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ABOUT THE RELATION 
BETWEEN SOME OPTIMALITY CONDITIONS 

JAN PALATA 

(Received February ll, 1983) 

Let us consider a nonlinear programming problem 

(1) min F(x), 
xe/V 

where 

N = {xe E„ | G f(x) S. 0, / = [,..., m) 

and let us assume the functions F(x), G f(x), / = 1, ..., m to be continuously differen-
tiable with a nonzero gradient at a point 0 x. In [ i ] and [2] we have established 
optimality conditions for the point 0 x to be a local optimal solution of the problem 
under consideration, in terms of contact cone approximations. We have also showed 
that it is convenient to formulate our problem of finding a local extremum in another 
manner: 

Find a point 0 x such that the sets 

M = {xe En | F(x) <; 0} 

and N are locally disjoint at that point. 
If we put 1j = {/e{1, ..., m] | G f( 0x) = 0}, Nt = {x e En | G f(x) ^ 0}, / = 

= 1, ..., m and denote by S(0x; A) the contact cone of a set A at a point 0 x e A, 
we have 

Theorem 1. (S^e [l].) Let M n N 4= 0. Then the following implication is valid: 

0xe M n N, int S(0x; M) n S(0x, N) 4= 0 => U(0x) n int M n N 4. 9 for any neigh
bourhood U(ox) of the point 0 x. 

Theorem 2. (See [2].) Assume that f) S(ox; Ni) n S(o x ; M) = {ox}- Ph^« ^ ^ r ^ 
16/t 

exists a neighbourhood U(0x) w/th the property U(0x) n M n N = {0x}. 
As simple examples show, the necessary condition given in Theorem 1 is not 
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sufficient generally. Nevertheless, the assumptions of the following theorem already 
guarantee its sufficiency. 

Theorem 3. In the problem (l) let, moreover, the function F(x) be pseudo-convex 
and the functions Gt(x), i e Ix quasi-convex in En. Then there exists a neighbourhood 
U(0x) of the point 0x such that U(0x) n int M n N = 0 if and only if mt S(0x; M) n 
n S(0x;N) = 0. 

Proof. We only have to prove sufficiency of the condition. Suppose that for every 
neighbourhood U(0x) there exists a point x e U(0x) n int M n N, i.e. a point x e N 
with the property F(x) < F(0x). With respect to the pseudo-convexity of F(x) 
we have 

L^(o*)(**-o<><o 
a=ldx* 

and therefore x e int S(0x; M). However, the quasi-convexity of the functions 
G,-(x), ielr implies N c S(0x;N). Thus int S(0x; M) n S(0x; N) #= 0 and this 
contradicts our condition. 

In view of the fact that any local minimum of pseudo-convex function is also 
the global one, we have a global minimum criterion here. 

Now we shall describe how our theory is connected with the known results in the 
special case just mentioned (see the assumptions of Theorem 3). As usual, we set 
N = {x e En | Gt(x) ^ 0, i = 1, ..., m; xa ^ 0, a = 1, ..., n}. 

Theorem 4. Let the Slater condition hold. Then the necessary and sufficient 
condition for the existence of a local minimum from the preceding theorem is 
equivalent to the Kuhn-Tiicker conditions: Defining a function $>(x, u) = F(x) + 

m 

+ Y u{ Gt(x), there exists a point 0u = (0u
l, ..., 0u

m) such that 
i = i 

(2) 1) ~—(0xi0u)^ 0 , a = l,...,n, 
dxa 

2) —- (0x, 0u) 0x
a = 0 , a = I, ..., n , 

ox 

3) 0xa ^ 0 , a = 1, ... , n, 

4 ) T~.(OX>OU) ^ ° , i = 1 , . . . , m , 
ou 

5) —- (0x, 0u) 0u
l = 0 , i = 1, ..., m , 

ou1 

190 



6) 0u
{
 = 0 , i = 1,..., m . 

Proof. Introduce an index set 

12 = { a e { l , ..., n) \ 0N
a = 0} 

and a set 

N; = {XEE„|X<< = 0 } , / ? e i 2 . 

First we show that 

(3) S(0x; N) =-- n S(0x; N.) n f) S(0x; N*) . 
i e / i /?e/2 

Choosing a point x* = 0 which satisfies G,(x*) < 0, i = 1, ..., m (the Slater condi
tion), we distinguish two possibilities: 

a) 0x = x*. Then S(0x;Nt) = En, ielx and in virtue of Theorem 4 in [1] 
S(0x; A7) = S(0x; f] N*) = f] S(0x; N*), seeing that the system of contact cones 

PeJ2 Pell 

S(0x, N*), p G I2 is not separable in E„. 
b) 0x =j= x*. From the quasi-convexity of the functions Gz(x), ieIj it follows 

that a half-open line segment (0x, x*> belongs to the set f] int Nt n f]N*. Thus 
ieli pel2 

fl int Nt- n H i«t N* + 0 and Theorem 4 in [ l ] implies (3) again, for the relations 
ieli PeJ2 

H i n t N ; _ n in tS( 0 x;JV*) , 
Pel2 PeJ2 

OintN , c fl int S(0x; 1Vf) 
i e / ] i e / i 

obviously hold in this case. 
According to the Farkas lemma the condition int S(0x; M) n S(0x; N) = 0 is 

equivalent to the existence of numbers 0u
l ^ 0 (i elx) 0v

p ^ 0(/J e I2) with 

(4) - ^ . ( o * ) - I ^ ( c * ) o S ' - I W (« -I ,-•• ,»)• 
ON ' ieJ x OX Pel2 

We claim that (4) is true if and only if the Kuhn-Tucker conditions (2) are fulfilled 
(with 0u = (0u

x, ..., 0u
m) where 0u

ll = 0u
l (i eI j ) , 0u

l = 0 ( i^ I i ) ) . This is now 
to be verified. 

a) Using the relation (4) we obtain 

, d$ , v &F , v " .5G lV v OF , , ^ _{-dGf/ , 
1) — (0x, u0) = — (0x) + X o^1—-(o*) = Ti ; (o x ) + l o " ' — ( o * ) = 

dx OX i = I ON ON i e / , ON 

X ^ y ^ 0 (a = 1,...,«), 
fell 

2) f- (0x, 0u) 0x° = ^ (0x) 0x« + t 0u< ^ (0x) 0x« = X <W„ o ^ -
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~ I o«' T^( 0 x) 0x* + X o"' —l (ox) 0x* = X < ^ y 0x« = 0 (a = 1,..., n), 
ie/, Oxa i = l Ox /ie/2 

3) 0 x a

 = 0 (a = 1, ..., w) ? 

4) ^ (0x, 0 u) = Gt.(0x) ^ 0 (i = 1, ..., m ) , 
ou 

5) — . (0x, 0 u) 0 u ' = G t( 0x) 0 u l = 0 (i = 1,..., m), because 
OV 

^/(o x) = 0 f° r /eI j and 0 u ' = 0 for ie{l,...,m} \ J l 5 

6) QU1 ^ 0 (/ = V...,m). 

This means that the Kuhn-Tucker conditions are fulfilled. 

b) Let the Kuhn-Tucker conditions hold. We establish the existence of numbers 

ov<* = 0 (a = 1, ..., n) ensuring the validity of (4). Setting 

c$ / \ / . \ 

we have 

which yields 

. дF . ч " , Ő G , , , , 
o У = 7~a (°X) + I 0« T ^ (oX) (« = ł ' 

OX i = 1 (7X 

r)F m f)C n 

(5) - — ( 0x) = I o"'' f i ( 0x) - I * . , X (« = 1, • •., n) . 
OX i=\ OX 0 = 1 

Nonnegativity of 0v a (a = 1, ..., n) is caused by 1) in (2). We know that Gt-(0x) < 0 
for i e {1, .., m} \IX and thus by 5) in (2) we conclude 0u

l = 0 (i e {1, ..., m} \Il). 
For a 6 {1, ..., n} \ I2 we have 0 x a > 0. Therefore 

d<P 
z~ (ox> ou) o*a = ov* ox* = 0 (a = 1, ..., w) 
Ox 

(see 2) in (2)) leads to 0 v a = 0 (a 6 {1, ..., n} \ I 2 ) . In this way (5) is reduced to (4) 
with nonnegative multipliers 0u

l(i elt)9 ovP(fi e I 2 ) q.e.d. 
Let us go back to our original assumptions concerning the functions F(x), G{(x) 

(/ = 1, ..., m) again and let us ask what can be said about the multipliers ul in connec
tion with the necessary condition (Theorem l) and with the sufficient condition 
(Theorem 2). The set N is supposed to be defined as in (1). We shall assume the validity 
of the relation S(0x; N) = f) S(0x, N.) (holding e.g. when the system of contact 

ie/j 

cones S(0x; N-), i elx is not separable in En). 
From the Farkas lemma it follows that the necessary condition for a local extremum 
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contained in Theorem 1 yields the existence of nonnegative multipliers ul which 
fulfil 

(6) VF(ox) + ^ u f V G , ( o x ) = 0 , 
ieli 

where £ ul > 0 (provided VF(0x) =# 0). 
iei, 

By the sufficient condition stronger requirements are imposed on the position 
of the contact cones S(0x; M)and S(0x,N), so that it could seem that we shall also 
get some additional information on the possible positivity of the multipliers u\ 
However, this is impossible if we admit linear dependence of the gradients VGf(0x), 
/ 6 I j . In this case each coefficient in the relation (6) can vanish after adding a con
venient zero linear combination £ tl VGf(0x). If the gradients VG,(0x), ie^ are 

linearly independent in En, we easily get the result as follows: 
There exist ul > 0, I e 1, with VF(0x) + V ul VG,-(0x) = 0. 
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S o u h r n 

SOUVISLOST NĚKTERÝCH PODMÍNEK OPT1MALITY 

JAN PALATA 

V článku je ukázán vztah mezi obsenými podmínkami optimality odvozenými 
pomocí aproximací styčnými kuželí a známými Kuhnovými-Tuckerovými podmín
kami ve speciálním případě ps-udokonvexních a kvazikonvenčních funkcí i jejich 
důsledek pro Lagrangeovy multiplikátory. 
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nám. 25, 118 00 Praha 1. 

193 


		webmaster@dml.cz
	2020-07-02T05:10:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




