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LEAST SQUARE METHOD FOR SOLVING CONTACT PROBLEMS
WITH FRICTION OBEYING THE COULOMB LAW

JAROSLAV HASLINGER

(Received August 1, 1983)

INTRODUCTION

Let us assume a structure consisting of two or more deformable bodies in mutual
contact, involving friction on common surfaces. It is well-known that problems
of such a kind can be formulated in terms of variational inequalities (see [1], [5]).
One of the most classical models of friction, namely that obeying the Coulomb law,
has been recently analyzed mathematically ([2]). In [4] the relation between the con-
tinuous problem and its discrete version, obtained by applying finite clements, is
studied. The question of the numerical realization has still remained open. The aim
of the present paper is to propose one possible way, based on the least squarc method.
The original variational inequality formulation is replaced in finite dimension by
a family of nonlinear equations, using the technique of the simultancous penalization
and regularization. These equations can be viewed as the state equations for a cost
functional J, the global minimum of which will be searched. The paper is organized
as follows: in Section 1, the continuous modecl is presented. Section 2 analyzes the
finite element discretization of the continuous model, based on a mixed variational
formulation introduced in [4} The least square method is described in Section 3
and its relation to the method presented in Section 2 is established. Some remarks,
concerning the numerical realization, especially how to calculate the gradient of J,
are included in Section 4.

I. SETTING OF THE PROBLEM

Let an elastic body be represented by a polygonal domain Q < R,, the boundary
2Q of which consists of 3 disjoint and non-empty parts I',, I'p and I'g, i.e.:
0Q=T,ulpulyg.
We suppose that I'y (a contact part) is represented by one straight line segment

parallel to the x, — axis (see Fig. 1).
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On each part of 09, different boundary conditions will be assumed. On I, the
body is supposed to be fixed, i.e.:

(1.1) u;=0 on I,, i=12.
On I'p, surface tractions are prescribed:

1.2 T;uyn;, =P, on [p, i=172.
( 1 J i
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Fig. 1.

Finally, along I'k the body is unilaterally supported by a rigid foundation and the
influence of friction is taken into account, i.e.

(1.3) u, £0, T(u)y=<0, u,T(u)=0 on Iy
(unilateral conditions) ,
|Tu)| = #|T(u)
(1.4) if |T(u)| < Z|T,(u)] then u, =0
if T,(u)\ = ?[ﬂ,(u)l then there exists 4 = 0 such that

u, = —AT(u)
(Coulomb law of friction)
on ['g.
Symbol t(u) = {r,(u)}7,-, denotes the stress tensor related to the linearized strain
tensor &(u) = {¢;;}7,_, by means of the linear Hooke’s law:
(1.5) 1,(u) = i ea(u),  e(u) = 1/2(0u,[ox; + dudxy) .

Elasticity coefficients ¢;j; are supposed to be bounded and measurable in Q (i.e.
¢iju € L*(9Q)), satisfying the usual symmetry conditions

Cijki = Cjigg = Cyyij .10 Q
and the ellipticity condition:

3% > 0 suchthat ¢;;,0; 0 2 a,{; Y(;={;eR, ae in Q.
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u,, u, are respectively, the normal and tangential components of the displacement
field u = (u,, u,). Similarly, T,(u), T,(u) denote the normal and tangential compo-
nents, respectively, of the stress vector T(u) = (1, (u) nj, 7,,(u) n;). Finally, & is the
coefficient of the Coulomb friction. By a classical solution of the Signorini problem
with friction obeying the Coulomb law, we mean a displacement field u which is
in the equilibrium state with a given body force F = (Fy, F,), i.e. satisfies the equi-
librium equations

(1.6) dt;/0x; + F,=0 in Q, i=1,2

and the boundary conditions (1.1)—(1.4). Justification and derivation of (1.3) and
(1.4) can be found in [1].

In order to give the weak form of the problem in question, we shall assume a sim-
pler model involving friction, the so called model with a given friction. The classical
formulation of such a problem can be formally obtained by replacing the unknown
value T,,(u)| by a known function (or more generally, functional) g. Let us introduce
the following sets:

V={veH(Q) v=0o0nTI,},

V=VxV,
K = {veVI v, £0 on Ik},
Y1) = (e ()
H™Y(Ig) = (HY*(I'k)) (the dual space to H'/*(I'y)),
HYA(Ig) = {;L*EH_I/Z(FKH([L*, v) 20 VveV,v =0 on I'g}.

JpeV:ip=von Iy},

The symbol { , > denotes the duality pairing between H ™ '/?(I'y) and H'*(I).
Let ge H;”Z(I'K) be given. By a weak solution of the Signorini problem with
a given friction we mean a function u = u(g) € K such that

(22 a(u,v — u) + (ZFyg,

where

e = Juf) = Lv —u) wek,

a(u, v) = j ) ) .

Lv) = j F;dx + f Pu,ds, Fe(I¥(Q))* Pe(LX(Ip))?.

Using classical results of the calculus of variations one can easily prove the existence
and the uniqueness of ue K, solving (2). Applying Green’s formula to (2] it is
readily seen that —T,(u(g))e H;"*(I'y). Hence a mapping & :H;'*(Ig)—

— H}'?(I'y) can be defined by
(1.7) o(g) = —T,(u).
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By a variational solution of the Signorini problem with Coulomb friction we mean
any function u e K satisfying

@(~T(u)) = —Ti(u).

—T,(u) is a fixed point of the mapping @ in Hy'/?(I'y). The existence of such
a fixed point has been studied in [2] in the case when Q is an infinitely long strip
and I'p = @ and in [3] for a bounded domain with a smooth boundary 9Q.

2. FINITE ELEMENT DISCRETIZATION

An approximation of the Signorini problem with friction obeying the Coulomb
law can be defined by means of finite elements. Let {f’/',,}, h — 0+ be a regular
family of triangulations of Q, which is consistent with the decomposition of 49
into I',, I'p and I'y. With any 7, the following finite dimensional spaces will be
associated:

Vi = {0,e C(Q) | vyyr € Py(T), v, =0 on I},

Vh = Vh X I/h s
i.e. V, contains all piecewise linear functions over a given triangulation & ,. Let
{T 4}, H > 0+ be apartition of I', nodes of which will be denoted by by, ..., by
In the sequel we shall consider families of {77} satisfying
min H;

f > 0. >0,
B 7 2 p

where H; = length of EBH,, H = max H;. Let

Ly = {/t" € LZ(FK) ’ Rapw+, € Po(bibiﬂ), i=1,..., nz(H)} ,
Ay = {pye Ly |y = 0 on I},

i.e. Ay contains all non-negative, piecewise-constant functions over J 5. Analogously
to the continuous case, we start with the approximation of the auxiliary problem ().
Let gy € Ay be given. We look for a pair {u,, 1} € V, x Ay, satisfying

a(”/n Vi = uy) + gy Oy — ) + {F Gy, Iuhr - ’“mb = L(v, — u,)
(2w W, eV,

g = Ao tyyy <0 Vuyedy.
The symbol < , » denotes the scalar product in L*(I'g).

Remark 2.1. Ay € Apysatisfying (2),y is the Lagrange multiplier associated with
the unilateral boundary condition on I'yx. — Ay plays the role of the approximate
normal stress along I'k.
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Next, we shall suppose that the following condition is satisfied:
(S) pne€ly g zy =0 VzeV, =y =0.
An equivalent form of (S) is

B >0 Vuyely:sup <—KHH—’ZL> >f.
2vn 210

One can easily verify that under the condition (S), there exists a unique solution
{uy. Ay} of (P)n-

Interpretation of (2),y
Let

Ky = {Vh ev, I {lyps Uy =0 Yy € An} .
K,,, contains all functions from V,, the mean value of the normal component vy,

of which is non-positive on any b;b;4,.i = 1, ..., m(H).
Substituting uy = 0, 22, into the second relation of (2),,, we have

S iy = 0, gy gy =0 Vg € Ay,
ie.u, e K,yand
(2.1) a(u, vy — ) + <F gy o] — |wn]> 2 L(vi, — u,) Vv, €Ky
Let @y : Ay — Ay be a mapping defined as follows:
(P)u Py(gu) = An -

¢y, can be viewed as an approximation of the mapping @ defined by (1.7). The main
result of this section is

Theorem 2.1. For any & € C(['y), ¥ = 0 there exists at least one solution of

(P)y.

Proof. i) @y is a continuous mapping from Ay into itself (see [4], Th. 2.3).
ii) We shall show that
®y(B, A Ay) < B, A Ay

for any r = ry, where ry does not depend on . B, denotes the ball with the center
at the origin and the radius equal to r measured in a suitable topology (see (2.6) below)
Substituting v, = 0,2u, into (2.1) we get

(2.2) a(uy, u,) + {F gy, l“m‘) = L("h),
hence '
(2.3) \ lun]ls,0 = 1o([Flo.a + [Pllo.rs)

by virtue of Korn’s inequality.

216



Let
(2.9) V, = {v, eV, ] v = (v, 0)} -
As Ty || x5, we have vy, = vy, v, = 0if v € C’,, and

a(uy, v,) + g, vy = L(v,) Vv, e V,.
Hence
Aps Uy X “
(2.5) sup e 02, o Mluyo + ([Flo.a + [Plors) -
Vh HUMHI-Q
Let us introduce the following notation:

A H <lt ) Z'l>
(2.6) “ﬂ]l”—l/z,h =sup ~2AL ey .

S I

If the condition (S) is satisfied, then (2.6) defines a norm on Ly;. Moreover,

(2-7) Iy >0 Vyuyely: ”.”H“~1/z,h = '}’“Un”—l/z .

The constant y in general depends on h, H. (2.5) and (2.6) result in

Fanl = 12m = (Moo + 1 ([Floo + [IPlo.rs) -
Let us set

ro = (Moo + 1) ([Flo,0 + [Plo.r,) -

Then @4(B, N Ay) = B, 0 Ay for any r = ro. Using the Schauder fixed-point
theorem we arrive at the assertion.
It can be shown that

!/vu - zH“—x/z = H(pn(gn) - (pu@u)”—l/z = qngu - gll“—l/Z >

where ¢ = C(H) [# ], [#] = max #(x)and C(H) - + o0 if H - 0+ (for the proof
see [4]). If r

(25) [#] < 1jc(n),

then @, is contractive and its unique fixed-point can be found by the method of
successive approximations. Unfortunately, to keep ¢ €(0,1), [#] has to tend
to zero whenever H — 0+. Tlus is the reason for which the method of successive
approximations need not be successful, in gencral. Below we present an alternative
approach, based on the smoothening of (2),,; combined with the least square method.

K

3. LEAST SQUARE METHOD FOR NUMERICAL SOLUTION OF (P)g

Let f: C' —» R, be a function such that

— B(x) =2 0Vxe R, and f(x) = Oifand onlyif x < 0
— [ is monotone on R;.
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For any u,, v, eV, let
M(H) M(H)

(B(”h), Vi) Z B(uhn LhnH = Z B( “h1 thH

i=1
and
je(glls V/.) =<(Fyg Ius\/ (U;,, + & )> e> 0.

Here i1}, denotes the mean value of u,; on bb, bis e

i, = 1/11,f t,, ds.
bibis

Lemma 3.1. The following identity holds:
(/}(uh)’ vh) = <(‘UH’ vlm> s

where wy € Ay is defined by
O bibiy, = /f(l_’;n) Xis
with y; being the characteristic function of b;b;, ;.

Proof.

M(H) M(H)
( (”h Vh) = Z ﬂ(“m)LMH = Z /’(“h )f Uy ds ZJ @yvy ds .
bibi+ I'k

i=1

Lemma 3.2. The following equivalence holds:
ueV,, (B(w),v)=0 Vv, eV, <= uekK,,.
Proof. Let u, € V, be such that
(B(u,),v) =0 Vv,eV,.
From this and Lemma 3.1 one has
op, V) = {0y, Uyy) =0 Yy, €V,

so that wy = 0 on I'x due to the condition (S). Definitions of wj and K, yield
the assertion of the lemma.
Let ¢ > 0 be a parameter tending to zero and let us consider the following penali-

zed-regularized problem:

@) {ﬁnd ui eV, such that
a(uy, V) + l/a(ﬁ(uﬁ), Vh) + j;(gna up) v, = L(Vh) v, eV,,
with

us 1
-t £ — g— ht"ht
.]e(gl-l’ uh) Vi = J\ — 5 ds.

r'e \/(um +e )
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It is readily seen that for any ¢ > 0 there exists a unique solution uf of (2),. Now,
we shall define a mapping Y5 : Ay — Ay by means of

‘(3'1) q’i{(gu),b,bﬁ, = 1/3 ﬁ('ﬁf}ix)Zi = ]/Cwillb;b”; .

Remark 3.1. The function — ¥j(g,) will play again the role of the approximate
normal stress along I'y. A function uf satisfying (2),, can be obtained by solving
a nonlinear system of algebraic equations.

Analogously to the approach used in the last section, we shali consider the problem
of finding a fixed point of the mapping ¥ in Ay, i.e.: find A5 € A, such that

(P). Wy (Zy) = 2 -
Next, we shall study

i) the existence of Aj;
it} the relation between the solutions of (P), and (P) if ¢ —» 0+.

Theorem 3.1. For any F € C(I'), F 2 0 and ¢ > 0 there exists at least one
selution of (P),.

Proof is analogous to that of Theorem 2.1. From the definition of j(v,) and
(B(u}), v,) 1t follows that

“H”hnl o £ aluj, uj) < a(U,,, u;) + 1/ (/(“h) u,) + J. (Qn’ up) up = L(”h)

from which

0,02 + |\P|V0 rp

luilli o = 1)o([[Flo

independently of ¢ > 0. Let us substitute a function v, € V,into (2),. As v, = 0,
we immediately get

a(uj, v,)) + {Lfealy, vy = L(vy) v, ev,,
so that

7/
(32) | l/sw;“-l/z h = sup—}/ﬂ)!—" Uh1)

S Ml o+ [Floe + [Plorn < ro-
Vh th1”1 Q

Hence the mapping ¥4 maps a set Ay N B, into itself, where
Y
B, = {.uIIELIII ”ﬂH”-uz,h Sror 2o

It remains to verify that ¥ is continuous.
Let gy, gu € Ay be given and let uf, z; € V;, be the corresponding solutions of the
penalized — regularized problems:

a(“i» Vi) + l/ﬁ(ﬁ(”Z)s vi) + 9w i) v = L(vy)
a(zj,v,) + 1 /b‘(ﬁ(zi), v,) + Jdgn> 7)) i = L(vy) -
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Substituting z; — uj, u; — z; into the first and the second equation, respectively,
and summing up these equations one has

(3:2) a(uy, — zj, uj, = z;) < 1)e(B(w;) — B(z}). 2 — uj) +

+ j 97(911 gn) L'h" ( Zhe T “fu) ds +
I'k v (‘ht + & )

u zy
I L S P
.[rx ( +F2) vV Zhe + &) ' '

£

§j F(9n — Ju) r;hr Y (zhe = ) ds = [ 7] HIJH - gn“o,rx Huf. -
I'k \’( t+e )

the monotonicity of ff and Jjd(gy, u}) being taken into account. From (3.2) it follows
that

(33) i =zl 0 = [ Z] [9n — Gullore -
Using the same approach as at the beginning of the proof, we get
(34) ewy — 1ewy| -1 jon = My =z 0,
where

w;{lb,b.-ﬂ = B(L_‘le) Lis

Olpibie, = /3(2;'1) Xis

and @i§,, i are the mean values of uf,, zi, on b;b;, ,, respectively. Combining (3.3)
with (3.4) we finally get

i'l/ﬁwil - I/C(Bil‘l—l/z,h = C[‘gz] M“Qu

which yields the continuity of the mapping ¥%. The existence of a fixed point of
Y4 in Ay 0 B, r = rg, is then a direct consequence of the Schauder theorem. ™

A natural question arises if there is any relation between (P) and (P)E‘ The answer
is given by

Theorem 3.2. Let {75}, ¢ > 0+ be fixed points of the mappings ¥ in Ay 0 B,,
r g Fos

Atlbibie, = /S ﬁ(“m)

Then there exist subsequences | u c u s A2 < 125 and elements u, % such
! h h)' Hf "HJ h H
that

(3.5)

&’ *

up - uy,

"vl ’

M= Ay, & >0+ .

At the same time /.3 is a fixed point of @y and uj is a solution of (P)uy with gy = Aj.



Proof. Let 4}, € A U B, be fixed points of ¥,
'l;"b:bun = 1/8 ﬁ(ﬁill) Ki-

Here uf e V, denotes the solution of (2), with gy equal to A5 {[lui 1.0} {145 =1 2}
are bounded independently of ¢ as follows from Theorem 3.1. Therefore there exist
subsequences {u} | < {ui}, (I3} < {i,“ and clemenls ufeV,, ine Ay such that

(3.5) is satisfied. Let us write v, — u}, instead of v, in (2),.:

a(uy . v, — ui) + (i o — Uy + (g uy) (vi — 4)) = L(v, — u})

Vv,eV,.
Passing to the limit for ¢’ — 0+ we have
o
A48 &’ * ES
aui, v, — uj) > a(uy, v, — uy),

ng! ’ E3
<A;~I’ Upn — ufm> - <;"H’ Upn — ”Z‘n> ’

i;' (;V;I? ufn') (vh - U;,) :J' 0—)8 uhl‘ - ( ht — “h!) ds -

“H
I'x \/((uht) )
—+J Fhgy sign up vy, — up)ds = (F g, sign ujv, —
'k

= (T, |uml> £ (F g,

Uhr' - l“:t|> .

These limits yield

(36) (I(U;:‘, Yy — u:) + <;”I=’;’ Upn — u:n> + <'9:/;kl’ ivht| - |Ll;:<,|> g
L(v, — uy) Vy,eV,.

v

Now we prove that
(g = A Uy 0 Yy e Ay .
First of all,
M(H)

EONCOERS

so that
M(H)
(3.7) Y B(iE) >0, & > 0+.
i=1
On the other hand,
M(H) M(H) '
(38) 2. Blay) = X Bl
i=1 i=1
Comparing (3.7) with (3.8) we see that
M(H)
Zl B(any) =

H *
1e. u e K, p.
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Let puy € Ay be arbitrary. Then

M(H) M(H) )
(3'9) M “:n> = Z .Un“:n ds = Z ﬂHﬁ}Tani =0

i=1 bibi+s i=1
as follows from the definition of A, and the fact that i1;;) < 0. Finally, let us show
that (A5, > = 0. Indeed,

o M o

(3.10) GE oty = lim Goouty = lim Y e pasiy s = 0.
) £ =0+ =0+ i=1
At the same time {2}, uy,» has to be non-positive as follows from (3.9). From (3.9)
and (3.10) we finally get
(3.11) Uiy — I tipey <0 Vg e Ay .

(3.6) and (3.11) yicld the asscrtion of the theorem.

4. NUMERICAL REALIZATION OF (P),

Taking into account the results of the last section we see that the problem of finding
a fixed poini of the mapping @, in A, can be replaced by the same problem for
a mapping V. Both problems are close in a certain sense (see Theorem 3.2). The
lzast square mothod will be used for numerical realization of (P),.

Let J: Ay - Ry be the functional given by

(4-1) J(gu) = %!
where Yi(gy) € Ay is defined by

Vi Ga)loiwin, = 1)e Bl 1

—£i __ € .
iy, = J/HEJ\ up, ds
bibi+1

q’;l(gu) - gHH(Z),rK s

and uy € V, 1s the solution of
(4.2) a(u, v,) + 1/8(3(”;)’ Vi) + Jol9gms Up) Vi = L{vy) Vv, eV,

The problem (P), can be now equivalently stated as the problem of finding global
minimizers of J in Ay, (at which J is equal to zero).

Remark 4.1. This formulation of (P), can be expressed in terms of the optimal
coittrol theory: J is a cost functional, u; is the state variable defined by the state
equation (4.2) and gy € Ay is the control of our problem.

For the numerical realization of the minimization of J over Ay, different optimiza-
tion procedurcs may be used. Most of them require the kncwledge of the gradient
of J. This is why we sketch how to calculate it. To simplify notations, we omit the
symbols ¢, h, H and we shall write u, g, ... instead of uj, g3, .. ..
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Let ¢ € Ly, be given. Then

(4.3) J(9g) e =(9 = ¥(9). ©)ore — (9 — P(9) ¥o(9) ®)o,rx =
= (g9 = ¥(9). 0)o,rx — (9 — P(9), ¥ilu(9)) u;0)0,ry =
= (9 = ¥(9). @)o,rx — (9 — P(9), Vi(u(9)) ®)o,ry »

where @ = u,p. The symbols ¥, ¥, etc. denote the differentiation of ¥ with respect
to g, u elc. respectively.
Writing the state equation (4.2) for g and g + ¢ we immediately get

(4.4) alo.v)+ 1B (u)o.v) + j(p.u)v + (llg, u)o,v) =0 VveV.

Here
M(H)

Palu)s. > = 3 B(ia) 551, Vs, teV,,
i=1

Uaulg, w) o, v) = | Fg-- "—”g‘z% S 0, ds
wer ’ er T (u? + 82)\/(1/[,2 + &%) Y

Let g € V, be the solution of the adjoint equation
(4.5) a(e.v) + 1/e(Bi(u) 0. v) + ulg. u) e, v) =
— —(¥g) — g, Vifu) Vo, eV,
Inserting @ into (4.5) instead of v and comparing it with (4.4) we see that
—(¥(9) = ¢, Vi) @)o.r,. = ale. @) + 1]e(B,(u) 0. ) +
+ Uulg, u) e, 0) = alw, ) + 1[o(Bi(u) 0. 0) + (ilg, ujo, e> =

= _Ji((p’ U) 0.
Hence

J(g) o = (9 — V(9). Plo,r — i@, )0 =

= (9 — P(9) o ds -—j F P 0,ds,
jlk 'k \/(u:f + 82) I

where g € V is the unique solution of (4.5).
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Souhrn

METODA NEJMENSICH CTVERCU
PRO RESEN[ KONTAKTNICH ULOH S COULOMBOVSKYM
TRENIM

JAROSLAV HASLINGER

Predlozend prdce se zabyvd numerickou realizaci kontaktnich uloh s coulom-
bovskym tfenim. Pavodni dloha je formulovdna jako problém nalezeni pevného
bodu jistého operatoru, generovaného variaéni nerovnici. Tato nerovnice je pomoci
penaitizaéni a regularizaéni metody transformovédna na systém variaénich nelinedrnich
rovnic, které generuji jiné operdtory, jeZ jsou viak v jistém smyslu blizké k vyse
vzpomenutému. Problém nalezeni pevnych bodl téchto operdtord se feSi pomoci
metody nejmensSich Etvercli, v niZ prislusné rovnice vystupuji coby stavové rovnice
a odpovidajici kvadratickd odchylka hraje ulohu kriteridlni funkce.
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