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GENERALIZED METHOD OF LEAST SQUARES COLLOCATION
LubpmiLa KuBACKkovA, LuBoMiR KUBACEK

(Received July 29, 1981)

1. INTRODUCTION

The least square collocation is a statistical method currently used in geodesy,
particularly in physical geodesy, for processing continuous phenomena observed
at discrete points suitable located in the region of investigation (e.g. the gravitational
field of the Earth). The least square collocation algorithm published in [7] was derived
under the conditions of regularity of the model used and is a subject for the pre-
sent generalization.

The aim of the paper is to show two different approaches based on two different
systems of conditions for deriving the algorithm for the generalized method of least
squares collocation.

Obviously the procedure can be used in other regions of research as well.

2. FORMULATION OF THE PROBLEM

Let v(+) be a stochastic function defined on a finite, countable or uncountable set
of points of the Euclidean space #°. The covariance function R(-,**) =
cov {¥(+),v(-*)}, Q, Q €S, is assumed to be known and the mean value function
m(+) = E[¥(+)], Q€ S, is only assumed to belong to a known class .#. Let v(+),
Q € S, be the sum of an uncorrelated useful signal &(+) and of a noise 5(+) for which
EL()] = ELE()] = m(-), E[4()] = 0, Q<.

The Hilbert random function v(+), Q € S, is observed at points Py, ..., Py suitably
located in S; evidently {P,,..., PN} < S. Our knowledge on the input observed
random function is given in terms of an N-dimensional column vector v = (v(P,), ...
..., W(Py))' (" indicates transposition of the vector).

The problem is to determine an unbiased linear statistical estimator of the mean
value (the trend component) of the function v(+) and an unbiased optimal linear
estimator of the useful component £(-) at an arbitrary point Q € S.
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The formulated problem is solved by means of stochastic functions, where the
geometrical point of view is emphasized, and in the framewotk of the universal
model [2].

3. SOLUTION BY MEANS OF STOCHASTIC FUNCTIONS

The following assumptions are introduced:

1. Knowledge of the N x N dimensional covariance matrix R, = cov {v,v'} =
= (R,(Py), ..., R,(Py)); R,(P,) = (R/(Py, Py), ... R(Py, P,)y is the k™ column
of the matrix R,; no assumptions on the regularity of the covariance matrix are
made.

2. Knowledge of N-dimensional column vectors R,(Q) = cov {v, ¥(Q)} and R,(Q) =
= cov {v,&(Q)}, Q€eSs.

3. Knowledge of the class .# of vectors of the mean values m = (m(P,), ..., m(P,)y
of the random vector v (./#/ = #(R,)).

}f(Rv) indicates the reproducing kernel Hilbert space spanned by the columns
of the covariance matrix R, : #(R,) = {x : x = (x(P,), ..., x(Py)) = R,a, ae #"}.
The inner product in #(R,) is defined by <{x, y>g,- = x'R]y, where R, is the
generalized inversion (g-inversion) [9] of the covariance matrix. The g-inversion
is used because no assumption on the regularity of R, is made. The kernel R, has
the reproducing property (<x, R,(P,)>,-= @'R,R;R,(P,) = a'R(P,) = R(P,) a =
= x(P))-

Let .# be the subspace of the space %(Rv) generated by the elements of the class
J with the inner product defined by {m,, m,>g _ = m{R; m, (in accordance with
the assumption .4 < #(R,)).

Further, it is assumed that each m € . has the form m = Wa, where « € #" (n < N)
and W is an N x n dimensional matrix

wi(Py), wa(Py),s s w(Py)
(3.1 W — wi(P2), wa(P2), ... w,(P2) ,

wi(Py), Wa(Py)s -, w(Py)

the N dimensional columns of which are formed by the values of known functions
wi(*), wa(*), ..., w,(+), Q € S, at the points P, € {Py, P,, ..., Py} ie. My = {m:m=
= Wa. a e #"}. The situation is especially simple when the columns of the matrix
W are elements of the orthonormal basis of the Hilbert space .#, considered.

Further, let #2{v(P,): P,e{Py, ..., Py}} be the Hilbert space spanned by the
random vector v (evidently Z2{v(P,):P,e{Py, ..., Py}} = L*¥(Q, &, P); thus
the inner product in Z*{v(P,):P,e{Py,..., Py}} has the form <oy, a,) =
E [oy.2,.])-

It may be proved that between the reproducing kernel Hilbert space #/(R,) and
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L*W(P,): P e{P,,..., Py}} there exists an isometric isomorphism F with the
property F{R(P,)} = v(P,); this property and the reproducing one imply (m, h)q - =
=E,[F{h}] for an arbitrary me .# = #(R,) and each h € #(R,) (the index at the
expectation operator indicates that the mean value is computed under the assump-
tion that m e .#,, is the true mean value).

Now it is easy to solve our problem using the geometry of the Hilbert space con-
sidered and the isometric isomorphism F.

All unbiased linear estimators E(N)(Q) of the random variable £(Q) e £(Q, &, 2)
form a linear variety G = {EM(Q): E,[E™M(Q)] = E,[&(Q)] = m(Q). G <
< LHW(P): Pre{Py, ... Py}).

The optimal (= efﬁcient = unbiased and with minimal dispersion) linear estimator
of ¢(Q) is that element E)(Q)e G for which the distance 042q, 4 5(Em(Q),

£(Q) = min.

As 020,7,2)(Eopl(Q): £(Q)) = 0220,9,5)(E*(Q). 4(Q)) + Za(a,7.,5(£%(Q), E2(Q)),
where £%(Q) = Pyr(poy(€(Q)) is a projection of the element £(Q)e LA Q, &, 2)
on the Hilbert space £*{v(P,): Pye {Py, ..., Py}}, the problem to minimize the
distance 0g2(0,7.2(EM(Q), £(Q)) is transfered to the problem to minimize the
distance 020, (E*(Q) Epi(Q)) = Ca2(urn(E¥(Q): E(Q)) = 222pipn(F(RA(Q)}
F(h{)Y) = 0xr,)(Ry(Q), hS3)) (it may be proved that R,.(P) = RH(P)C%(R)
and the 1eproducing property of the kernel R, together with the isometric isomor-
phism F implies that F(R,«(P)} = &*(P)).

The isometric isomorphism F : #(R,) > £L*{v(P,), P, € {P;, ..., Py}} enables
us to solve the problem in the reproducing kernel Hilbert space. The set of inverse
images of elements of the linear variety G = Z*{v(P,), P, € {P,, ..., Py}} forms
the corresponding linear variety G’ = {h™ : F{h™} = EM(P)}, G’ = #(R,).
The variety G is uniquely determined by one of its elements and by the Hilbert
space .#,. One unbiased linear estimator of the random variable £(Q) is F{R,(Q)}
(because E,,[F{R,(Q)}] = <m, R,(Q)>g,- = m(Q) = E,[&(Q)] = m(Q) = E,, [£(Q)]
for an arbitrary m € .#) and that is why G’ = {h™ : P, "™ = P , R (Q)J, P, is
an R -projector of elements of the Hilbert space #(R, ) on its subspace .# .

The projector P, has the form P, = W(W’'R; W)~ W'R.", Wis the matrix (3.1).

Applying the relations

Ent(Q) = F{R(Q) + P.uo[R(Q) — Ru(Q)]}

and
(@) = F{P4, R(Q)}
derived in [5] we get

(3.2) M = W(W'R/ W) W'Rv
and
(33) Eptc(Q) = F{R,(Q) — Py R(Q)} =

= [V — vR; WIW'R; W)™ WIR; R(Q) = [v — (m()] Ry R.(Q).
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Relations (3.2) and (3.3) represent a generalization of relations (2.36), (2.38) and
(2.35), respectively, from [7].
The fundamental statistical characteristics of the derived statistical estimators are
DL Q)] = [mX(Q)z20m0m = [Pt RAQ)Sem,) =
= R(Q) Ry W(W'R; W)~ W'RT R,(Q):
DR (2)] = [ = |R(Q) = P4y R Q) 3cr,) =
= R{(Q)Ry[1 =~ W(W'R; W)~ WRTR(Q).
D[ER(Q) — &(Q)] = Héi’i?(Q) — @ =
= [4Q)| 220,50 + &R = KERUQ). A 220,99y =
= [&QN20..0) + [ER(DNZ20vipin —
— 2KEQUQ): Peapiry QD20 = [E(Q)| 220,99 +
+ Rl Q) + Puo[Ro(Q) = R Q)][Sem,) — 2¢R,(Q) +
+ Py [R(Q) = R(Q)] R QD emy = [1E(Q) 220,72 + (R‘;(
+ Pyo[R(Q) = R(Q)]) Ry (Po[R(Q) — R(Q)] — R(Q)) =
= [40)|2:0,9,9) — Ri(Q) R[1 — W(W'R; W)~ W'R‘,] Rvi(Q
+ R,(Q) R, W(W'R; W)™ W'R[R,(Q) — 2R,(Q)] .
If the domain of definition S is a bounded and closed region of the Euclidean
space, then the stochastic functions v('), é() and #(*) are continuous in quadratic

mean on S and if the input function v(+) is observed at points of a finite set { P,. ... Py]
which for N — oo is dense in S, then the matrix 1elations (3.2), (3.3) converge to

their theoretical values &, (Q) = F{R,(*, Q) + P4 [R,(*, Q) — Rye(-. Q)]} and
Hop(Q) = F{P 4, R+, Q)} derived under the assumption that the continuous
realization of the input field is known [5] We have [10]

S:,f(Q) - opt Q) l72v).0e5) = 05

\1,”“ Hmili Q) = Mop( Q)] 2200(00.0e51 = 05

opt ¢

N

where £*{¥(Q), Q € S} is the Hilbert space spanned by the Hilbert random function
v(+), Qe S. This important theorem proves that all the derived expressions are
suitable forms for solving the collocation problem in the case when the observed
phenomenon is continuous.

4. SOLUTION IN THE FRAMEWORK OF THE UNIVERSAL MODEL

The random function is again considered as a superposition of the signal &(+)
and the noise 7(+) which are uncorrelated. When the measurement (i.e. the realiza-
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tion of the random variables v(P)) is carried out at points P, ..., Py we obtain
a model v = & + n, where { = ({(Py), ..., {(Py)), E = v, & 1.

In contradiction to the preceding model we do not assume the mean value m =
= E,[£] to be an element of the subspace .#, = #/(R,) but we express it in the
form m = A@, where A is a known matrix and @ € #" is an unknown vector. It is
necessary to remark that the matrix A determines the subspace .#, = .(A)in which
the mean value m = Em[é] of the vector lies, however, in this case the inclusion
AM(A) = .4(R,) is not necessarily fulfilled. The aim is to determine an estimator
of the vector @ and an estimator of its linear unbiasedly estimable functionals of its
components, respectively, and further an estimator of the signal é(Q) of the field
v(+) at the point Q € {P,, ..., Py} and an estimator of the centred signal £,(Q) =
= &(Q) — a'(Q) @. We assume that the mean value of the random variable £(Q)
can be expressed as a known combination — given by the vector a(Q) — of the
unknown vector 6.

This problem is a certain generalization of the problem given by H. Moritz in [7].

Analogously as in the previous model it is assumed that the covariance matrix
R, of the vector v and the covariances cov {v, &(Q)} = cov {&, &(Q)} are known.

In the solution of the first problem it is necessary to take into account that it is
possible to calculate the estimate of the quantity '@ from the realization of the vector
vif, and only if p € .#(A"). This fact is corroborated by the following simple consider-
ation. The quantity $'@ is estimable (unbiasedly) if, and only if, there exists a vector
Le #” which satisfies the relations: V{@ e 2"} E,[L'v] = L'AO = p'O® < A'L =
= p<>pe d(A).

As the relations Eg[v] = Eo[¢] + Eq[n] = AO are valid and the aim is to deter-
mine the estimator of the quantity p'@, p € .#(A’), it is possible to utilize the results
of the paper [2]. There it is shown that the unbiased estimator with the minimal

dispersion is given by the relation (?\@\) = p'[(A")nr,)] v- When several functionals
f1(0@) =0, 1,(0) =p,0,...[(0)=p.0, pcA(A), i=1,..,r are given
then even the random vector (py, ..., p,)' [(A )., ]’ v is the joint efficient estimator
of the vector (py, ..., p,) ©.

The second aim is to find out a random variable in the form L'v which satisfies the
following conditions: V{@ € 2"} E,[L'v] = L'A® = a'(Q) © & E[(L'v — £(0))*] =
= min. We use the method of indefinite Lagrange multipliers. An auxiliary Lagrange
function has the form @(L) = E[(L'v — &(Q)*] + 24’ (A'L — a(Q)), where 4 is the
vector of Lagrange multipliers and E[(L'v — &(Q))*] = D[L'v] + D[&(Q)] —
— 2cov {L'v, &(Q)} (with respect to the assumption Eo[L'v] = Eo[£(Q)] = a'(Q) ©).
Further, D[Lv] = L'R,L, D[&(Q)] = cov (&(Q), &(Q)} and cov {L'v, &(Q)} =
= L' cov {. &(Q)} = L'(cov {¢(P,), &(Q)}, cov {&(P5), {(Q)}. ... cov {(Pw), £(Q)})"
The auxiliary function ¢() can be investigated in the form ¢(L) = L'R,L —
L con (9. (0} + X(AL - a(@)) (3 64(L)JoL =) RL — cov {v, &(Q)} +

' AL
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AL=0 £
+ } = [R"’ A] [L] = [COV 0, (Q); . Using the theory of ”’Pandora-

= a(Q) A0 |4 a(Q)
Box” matrix [3] we obtain I:l}il = [g:: _gi:l [COVEZ,Q)é(Q)}], where C, €

€ (o )uery)» €5 € (L )psy> thus L = € cov {v, {Q)} + C, a(Q). The symbol
(' )m(r, denotes the class of the g-inversions of the matrix A’ which are denoted
by the symbol (A’) .., and which satisfy A'(A"),a, A = A" & [(A")r, A1
.R, = R‘,(A');(Rv) A’ [9]

The estimate L'v of the quantity &(Q) is given by the relation &(Q) = L'v = a'(Q) .
. Chv + [cov {v, &(Q)}] Civ. The first term a’(Q)Cyv is the unbiased estimator
of the trend component a’(Q) @ with the minimal dispersion given by D[a’(Q) Cjv] =
= a'(Q) C;R,C, a(Q) = a'(Q) C, a(Q) (the last identity is useful for the numerical
check of the computation and its validity is proved in [3]). For the second term
[cov{v,&(Q)}] Civ we have [cov{v,&(Q)}] C,v = [cov {v,&(Q)}] Ci(v — A.
J(A)mrs] v)- The last relation follows from the assumption cov {v, &(Q)} €
€ #(R,)and from the identity R,C{ A = 0(see [3], relation 4.1). As A[(A'),p,, ] v=
= AA@ (this vector is invariant with respect to the choice of the g-inversion (A'),a,)):
the quantity &,(Q) = [cov {v, &(Q)}] Ci(v — A®) can be declared an estimator
of the centred signal &,(Q) = £(Q) — a'(Q) 6.

Further, the quantities D[(Q)], D[&(Q)], E[(&(Q) — &(Q))*] and E[(E(Q) —
— £0))?] characterizing the quality of the estimators are determined. As &) =
a’(Q)® + £.(Q) and the random variables a'(Q) @, Q) are uncorrelated (this
follows from the identity AC,R(l1 — C,A’) =0), the relation D[E(Q)] =
= D[a'(Q) ] + D[.(Q)] holds for the dispersion D[(Q)]; the relation
D[a'(Q) ®] = a'(Q) C4a(Q) was mentioned above. The formula D[¢(0)] =
= D[(cov {v, &(Q)}) €,v] = (cov {v, &(Q)}) CiR,C; cov {v, &(Q)} is valid for the
dispersion D[¢,(Q)]. The assumption cov {v, &(Q)} € .Z(R,) and the relations (4.1)
and (3.10) from [3] imply the following relation: (cov {v, &(Q)}) CiR,C,
cov {n. 40)} = (cov . &(Q)}) €, cov [, Q)

Analogous relations arc obtained for the covariances cov {{(Q), &(Q)} and

cov {£(0), £Q)}:
cov {£(0). &Q)} = a(Q) C; cov {v, &(Q)} + (cov {v, {(Q)}) €, cov {v, (Q)} ,
cov {£,(0), £0)} = (cov {v, &(Q)}) €, cov {v. &(Q)}. The quality of the estimators
£(Q) and &(Q) is judged by means of the quantities:
(4.1)  E[(§(Q) — €(0))'] = D[&(Q)] — 2cov {&(Q). &(Q)} + D[&(Q)] =
= a'(Q) €4 a(Q) — (cov {v, &(Q)}) €, cov {v, {(Q)} — 2a'(Q) C; .
-cov {r. §(Q)} + D[&(Q)]

451



and

(4.2) E[(2.(Q) — ¢(0))*] = D[E(Q)] = 2 cov {E(0). &(Q)} +
+ D[E(Q)] = (cov {¥, &(Q)}) €, cov {v, &(Q)} —
— 2cov {v, &(Q)}) €, cov {v. &Q)} + D[£(Q)] = D[¢(Q)] —
— (cov {v, £(Q)}) Cycov {v, £(Q)} .

respectively.

For the dispersion of the trend component, as was mentioned above, we have

(43) D[a'(Q) ] = @'(Q) €, a(Q).

5. CONCLUSION

In Parts 3 and 4 of the paper two different approaches to the solution of the least
squares collocation problem are given under a certain generalization of the original
formulation given in [7]. Now it can be easily proved that in the regular case both
solutions given in the present paper are identical and at the same time they are
identical with the solution given in [7].

Conditions of regularity: The rank R(Rv) of the covariance matrix R, is N. i.e.
the matrix R, is regular and R(Ay,) = n < N, i.e. the columns of the matrix A
are linearly independent. In the case of regularity the following relations are valid
automatically: cov {v, ¢(Q)} € .#(R,), a(Q) e .4(A’). For a comparison we should
remark that m(Q) (the denotation from Part 3) = a'(Q) @ (the denotation from
Part 4) and analogously R,(Q)=cov{v,&Q)}, #(W)= #4(A), P, =
= W(W'R;'W) ' W'R]! = A(A'R;'A)" ! A'R;! (a different expression for the
R, -projector) etc.

In the regular case the following relation is valid for the “Pandora-Box™ matrix:

R,, Al
A0 |

_[c.. ¢ [R;"—=RJ'AAR;'A)"' AR, R;'A(A'R;'A)"!
- [c3, —c4] B [ (A'R;TA) L AR . —(AR;TA)! ]

If in Part 4 in the formulae for a'(Q) @, &(Q), D[a'(Q) &]. E[(&(Q) — &(0))*].
E[(£(Q) — £[(Q))*] etc. we substitute successively R;' — R;'A(A'R;'A)"!.
AR R;'A(A'R;TA)!, (A'R;'A)! for the matrices C;, C,, €, and if we
compare the relations obtained in this way with the corresponding relations in Part 3
we easily verify that the results are identical and correspond to the relations obtained
by H. Moritz [7].
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APPENDIX

Definition 1. The triple (Q, &, #) denotes a probability space (Q is a set of elenien-
tary events, & is a nonempty class of random events and probability 2 is a real,
positive, countably additive function defined on ). The symbol L*(Q, ¥, P)
denotes a Hilbert space of random variables of the probability space (2, %, P)
whose inner product is {(ay, %) = E[a .| = E[(2; — E[o,]) (2, — E[22])].
its metric ¢ being induced by the norm: ¢*uy, a,) = HOH - 12“ = {o; — ay,
oy — 0.

Definition 2. A stochastic function v(+), Q€ S, S being a bounded and closed
region, S < A3, is continuous in quadratic mean on S, if for each Q' €S,
lim E[(v(Q) — v(Q'))*] = 0, where the limit is taken over all points Q of S.

Q-Q’

Definition 3. The Hilbert space %(K) of functions defined on S is a reproducing
kernel Hilbert space (with a reproducing kernel (K(,--), (P, Q)eS x S), if
V{Pe S} K(+, P)e #(K)&V{Pe S} {g() e #(K)} <g(+), K(-, P)y = g(P) (repro-
ducing property).

In our case S = {Py,..., Py} and each function g(-)e #(K) has the form of
a column vector g = (g(P,), ..., g(Py))"

Definition 4. An isometric isomorfism of two Hilbert spaces #, and #, means
that there exists a one-one linear mapping F : | — #, for which {u,v), =
= (F(u), F(v)y,, for each u,ve #,.

Lemma 1. Let x € # and let #' be a Hilbert subspace of the Hilbert space # .
For an arbitrary x € # there exists a unique element x* € #' for which g4(x, x*) =
= min {o4(x, z), z € H'}. The element x* is the projection of xe€ H on H' < K;
the element x — x* € A is orthogonal to each element ze #': (x — x* z) = 0.

Proof. See [6, p. 93]

Lemma 2. Let A be an arbitrary N x s dimensional matrix and let 4((A) denote
‘the subspace of A" generated by columns of the matrix A. Then the subspace
A(A) and Ker (A') = {x :xe Z", A'x = 0} are mutually orthogonal complements
(in the Euclidean metric of the space #" given by the inner product {x,y) =
= x'y).

Proof. The set A = #" of elements orthogonal to .#(A) is A" = {y:ye #,
V{ue 2°} (Au,y) = 0}; the condition V{ue %} <u, A'y)> = {Au,y> = 0 is equi-
valent to the condition A'y = 0 <>y e Ker (A’), thus 4" = Ker (A"). Let .# be
a set of elements ortogonal to A" = Ker (A"); .4/ = {x :xe 2", V{k e Ker (A)},
¢k,x) = 0}. The following equivalence obviously holds: V{k & Ker (A")} ¢k, x) =
=0<xe JI(A), thus /4 = J(A).
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Lemma 3. Let A be an arbitrary N x s dimensional matrix; then M(AA’) =
= M(A).

Proof. By Lemma 2 the spaces .#(AA’) and .#(A) coincide if, and only if,
Ker (A’) = Ker (AA"). But x € Ker (A’) = A'x = 0 = AA'x = 0 = x € Ker (AA");
conversely x € Ker (AA’) = AA'x = 0 = x'AA’x = 0= A'x = 0 = x e Ker (A');
thus #(AA’) = #(A).

Let R, be an N x N dimensional symmetric and positively semidefinite matrix.
The number ||x|g, - = (x'R; x)"/? is the R, -norm of the element x € .#(R,); the
number <X, ydg,- = x'R]y is the inner product in .#(R,) (evidently the symbols
A(R,) and #(R,) denote the same Hilbert space).

Lemma 4. The matrices A, B, C satisfy the conditions

(i) .#(B) < .u(A)
(ii) #(B)< M(A)& #(C) = M(A);

then (i) implies that AA~B = B and (ii) implies that the matrix C'A”™B is inde-
pendent of the choice of the g-inversion of the matrix A.

Proof. .#(B) = .#(A) if, and only if, there exists a matrix E such that B = AE;
then AA"B = AA~AE = AE = B. Analogously, %(C) < WM(A) if, and only if,
there exists a matrix F such that C = A'F; then C'A™B = FAA AE= FAE,
which proves the second property.

Lemma 5. For an arbitrary symmetric matrix A both A~ and (A™) are its
g-inversions (it means that there exists a symmetric version of the g-inversion, e.g.
(A™ + (A7)))2)

Proof. The definition of g-inversion: AATA = A yields (AA"A) = A’ =
=>AA YA =A = A(A‘)’ A=A

Definition 5. Let M be an N x r dimensional matrix, where .#(M) < /#(R,),
then the subspace 4/(M)"R" = {x:xe #(R,), V{ye #(M)}<{x,y)g,- =0} is
R, -orthogonal in the subspace #(R,) to its subspace #(M)(.#4(M) Lg, - [4(M)]*®".

Lemma 6. For each element x € ///(Rv) there exists a unique couple of elements
x; € M M), x, € [M(M)]*®7 for which x = x; + x,.
Proof. Let x be an arbitrary element of .Z(R,) and let x, be the element of .#(M)

for which |x — x,|g,- = min {|x — ug - :ue.#(M)}. By Lemma 1 there exists
a unique element x, € /(M) and a unique element x, = x — x; x, € [.4(M)]*"®".

Definition 6. The element x, from Lemma 2 corresponding to the element x €
e J4(R,) is the R} -projection of the element x on the subspace #(M).

Because of linearity of the mapping x — x,, there exists suchan N x N dimensional
matrix P that x; = Px.
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Definition 7. The matrix P is the R} -projector of the subspace #(R,) < #"
on the subspace M(M) = #(R,).

Lemma 7. The N x N dimensional matrix P is the R;-projector of .#(R,) on

AM(M) = A(R,) if, and only if,
(1) ./Z(PR‘,) = ‘%(M)»

(i) PR, = RP,

(i) PR, = P?R,.

Proof. a) Necessity. Let P be an R; -projector. Then each x € .#(R,) is mapped
into Pxe .#(M)= #(PR,) c .#(M); for each x e .#(M) we have Px = x, thus
M(M) = .#(PM) = .#(PR,E) = .#(PR,); thus .#(PR,) = .#(M) (i); (existence
of the matrix E follows from the assumption .#(M) = .%(R,)).

Each element x of the subspace =/fl(R‘,) can be uniquely expressed in the form
X; + x,, where x; = Pxe #(M) Ly -[#(M)]*®"; thus the matrix P must
satisfy: V{x,ye .#(R,)} [(1 =P)x'R,Py = 0<«V{u,ve 2"} [(1 — P)Ru]' R; .
.PRu = 0< Rl — P)R;PR, = 0<= R R;PR, = RP'R;PR,. By Lemma 4
the matrix R,R;PR, is equal to PR,. The matrix R,P’'R; PR, is symmetric, by
Lemma 4 it is independent of the choice of the g-inversion of the matrix R, and
by Lemma 5 for each symmetric matrix there exists a symmetric g-inversion. Con-
sequently, the matrix PR, is symmetric, which means PR, = R P’ (ii).

Utilizing the last identity we obtain PR, = R)P'R;PR, = R,P'/R;R,P’' =
= R,P'P’ (Lemma 4). Hence PR, = R,P' = R,P'P’ < PR, = PR, ().

b) Sufficiency. Let the conditions (i), (ii) and (iii) be satisfied. Then Px € .#(M)

and (I — P)x e [.#(M)]*™" for each element x € .#(R,). The sufficiency follows
from Definition 7 and Lemma 6.

Lemma 8. The matrix P = M(M'R; M)~ M'R; is the R, -projector of the space
AM(R,) on its subspace .#(M) = 4(R,).

Proof. The inclusion .#(PR,) = .#(M) obviously holds. Lemma 4 implies the
following relations: .#(PR,) = .#[M(M'R; M)" M'R; R,] = #/[M(M'R;M)" M'] c
> M[M(M'R;M)” M'RTM] = .#(M). The last identity follows from the inclusion
M(M') = 4(M'R;M). The inclusion is a consequence of the assumption .#(M) <
< J#(R,), which means that there exists a matrix E with the property M = R,E.
Thus M'R;M = E'R,E and .#(M'R; M) = 4(E'R,E) = .4(E)JE) = .4(E)) >
> J(E))) = #(M') > J4(E'RM) = .#(M'R; M) (the matrix R, can be expressed
in the form R, = JJ' because of its positive definiteness). The condition (i) from
Lemma 7 is satisfied.

The above mentioned consideration proves that PR, = M(M'R;M)~ M’ is
symmetric, thus the condition (ii) of Lemma 7 is satisfied.

Concerning the condition (i) from Lemma 7 we proceed analogously: PR, =
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= M(M'R;M)~ M’; P?R, = M(M'R; M)~ M'R;M(M'R;M)" M'R;R, = M .
.(M'R; M)~ M'R,M(M'R;M)” M’ = M(M'R; M) M", . .
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Sdhrn

ZOVSEOBECNENA METODA KOLOKACIE
PODLA NAJMENSICH STVORCOV

LubpmiLa KuBACkovA, LuBoMmiR KUBACEK

Priebeh gravitacného pola Zeme charakterizujeme jeho trendovou a jeho porucho-
vou zlozku, pri¢om poslednd md nahodny charakter. Obidve zlozky zistujeme mera-
nim hodndt pola v N vhodne rozloZenych bodoch vySetrovanej oblasti.

Ur¢it najlepsi odhad hodnoty trendovej zlozky a hodnoty poruchovej zlozky
v fubovolnom bode vysetrovanej oblasti z nameranych udajov zataZzenych ndhodnymi
chybami sa vo fyzikdlnej geodézii nazyva kolokaénym problémom.

V prdci st ukdzané dve vSeobecné rieSenia tohoto problému a je dokdzana ich
vzdjomna ekvivalencia a ekvivalencia s klasickym rieSenim v pripade regularneho
experimentu. Regularita experimentu sa charakterizuje regularitou kovarianénej
matice N-tice ndhodnych premennych, realizdciou ktorych vznikd siibor nameranych
udajov. Tdto matica je dand suftom kovarian¢nej matice poruchovej zlozky a ko-
variancnej matice nahodnych chyb merania.
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ska cesta, 84228 Bratislava; RNDr. Ing. Lubomir Kubacdek, DrSc., Matematicky ustav SAV,
Obrancov mieru 49, 814 73 Bratislava.

456



		webmaster@dml.cz
	2020-07-02T04:40:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




