{(2)}=0, \\
& x^{(3)}=z^{(3)}=1
\end{aligned}
$$

and it is easy to find that for all $t \geqq 0$

$$
\begin{equation*}
\mathrm{P}\left(\mathcal{O}_{P} \leqq t\right)=\mathrm{P}\left(\mathcal{O}_{L} \leqq t\right)=1+\frac{h(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})} . \tag{4.12}
\end{equation*}
$$

On the other hand, if $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})>0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})=0$ then similarly for all $t \geqq 0$

$$
\begin{equation*}
\mathrm{P}\left(\mathcal{O}_{P} \leqq t\right)=\mathrm{P}\left(\mathcal{O}_{L} \leqq t\right)=1+\frac{g(t)-1}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})} \tag{4.13}
\end{equation*}
$$

The case $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})=\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})=0$ is not possible because of Supplementary assumption (2.3).

Theorem 5. Let $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})>0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})>0$ and let the random variables $\mathscr{A}, \mathscr{B}, \mathscr{M}$ and \mathscr{N} have finite mathematical expectations. Then the mathematical expectations of the variables \mathcal{O}_{P} and \mathcal{O}_{L} have the forms

$$
\begin{align*}
& \mathrm{E} \mathcal{O}_{P}=\frac{x^{(2)} \cdot\left(\mathrm{E} \mathscr{Z}_{M}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}\right)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{A})}+\frac{x^{(3)} \cdot\left(\mathrm{E} \mathscr{Z}_{N}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}\right)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}, \tag{4.14}\\
& \mathrm{E} \mathcal{O}_{L}=\frac{z^{(2)} \cdot\left(\mathrm{E} \mathscr{Z}_{M}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}\right)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}+\frac{z^{(3)} \cdot\left(\mathrm{E} \mathscr{Z}_{N}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}\right)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}, \tag{4.15}
\end{align*}
$$

where the numbers $x^{(2)}, x^{(3)}, z^{(2)}$ and $z^{(3)}$ have been given by Theorem 1 and the random variables \mathscr{Z}_{M} and \mathscr{Z}_{N} have been defined in Section 1.

Proof. The distribution functions of the random variables \mathcal{O}_{P} and \mathcal{O}_{L} have been given in (4.4) to (4.6). We have

$$
\begin{align*}
& \text { 16) } \mathrm{E} \mathcal{O}_{P}=\int_{0}^{\infty}\left[x^{(2)} \cdot \frac{1-g(t)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})}+x^{(3)} \cdot \frac{1-h(t)}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})}\right] \mathrm{d} t= \tag{4.16}\\
& =\frac{x^{(2)}}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})} \cdot \int_{0}^{\infty}[1-g(t)] \mathrm{d} t+\frac{x^{(3)}}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})} \cdot \int_{0}^{\infty}[1-h(t)] \mathrm{d} t,
\end{align*}
$$

where

$$
\begin{align*}
\int_{0}^{\infty}[1 & -g(t)] \mathrm{d} t=\int_{0}^{\infty}\left(\int_{-\infty}^{\infty}[1-M(t+y)] \mathrm{d}(A * B)(y)\right) \mathrm{d} t= \tag{4.17}\\
& =\int_{-\infty}^{\infty}\left(\int_{y-0}^{\infty}[1-M(z)] \mathrm{d} z\right) \mathrm{d}(A * B)(y)= \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{z+0}[1-M(z)] \mathrm{d}(A * B)(y)\right) \mathrm{d} z= \\
& =\int_{0}^{\infty}[1-M(z)](A * B)(z) \mathrm{d} z=\mathrm{E}_{\mathscr{Z}_{M}}-\mathrm{E} \mathscr{A}-\mathrm{E} \not \mathcal{B}^{2}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\int_{0}^{\infty}[1-h(t)] \mathrm{d} t=\mathrm{E}_{\mathscr{Z}}^{N}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B} . \tag{4.18}
\end{equation*}
$$

By substituting from (4.17) and (4.18) into (4.16) we get (4.14). The formula (4.15) can be proved in a similar way.

Note. If $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})=0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})>0$ then

$$
\begin{equation*}
\mathrm{E} \mathcal{O}_{P}=\mathrm{E} \mathcal{O}_{L}=\frac{\mathrm{E} \mathscr{Z}_{N}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})} \tag{4.19}
\end{equation*}
$$

and if $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{M})>0$ and $\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{N})=0$ then

$$
\begin{equation*}
\mathrm{E} \mathcal{O}_{P}=\mathrm{E} \mathcal{O}_{L}=\frac{\mathrm{E} \mathscr{Z}_{M}-\mathrm{E} \mathscr{A}-\mathrm{E} \mathscr{B}}{\mathrm{P}(\mathscr{A}+\mathscr{B}<\mathscr{A})} . \tag{4.20}
\end{equation*}
$$

5. STATIONARY STATE-PROBABILITIES OF THE COUPLE OF UNITS

Let us observe two regenerative events - those of the random process $X(t)$ (described in Section 2) entering the states e_{S} and e_{L}. Let us denote

$$
\mathfrak{M}=\left\{\mathrm{e}_{S} ; \mathrm{e}_{L}\right\} .
$$

The time interval between two successive regenerative events i and j, where $i, j \in \mathfrak{M}$, will be called the phase of the type i. The random chain Y_{n} which describes the type of phases is clearly markovian with the matrix of transition probabilities

$$
\binom{\mathrm{P}(\mathscr{A} \geqq \mathscr{M}), \mathrm{P}(\mathscr{A}<\mathscr{M})}{\mathrm{P}(\mathscr{A} \geqq \mathscr{N}), \mathrm{P}(\mathscr{A}<\mathscr{N})}=\left(\begin{array}{ll}
c, & 1-c \tag{5.1}\\
e, & 1-e
\end{array}\right) .
$$

Supplementary assumption (2.3) implies that $c \neq 1$. Indeed, from the positivity of the random variable \mathscr{B} we obtain

$$
c=\mathrm{P}(\mathscr{A} \geqq \mathscr{M}) \leqq \mathrm{P}(\mathscr{A}+\mathscr{B} \geqq \mathscr{M})=d
$$

and if $c=1$, then $d=1$ and

$$
(1-c) \cdot(1-f)+e \cdot(1-d)=0
$$

so that the assumption (2.3) would not be fulfilled. Thus the chain Y_{n} has exactly one class of recurrent states. It is periodical only in the case that

$$
\begin{equation*}
c=0 \quad \text { and } \quad e=1 \tag{5.2}
\end{equation*}
$$

But what is the meaning of (5.2)? We shall see that under the condition (5.2) the times \mathscr{A} and \mathscr{N} of repairs of the type $I I \rightarrow I$ and of the type $I I \rightarrow I$ are in the unrealistic relation

$$
\begin{equation*}
\mathscr{M}>\mathscr{N} \text { with probability } 1 \tag{5.3}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
\mathrm{P}(\mathscr{M}>\mathscr{N})=\mathrm{P}(\mathscr{M}>\mathscr{N}, \mathscr{A}<\mathscr{M}, \mathscr{A} \geqq \mathscr{N})=\mathrm{P}(\mathscr{A}<\mathscr{M}, \mathscr{A} \geqq \mathscr{N})=1 \tag{5.4}
\end{equation*}
$$

In this section we shall suppose that (5.2) does not hold, i.e., we shall assume that

$$
\begin{equation*}
1-c+e \neq 0 \tag{5.5}
\end{equation*}
$$

Thus the Markov chain Y_{n} is ergodic and has a uniquely determined stationary distribution $\left(\pi_{e_{S}}, \pi_{\mathrm{e}_{L}}\right)^{\prime}$, where

$$
\begin{align*}
& \pi_{\mathrm{e}_{\mathrm{S}}}=\frac{e}{1-c+e} \tag{5.6}\\
& \pi_{\mathrm{e}_{L}}=\frac{1-c}{1-c+e} \tag{5.7}
\end{align*}
$$

The random variables \mathscr{K}_{S} and \mathscr{K}_{L} - the lengths of phases of the types e_{S} and e_{L}, respectively - fulfil the relations

$$
\mathscr{K}_{S}= \begin{cases}\mathscr{A} & \text { if } \mathscr{A} \geqq \mathscr{H}, \tag{5.8}\\ \mathscr{A}+\mathscr{B} & \text { if } \mathscr{A}<\mathscr{M} \leqq \mathscr{A}+\mathscr{B}, \\ \mathscr{M} & \text { if } \mathscr{A}+\mathscr{M}<\mathscr{M},\end{cases}
$$

Table 1

The type of repair of a unit The state of the operating unit	No unit is repaired
I	$\begin{aligned} & \frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{M} \leqq t, \mathscr{A}>t) \mathrm{d} t+ \\ & +\frac{\pi_{\mathrm{eL}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{N} \leqq t, \mathscr{A}>t) \mathrm{d} t \end{aligned}$
II	$\begin{aligned} & \frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A} \leqq t, \mathscr{A}<\mathscr{M} \\ & \mathscr{A}+\mathscr{B}>t, \mathscr{M} \leqq t) \mathrm{d} t+ \\ & +\frac{\pi_{\mathrm{eL}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A} \leqq t, \mathscr{A}<\mathscr{N}, \\ & \mathscr{A}+\mathscr{B}>t, \mathscr{N} \leqq t) \mathrm{d} t \end{aligned}$
No unit is operating	0
Column sums	$\begin{aligned} & \frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{M} \leqq t, \mathscr{A}+\mathscr{B}>t) \mathrm{d} t+ \\ & +\frac{\pi_{\mathrm{eL}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{N} \leqq t, \mathscr{A}+\mathscr{B}>t) \mathrm{d} t \end{aligned}$

Table 1 (Continued)

$I I \rightarrow I$	$I I I \rightarrow I$	Row sums
$\frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A}>t, \mathscr{M}>t) \mathrm{d} t$	$\frac{\pi_{\mathrm{eL}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A}>t, \mathscr{N}>t) \mathrm{d} t$	$\frac{1}{\Delta} E_{\mathscr{A}}$
$\begin{gathered} \frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A} \leqq t, \\ \mathscr{A}+\mathscr{B}>t, \mathscr{M}>t) \mathrm{d} t \end{gathered}$	$\begin{gathered} \frac{\pi_{\mathrm{e} L}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A} \leqq t, \\ \mathscr{A}+\mathscr{B}>t, \mathscr{N}>t) \mathrm{d} t \end{gathered}$	$\begin{aligned} \frac{1}{\Delta} \mathrm{E} \mathscr{B} \cdot & \left(1-\pi_{\mathrm{es}} \cdot c-\right. \\ - & \left.\pi_{\mathrm{e}_{\mathrm{L}}} \cdot e\right) \end{aligned}$
$\begin{gathered} \frac{\pi_{\mathrm{es}}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A}+\mathscr{B} \leqq t, \\ \mathscr{M}>t) \mathrm{d} t \end{gathered}$	$\begin{gathered} \frac{\pi_{\mathrm{e} L}}{\Delta} \cdot \int_{0}^{\infty} \mathrm{P}(\mathscr{A}+\mathscr{B} \leqq t, \\ \mathscr{N}>t) \mathrm{d} t \end{gathered}$	$\begin{aligned} & \frac{\pi_{e s}}{\Delta} \cdot \mathrm{E} \mathscr{Z}_{M}+ \\ & +\frac{\pi_{e L}}{\Delta} \cdot \mathrm{E} \mathscr{Z}_{N}- \\ & -\frac{1}{\Delta}(\mathrm{E} \mathscr{A}+\mathrm{E} \mathscr{B}) \end{aligned}$
$\frac{\pi_{\mathrm{es}}}{\Delta} \cdot \mathrm{E} \mathscr{M}$	$\frac{\pi_{e_{L}}}{\Delta} \cdot \mathrm{E} \mathscr{N}$	1

$$
\mathscr{K}_{L}=<\begin{array}{ll}
\mathscr{A} & \text { if } \mathscr{A} \geqq \mathscr{N}, \tag{5.9}\\
\mathscr{A}+\mathscr{B} & \text { if } \mathscr{A}<\mathscr{N} \leqq \mathscr{A}+\mathscr{B}, \\
\mathscr{N} & \text { if } \mathscr{A}+\mathscr{B}<\mathscr{N} .
\end{array}
$$

Let us calculate the distribution of \mathscr{K}_{S} :

$$
\begin{gather*}
\mathrm{P}\left(\mathscr{K}_{S} \leqq x\right)=\mathrm{P}(\mathscr{A} \leqq x, \mathscr{A} \leqq \mathscr{M})+ \tag{5.10}\\
+\mathrm{P}(\mathscr{A}+\mathscr{B} \leqq x, \mathscr{A}<\mathscr{M}, \mathscr{M} \leqq \mathscr{A}+\mathscr{B})+\mathrm{P}(\mathscr{M} \leqq x, \mathscr{A}+\mathscr{B}<\mathscr{M})= \\
=\mathrm{P}(\mathscr{A} \leqq x, \mathscr{A} \geqq \mathscr{M})+\mathrm{P}(\mathscr{A}+\mathscr{B} \leqq x, \mathscr{M} \leqq \mathscr{A}+\mathscr{B})+ \\
+\mathrm{P}(\mathscr{M} \leqq x, \mathscr{A}+\mathscr{B}<\mathscr{M})-\mathrm{P}(\mathscr{A}+\mathscr{B} \leqq x, \mathscr{M} \leqq \mathscr{A}+\mathscr{B}, \mathscr{A} \geqq \mathscr{M})= \\
=\int_{-\infty}^{x+0} \mathrm{P}(\mathscr{A} \geqq \mathscr{M} \mid \mathscr{A}=y) \mathrm{d} A(y)+\mathrm{P}\left(\mathscr{Z}_{M} \leqq x\right)- \\
-\int_{-\infty}^{x+0}\left(\int_{-\infty}^{x-y+0} \mathrm{P}(\mathscr{A} \geqq \mathscr{M} \mid \mathscr{A}=z, \mathscr{B}=y) \mathrm{d} A(z)\right) \mathrm{d} B(y)= \\
=C(x)+\mathrm{P}\left(\mathscr{Z}_{M} \leqq x\right)-(B * C)(x) .
\end{gather*}
$$

The mathematical expectation of \mathscr{K}_{S} has the form

$$
\begin{equation*}
\mathrm{E} \mathscr{K}_{S}=\mathrm{E} \mathscr{Z}_{M}-c \cdot \mathrm{E} \mathscr{B} \tag{5.11}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\mathrm{E} \mathscr{K}_{L}=\mathrm{E} \mathscr{Z}_{N}-e . \mathrm{E} \mathscr{B} . \tag{5.12}
\end{equation*}
$$

Thus the mean length of a phase is

$$
\begin{gather*}
\Delta=\pi_{\mathrm{es}} \cdot \mathrm{E} \mathscr{K}_{S}+\pi_{\mathrm{e}_{L}} \cdot \mathrm{E} \mathscr{K}_{L}= \tag{5.13}\\
=\frac{1}{1-c+e} \cdot\left[e \cdot \mathrm{E} \mathscr{Z}_{M}+(1-c) \cdot \mathrm{E} \mathscr{Z}_{N}-e \cdot \mathrm{E} \mathscr{B}\right] .
\end{gather*}
$$

Let us now be interested in the possible states of the couple of units of our system. They form the set

$$
\begin{equation*}
V=\{(k ; l) ; k, l \in\{I ; I I ; I I I\}\} \backslash\{(I I I ; I)\}, \tag{5.14}
\end{equation*}
$$

where the first component expresses the state of the operating unit (for $k=I, I I$) or the fact that no unit is operating (for $k=I I I$) and the second component expresses the type of the repair which is being carried out (for $l=I I, I I I$) or the fact that no unit is being repaired (for $l=I)$. The couple $(I I I ; I)$ cannot be an element of the set V because of the assumption 5 about the organization of the system.

By the paper [1] we know that if the mathematical expectations of all the variables $\mathscr{A}, \mathscr{B}, \mathscr{M}$ and \mathscr{N} are finite and if the distribution functions of the distance between two successive i-events (for both $i \in \mathfrak{M}$) are non-lattice, then the stationary probability p_{j} of the state $j, j \in V$, of the couple of units has the form

$$
\begin{equation*}
p_{j}=\frac{1}{\Delta} \sum_{i \in M} \pi_{i} \cdot \int_{0}^{\infty} Q_{i}(u, j) \mathrm{d} u \tag{5.15}
\end{equation*}
$$

where $Q_{i}(u, j)$ is the probability that a phase is longer than u and after time u from the beginning of this phase the couple of units is in the state j under the condition that the period in question is of the type i.

The full list of formulas for computing the stationary probabilities p_{j} for $j \in V$ is given in Table 1. The row and column sums are very essential characteristics of availability of the system and of the level of use of the repair facility. So the stationary availability of our system has the form

$$
\frac{1}{(1-c+e) \cdot \Delta}[\mathrm{E} \mathscr{A} \cdot(1-c+e)+\mathrm{E} \mathscr{B} \cdot(1-c)],
$$

while the stationary probability that the repair facility is operating is

$$
\frac{1}{(1-c+e) \cdot \Delta}[e \cdot \mathrm{E} \mathscr{M}+(1-c) \cdot \mathrm{E} \mathcal{N}]
$$

where Δ is determined by (5.13).
Another paper, which is expected to appear in this journal presently, will deal with stochastic characteristics of the behaviour of the system considered in this paper in the course of its first operating period. It will be devoted to the following random variables: the whole time of repairs of units of the type $I I \rightarrow I$ (or $I I I \rightarrow I$), the whole time of operation of units in state I (or $I I$) and the number of finished repairs of units of the type $I I \rightarrow I$ (or $I I I \rightarrow I$).

References

[1] K. Arndt, P. Franken: Construction of a class of stationary processes with applications in reliability. Zastosowania matematyki 16 (1979), 3, 379-393.
[2] R. E. Barlow, F. Proschan: Mathematical theory of reliability. J. Wiley, New York - London --Sydney (1965).
[3] B. V. Gnedenko, Ju. K. Beljajev, A. D. Solovjev: Математические методы в теории надежности. Nauka, Moskva (1965).
[4] B. V. Gnedenko, M. Dinič, Ju. Nasr: О надежности дублированной системы с восстановлением и профилактическим обслуживанием. Izv. AN SSSR, Techn. Kibernet. (1975), 1, 66-71.
[5] B. Kopociński: Outline of renewal and reliability theory (Polish). Państwowe wydawnictwo naukowe, Warszawa (1973).
[6] V. S. Koroljuk, A. F. Turbin: Полумарковские процессы и их приложения. Naukova dumka, Kijev (1976).
[7] T. Nakagawa, S. Osaki: Stochastic behaviour of a two-unit standby redundant system. INFOR Canad. J. Oper. Res. and Infor. Proc. 12 (1974), 1, 66-70.
[8] S. Osaki: On a two-unit standby redundant system with imperfect swichover. IEEE Trans. Reliab. R-21 (1972), 1, 20-24.
[9] S. Osaki, T. Nakagawa: Bibliography for reliability and availability of stochastic systems. IEEE Trans. Reliab. R-25 (1976), 4, 284-286.
[10] P. R. Parthasarathy: Cost analysis for 2-unit systems. IEEE Trans. Reliab. R-28 (1979), 3, 268-269.
[11] D. Szász: A problem of two lifts. Ann. Prob. 5 (1977), 4, 550-559.

Souhrn

ANALÝZA SYSTÉMU S NEZATíŽENOU ZÁLOHOU SLOŽENÉHO ZE DVOU PRVKU゚, KTERÉ MOHOU BÝT VE TR̆ECH STAVECH

Antonín Lešanovský

V článku je uvažován jistý systém s nezatíženou zálohou složený ze dvou prvků a jednoho zařízení pro jejich opravy. Prvky mohou být ve třech stavech: bezvadném (I), zhoršeném (II) a poruchovém (III). Před̉pokládáme, že možné jsou pouze následující změny stavu prvků: $I \rightarrow I I, I I \rightarrow I I I, I I \rightarrow I, I I I \rightarrow I$. Oprava prvku typu $I I \rightarrow I$ může být interpretována jako jeho preventivní údržba, jejiž realizace závisí na stavech obou prvků. V článku je odvozena řada charakteristik chování systému, např. rozložení a střední hodnoty doby do první poruchy systému a doby poruchového prostoje systému, stacionární pravděpodobnosti možných dvojic stavů prvků.

Author`s address: RNDr. Antonín Lešanovský, CSc., Matematický ústav ČSAV, Žitná 25, 11567 Praha 1.

