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SVAZEK 29 (1984) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

FINITE ELEMENT APPROXIMATION FOR A DIV-ROT SYSTEM 
WITH MIXED BOUNDARY CONDITIONS 

IN NON-SMOOTH PLANE DOMAINS 

MlCHAL K R I Z E K , P E K K A NEITTAANMAKI 

(Received October 11, 1983) 

1. INTRODUCTION 

In this paper we are concerned with the mixed boundary value problem for the 
following div-rot system: 

div u = f in Q, 
rot u = g in Q, 

n . u = 0 on Fi , 
n л u = 0 OП F2 • 

(1.1) 

(1.2) 

where Q is a bounded domain in M2 with a Lipschitz boundary dQ = F0 u Fr u F2, 

F0 is a finite set of points where one type of boundary conditions changes into another 

and Fl5 F2 are disjoint and open in dQ. Functionsfand g are given; for a differentiable 

vector field u = (uu u2), div u = diul + d2u2, rot u = dxu2 — d2u1; n = (nl9 n2) 

is the outward unit normal to dQ, which exists almost everywhere, n . u = n1ul + 

+ n2u2> n A u = n1u2 — n2ut. If Ft = 0 of F2 = 0 the usual compatibility condi

tion is assumed. 

Many physically interesting phenomena can be described by a system like (IT) to 

(1.2) (e.g. the steady state Maxwell equations, the ideal fluid flow and mechanics 

problems, see [2, 3, 5, 8, 11, 13, 14, 15, 16, 19, 21]). Such a problem is also obtained 

when the gradient of a second order elliptic problem with mixed Dirichlet and 

Neumann boundary conditions is looked for. For an extensive collection of examples 

we refer to [5, 15, 19, 21] and references therein. 

A finite element approximation of the system (1.1) —(1.2) in smooth domains for 

F! = 0 (or F2 = 0) is investigated in [3, 14, 18]. The aim of this paper is to generalize 

these results to non-smooth domains and also to cover combined boundary conditions. 

Because of non-smoothness, a technique quite different from that in [14, 18] is used 
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to prove the Vellipticity or uniform Vh — ellipticity (see Theorems 3A and 4.3). 
We utilize the concept of a stream function ([6]). The paper is organized as follows: 

In Chapter 2 we introduce some special function spaces. A variational formulation 
of the problem (1.1) —(1.2) is given in Chapter 3 and its solvability is proved for 
F! and F2 connected. Chapter 4 contains a finite element approximation of the 
corresponding variational continuous problem. Finally, in Chapter 5 some numerical 
examples are presented. 

2. PRELIMINARIES 

Let Q a R2 be a bounded domain with a Lipschitz boundary. The notation Hk(Q), 
k > 0, is used for the Sobo'ev space, see [12]; especially L2(Q) = H°(Q) with the 
scalar product (•, -)0 . The usual norm in Hk(Q) or in (Hk(Q))2 will be denoted by 
|["||fc,.Q ar-d the subscript Q will often be omitted. We shall also denote by ||*||o,r 
the norm in L2(F) for a measurable part F of cQ. The notation HI/2(F) is used 
for the space of traces cp\r for <p e H1(Q). 

Let Ck(Q) be the space of functions, the (classical) derivatives of which up to order 
k are continuous in Q. We write dt = cjdx; and put C(Q) = C°(Q). 

We note (see [6], p. 1.6) that the functional v \~> n . v\dQ defined on (C°°(0))2 can 
be extended by continuity to a linear continuous mapping from the space 

H(div; Q) = {v e (L2(Q))2 | div v e L2(Q)} 

into H~1/2(dQ), which is the dual space to the space H1/2(dQ). In this case, the Green 
formula is of the form 

(2.1) (div v, <p)0 + (v, grad <p)0 = <n . v, cp)dQ Vv e H(div; Q) V<p e Hl(Q). 

Here <•, -}dQ denotes the duality pairing between H~1/2(dQ) and Hl/2(dQ), and 
n . v is called the normal component of v. In particular, if n . v\dQ e l3(cQ) then 

(2.2) < n . v , <p\Q=[ (n.v)cpds McpeH^Q). 
J (ID 

The tangential component n A v G H~l/2(dQ) can be defined (see also [6], p. 20) 
for v from the space 

H(rot; Q) = {v e (L2(Q))2 \ rot v e L2(Q)} . 

The Green formula now reads 

(2.3) (rot v, cp)0 — (v, curl cp)0 = <n A V, cp)dQ Vv e H(rot; Q) \fcp e HX(Q) , 

where curl <p = (d2cp, —d^). More details about the spaces H(div; Q) and H(rot; Q) 
can be found in [6, 10, 11, 20]. Further, we define some subspaces of these spaces 
in the following way: 
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ff(div; 0 , FO = {v 6 (L2(Q))2 | 3 /e L2(0) : (v, grad </>)o - ( - / , *A)o 

V ^ e f f 1 ^ , ^ ) } , 

ff(rot; O, F2) = {v G (L2(Q))2 | 3g e L2(Q) : (v, curl <p)0 = 

= (#,<p)0 v^eH^cr , )} , 
where 

H\Q, F,-) = {9 e H\Q) J 9 = 0 on FJ , i = 1, 2 . 

The functions / and g are the divergence and rotation of v, respectively. Note that 
if v G ff(div; Q, Fx) n (ff l(Q))2, then n . v = 0 on F1? and analogously n A V = 0 
on F2 for v e ff(rot; Q, F2) n (ff {(Q))2. 

The symbols C, C1? C2, ... are reserved for the so-called generic constants which 
may vary with context. Let us still emphasize that all statements will always hold 
only for a sufficiently small triangulation parameter h. 

3. ON THE CONTINUOUS PROBLEM 

We shall now give a variational formulation of the problem (LI) —(1.2). We 
equip the space 

ir = ff(div;0)n ff(rot; Q) 

with the norm 

ili-lll = (ll-lio + !|div -|]g + i|rot -j|5)' /2 -

Forf, g G l}(Q) we define the linear form 

(3.1) b(v) = (f ,divv)0 + ( ^ , r o t v ) 0 , v e f , 

and the bilinear form 

(3.2) a(v, v') = (div v, div v')0 + (rot v, rot v /)0 , v, v' e 'f . 

Further, let us introduce the space of trial functions 

V = ff(div; Q, r - ) n ff(rot; Q, F2) 
with the norm |||"|||. 

By a (weak) variational formulation of the problem (1.1) —(1.2) we understand 
the problem of finding u e V which satisfies 

(3.3) a(u,v) = b(v) for all veV. 

We shall call u the weak solution of the problem (1.1) —(1.2), since evidently 
any sufficiently smooth u satisfies also (3.3). Conversely, any sufficiently smooth 
solution u G V of (3.3) satisfies (1.1) —(1.2), too (see the proof of Theorem 4.6). 
Before we consider the unique solvability of (3.3) we have to prove two theorems. 
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Theorem 3.1. Let Q a R2 be a bounded domain with a Lipschitz boundary. Then 

(3.4) ||v||0 S C(||divv||0 + ||rotv|[0) for all veV, 

if and only if Tx and F2 are connected. 

Proof. "=>": 1° Suppose that Fi is not connected and let T\ be one of its compo
nents. Let 

(3.5) v = curl z , 

where z e H{(Q) is a weak solution of the following problem: 

(3.6) Az = 0 in Q, 

z = 1 on T\ , 

z = 0 on F! - F; , 

dnz = 0 on F2 , 

(dn = djdn). We show that in this case v does not satisfy (3.4) by verifying first that 
V6V. 

For the unit tangent t = (n2, — nx) to dQ we write dt = djdt. Let \\i e HX(Q, F2) n 
n C°°(.Q) be arbitrary. Since \p = 0 on F2, we have by (3.5), (3.6) and by the Green 
formula (2.3) that 

(3.7) (v, grad */J)0 = (curl z, grad i//)0 = — z(n A grad \j/) ds = 
J dn 

z dti// ds = dt\\j ds . 

But the last integral is zero, since either Fi is a closed curve or i/> = 0 at the end 
points of f\. According to [4], p. 618, Hl(Q, F2) n C°°(:Q) is dense in Hl(Q, F2) 
with respsct to the \'\\ — norm. Consequently, the relation (3.7) yields 

(3.8) (v, grad xjj)0 = 0 V^ e Hl(Q, F2), 

i.e. veH(di\;Q,rx). 
Further, using (3.5) and the fact that z is a weak solution of (3.6), we get 

(3.9) (v, curl cp)0 = (curl z, curl cp)0 = (grad z, grad cp)0 = 0 

for all cp e Hl(Q, Tx), i.e. v e H(rot; Q, F2). 
Now, from (3.8), (3.9) and (3.6) we find that div v = rot v = 0 in Q, but ||v||0 4= 0, 

i.e. (3.4) does not hold. 
2° Secondly, we suppose that F2 is not connected and that F2 is one of its compo

nents. Then by an analogous argument as in past 1°, it can be shown that (3.4) 
does not hold for v = grad z, where z e Hl(Q) is the weak solution of the problem 

Az = 0 in Q , 
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dnz = 0 on r i 9 

z = l on F2 , 

z = 0 on F2 — F2 . 

" < = " : Conversely, let F- and F2 be connected. Both the cases Ft = 0 and F2 — 0 

are proved in [10]. So let F2 * 0, F2 4= 0, and let v e V be arbitrary. Let p e # ' ( G , F2) 

be a weak solution of the problem 

(3.10) AP - div v in Q , 

dnp = 0 on Ft , 

p = 0 on F2 . 

Hence 

(3.11) (grad T, grad ij/)0 = (-div v, t » 0 ViA G H1^, F2) 

and 

(3.12) Upld = Cjdivv||0. 

Utilizing (3A1) and the definition of H(div; Q, F-), we get for w = v — grad p that 

(3.13) (w, grad t//)o = 0 Vi> e H1^, F2), 

i.e. the vector function w is divergence-free. 

Further, let cp e Hl(Q, F2) n C°°(.Q) be arbitrary. Then the Green formula (2A) 

and (2.2) yields 

o = p(n 
J дíì 

(grad p, curl (p)0 = p(n . curl oO) ds р дгср 6$ — 0 

as p = 0 on F2 and cp = 0 on Fx. Due to the density of HX(Q, rx) n C"°(Q) in 

H 1 ( f l , r 1 ) we get 

(3.14) (grad p, curl <p)0 = 0 Vcp e HJ((2, F^ . 

Next, from the connectivity of ri and F2 we see that Q is either simply connected 

or doubly connected. When Q is doubly connected, then rx is just one of the two 

components of dQ and we have 

(3.15) n . w = 0 in H-1/2(Fj) 

(H~ 1 / 2(F !) is the dual space to H1/2(Fj), see [6, 9]). As w is divergence-free we find 

by the Green formula (2.1) that <n . w, \}dQ = 0. Consequently, by (3.15) it also 

holds that <n . w, l > r 2 = 0, where <•, *> r 2 denotes the duality pairling between 

H-1/2(F2)andH1/2(F2). 
By [6], p. 22, there exists a stream function qeHl(Q) (unique apart from an 
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additive constant, which will be chosen later) such that 

(3.16) curl q = w(= v — grad p) . 

The relations (3.13), (3.16) and (2.3) imply that for any i/J e H\Q, F2) n C°°(;C2), 

0 = (curl q, grad \j/)0 = —(curl \jj, grad q)0 = \jj dtq ds , 

as \j/ = 0 on F2. Thus q e HX(Q, F,) is constant on (connected) Fj and we can choose 
q to be zero on Fl9 i.e. q e Hl(Q, rx). 

By (3.16), (3.14) and by the definition of if (rot; Q, F2) we obtain 

(grad q, grad cp)0 = (curl q, curl cp) = (w, curl cp)0 = 

= (v - grad p, curl <p)0 = (v, curl </>)0 = (rot v, <p)0 

for all (p e H(Q, Fj), i.e. q e Hl(Q, F.) is a weak solution of the problem 

(3.17) -Aq = rot v in Q , 

g = 0 on Fj , 

dnq = 0 on F2 , 

and 

(3.18) \\ql ^ C 2 | | rotv | | 0 . 

Finally, (3.16), (3.12) and (3.18) imply 

||v||0 = ||grad p||0 + jjcurl q\\0 = C(||div v||0 + frot v||0) . Q 

Convention. 3.2. FOr simplicity we suppose from now on that Fx and F2 Ore 
connected. 

Remark. 3.3. By Theorem 3.2 the bilinear form (3.2) is a scalar product in Vand 
yja(v, v) is equivalent to the norm |||v||j, i.e. 

(3.19) cii!vll|2 = a(v> v ) -S ||M!|2> v e V-

Theorem 3.4. The space V equipped with the scalar product a(-,*) is a Hilbert 
space. 

Proof. Let {v j c V be a Cauchy sequence. One sees by Theorem 3.1 that vk 

converges to a function v e (L2(Q))2 in the || • |0-norm. Evidently also div vk converges 
to s o m e / e l3(Q). Hence, 

(div vk, i/,)0 -> (/ , <A)0 MijjeH\Q,r2), 

(vk, grad «A)0 -> (v, grad i//)0 V^ e Hl(Q, F2) . 

By the definition of H(div; Q, rx) we see that v e H(div; Q, Fj) with div v = / . 
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Analogously, it can be verified that v e H(rot; Q, F2). • 

Due to the Riesz theorem, the foregoing theorem and (3.19), we come to the 
following assertion. 

Corollary 3.4. The problem (3.3) has a unique solution. 

Remark. 3.5. Assuming the H2-regularity for the problems (3.10) and (3.17) we 
can derive from (3A6) the so-called Friedrichs inequality: 

(3.20) ||vj|i ^ C(||div vj|0 + [|rot v||0) for all v e V. 

Sufficient conditions for the H2-regularity of the mixed problem (3A0) in polygonal 
domains can be found e.g. in [7], p. 210. In [10] necessary and sufficient conditions 
for the validity of (3.20) are given in the case Fj = 0 or F2 = 0. 

4. ON THE DISCRETE PROBLEM 

We suppose that dQ is piecewise twice differentiable and has a finite number 
of corners. By {$~h} we denote a strongly regular family or triangulations of Q : Q = 
= (J K, i.e. {$~h} satisfies the inverse assumption (see [2], p. 140). Here h is the usual 

Ke.rh 

discretization parameter. Further, we assume that the common sides of neighbouring 
triangles of 2Th are always straight segments, while the other sides are in general 
curved (i.e. they coincide with the corresponding parts of the boundary dQ). More
over, let the interior of any side of K e &h be disjoint with f x n F2 (the so-called 
consistence condition). 

Let Zl
h be the set of all nodal points of BTh lying on Ft- (i = 1, 2). Let Z be the 

union of F0 and all corner points dQ and let Z = Z \ {x e F0 | the tangents to Ft 

and to F2 are perpendicular at x}. 
We define finite element subspaces i^h, Vh a (HJ(;Q))2, by 

(4.1) rh = {v e (C(Q)f \v\K e (Pi(K))2 VK E rh], 

Vh={ve-rh\ v(x) = 0 Vx 6 Z, (n . v) (x) = 0 

'ixeZ\\Z , (n A v) (x) = 0 ^xeZ2
h\Z} . 

Here Pi(K) denotes the space of polynomials on K of degree at most one. Thus, Vh 

consists of piecewise linear continuous vector fields satisfying only pointwise the 
boundary conditions. Consequently, we get the inclusion Vh a Vif and only if Q is 
polygonal, i.e. the following finite element approximation of the problem (3.3) will 
be conforming just for polygonal domains. 

Find uh e Vh such that 

(4.2) a(uh,vh) = b(vh) VvheVh, 

where a and b are defined by (3.2) and (3.1), respectively. 
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A basis of Vh can be constructed as follows. Let Pu ...,Pk be the interior nodal 
points of ZTh, let Pk+i, ..., Pk + t be the nodal points of Fx \ Z, and let Pk + l+l,... 
. . .,Pk + l + m be the nodal points of T2\Z. Further, let (pt be the usual Courant 
tetrafunctions such that 

<P;(pj) = sh, hj = l , - . . , k + / + m . 
Then obviously 

{(<ph 0)}"l= , u {(0, <p,.)}*=, u ftP.) <p,.}t=\'+ , u {"(P,) cp^tltr, , 

form a basis in V,, and this is just the basis used in Chap. 5. 

Concerning the unique solvability of the problem (4.2), we first prove an auxiliary 
lemma. 

Lemma 4.1. Let vh e ir
h and let div vh = rot vh = 0. Then vh is from (PX(Q))2 

and has the form 

(4.3) vh(x) = (ocxx + /ix2 + y, £xx - ax2 + 5), x = (x r. x2) e Q , 

where a, /?, y, <5 e R1. 

Proof. Let the assumptions of the lemma be satisfied and let K, K' e 3~h be two 
neighbouring triangles. Then evidently vh is on K and K' of the form 

(4.4) vh\K(x) = (ax, + fix2 + y, fixt - ax2 + 3) , 

VH\K'{X) = (a '*i + P'xi + Y> P'xi ~ a'xi + &') • 

We distinguish the following two cases: 

1) Let the common side S of the triangles K and K' coincide with the line x2 = 
= kx{ + q. From (4.4) and from the continuity of vh on S, one gets 

ax t + pkxt + f$q + y = a'x! + P'kxx + j8'q + y' , 

/?x! — afcxx — aty + O" = ^'xX — a'fcx! + a'q + <5' , 

which implies 

a - a' = fc(j8' - P) and p - p' = k(a - a') , 

i.e. a = a' and /? = /?'. 

2) Let S = K n K' coincide with the line xx = const., then by (4.4) we see that 
a = a' and P = P'. 

Further, from (4.4) and the continuity of vh, we get also y = y' and 3 = 3'. Q 

Theorem 4.2. If card (Z) > 1, then the discrete problem (4.2) a /ways has a unique 
solution. 
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Proof. We prove that O(-, •) is a scalar product on Vh. Then the unique solvability 
of the problem (4.2) will follow from the Riesz theorem. 

So let a(vh, vh) = 0 for some vh e Vh. Thus, (4.3) and (4A) yield 

".w=(;-f)fe)+0=oVK-("-^ez-
Since card (Z) > 1, the matrix of this system is singular and, therefore, a = /? = 0 
and consequently also y = d = 0. Hence, vh = 0. • 

In the case card (Z) ^ 1, it is easy to give an example when (4.2) has more solutions. 
Fortunately, it results from the following theorem that (4.2) has a unique solution 
at least for sufficiently small h. 

Theorem 4.3. For sufficiently small //, the bilinear form O(% •) is uniformly 
Vh-elliptic (with respect to h), i.e. there exist constants C > 0 and h0 > 0 such that 

for any 3~h with h e (0, h0), 

(4.5) a ( v ; , , v , ) = C j j | v J 2 Vv„eV„. 

The proof is based on the following two lemmas. 

Lemma 4.4. There exists a constant C > 0 such that 

(4-6) CilMI!2 = a(v> v) + II" • *||o>- + l n A vl |o,r2 

for alive (H\Q))2. 

Proof. We can proceed in the way analogous to that adopted in the proof of 
Theorem 3.1. Let v e (HX(Q))2 be given. Instead of (3.10) and (3.17) we have 

iAp = div v in Q, (~Aq = rot v in Q, 

p = 0 on F2 , and < q = 0 on T1 , 
dnp = n . v on F! , I dnq = n A V on F2 , 

respectively. Hence, 

\\p\\ua -S Ci(||div v\\0tQ + ||n . v||0>rj) , 

|k| | i ,o -S C2(||rot v\\0>Q + ||n A v||0>r2) . 

Finally, the assertion follows from the representation v = grad p + curl q as in the 
proof of Theorem 3.L • 

According to the pointwise boundary conditions of vh e Vh on piecewise smooth 
F! and F2, the last two terms in (4.6) vanish for h —> 0. This can be proved in a way 
similar to [17]. 
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Lesnma 4.5. There exists a constant C > 0 such that 

\\n • v4o,r, + !|" A vh\\Z,r2 ^ Ch\\vh\\lQ 

for all vh e Vh and for all sufficiently small h > 0. 

Proof. Let vhe Vh be given, let P, and Pi+l be two neighbouring nodes of F2 
and let F2 be an arc (of the class ^ ( 2 ) ) between them. As (n A vh) (P,) = 0 and 
(o A vh)(Pi + 1) = 0, we have (see [17], p. 23) 

(4.7) |(n A v„)(x)| <; CJi^H^ + |Vv„(x)|) 

for all x e F 2 , where the constant C1 > 0 depends only on dQ, and Vvh denotes 
the matrix of the first partial derivatives of vh, and I • I is the Euclidean norm. 

Similarly, on every arc T\ between two neighbouring nodal points of T\ we have 

(4.8) \(n . vh) (x)| ^ C2h
2(k„(x)| + |Vv„(x)|) 

for all x e F\. 

Now by (4.7), (4.8) and by the trace theorem 

(4-9) II" • v4o,r, + |ln A n||o,r2 ^ 

^ C3h* f (|v„|2 + |Vv„|2)ds £ C4/i
4|v„||2>fl + C5h

3|W„||2rQho, 
J dQ 

where Qh = \J{K e $~h\K n dQ ^ 0}. For estimating the term j e Q |Vv,,|2 ds in (4.9), 
the linearity of vh\K, Ke,Th, and the fact that meas (K n d£>)/meas K = (9(h~l) 
was utilized. 

The inverse property (see [2], p. 142) for the finite elements says 

(4.10) \\vh\\UQ^Ch-A\\vh\\0iQ for all vheVh. 

Finally, a combination of (4.9) and (4.10) gives the assertion of the lemma. • 

Now, the proof of Theorem 4.3 immediately follows from Lemmas 4.4 and 4.5. 

Finally, we shall consider the rate of convergence of the discrete solutions. 

Theorem 4.6. For u e (Hi+£(Q))2, 0 < e g 1, the difference u — uh fulfils the 
inequality 

H J u - i / J SClf\\u\\l+e. 

Proof. Let <P e l}(Q) ((<£, l )0 = 0 in the case F2 = 0) be arbitrary and let \j/ e 
e Hl(Q, F2) be a weak solution of the problem: 

div grad \jj = <P in Q , 

dj/ = 0 on Fj , 

\jj = 0 on F2 . 
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Putting v = grad \p, we get by (3.3) that (note that rot grad = 0) 

(div u, <P)0 = (div u, div v)0 = a(u, v) = b(v) = (f, div v)0 = (f, <P)0 , 

i.e. div u = f in L2(Q). Analogously, we find that (3.3) implies rot u = g in L2(0). 
Consequently, we have a(u9 v) = b(v) for all v e (Hl(Q))2 and in particular, 

a(u, vh) = b(v„) Yv, e Vh . 

Applying the second Strang lemma ([2], p. 210), we obtain 

II!" - " / J = Cx inf ||ju - vJli ^ C, inf ||if - v,||! g C2ft
£||u||1+H , 

VhzVh vheVh 

where Cu C2 do not depend on ft and where the last estimate follows from the 
well-known results for finite elements by the interpolation properties of Sobolev 
spaces (see e.g. [1], p. 10). • 

Remark 4.7. If Vn (C°°(.Q))2 is dense in V with respect to the ||| • |||-norm, using 
a standard technique we get 

(4.11) ||ju - uA||| -> 0 for ft -» 0 . 

In [8] it is proved that Vn (H{(Q))2 contains a dense subset (in the H^-topology) 
of infinitely differentiable functions for Fx = 0. Thus in this case, (4.11) holds for 
u e (Hl(Q))2. Let us still note that under some regularity assumptions it can be 
proved (see [8]) for I\ = 0 that ||u - uh\\0 = C9(h2). 

5. NUMERICAL TESTS 

The method given above was tested in different geometries. In the following, 
three test examples are presented. The authors are indebted to Mr. M. Konkkola 
fot his help in carrying out the computions connected with these examples. 

Example 5.1. Let Q = (0, 1) x (0, 1) and r1 = {x e R2 | 0 < xt < 1, x2 = 0), 
F2 = dQ\T1. For f(x) = —|7i2 sin nxt cos (n x2/2), g(x) — 1 the weak solution 
of the system (IT) —(1.2) is u(x) = Ir(cos TLXX COS (n x2/2) + 1 — x2, — ^ sin TTXJ . 

. sin (71 x2/2)). The values of the error u — uh in various norms are shown in Table 5.V 

Table 5.1 Errors in Example 5.1. 

1/2 •7982582 5-2197511 7-1782787 

1/4 •1616543 2-7678407 3-7882521 

1/8 •0386592 1-4152033 1-9233271 

1/16 0096729 •7070499 •9618257 
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From Table 5.1 it can be seen that in the II • ||0-norm the convergence is quadratic 

whereas in the -norm or || • r n o r m it is linear. 

Example 5.2. Let Q = {x e l2 I x2 + x\ < > 0], Г, = { x є , - 1 < 
< x1 < \, x2 = 0}, F2 = dQ\fx. For f(x) = 8x1 ? g(x) = 0, the weak solution 

of the system (1.1)-(1.2) is 

u(x) -- (3N2 + x\ — 1, 2xxx2) . 

Table 5.2. Errors in Example 5.2. 

Һ I I " " "лllo І!І"~ "/JIІ ll"~ "Ji 

1/2 •3116610 2-7396820 3-7690384 

1/4 •0897454 1-5784481 2-0048463 
1/8 •0232356 •8303512 1-0189380 
1/16 •0058458 •4234565 5121525 

In Table 5.2 we find that the results are analogous to the first test example. Due 

to (3.20), the norms l||-||| and || "||j are equivalent in both the test examples. 

Example 5.3. Consider the problem 

(5.1) Ap=f in Q, 

p = 0 on dQ , 

where Q = {x e R2 | x] + x\ < 1} \ {x e R2 \ x, ^ 0, x2 = 0}, 

(5.2) f(xl9 x2) = f(r, <p) = \(11 r - 32) sin ^ e L2(Q) , 

and where (r, cp) are the usual polar coordinates. The weak solution peHl(Q) 

of (5.1) is of the form 

p(x{, x2) = p(r, cp) = (r3 - r2) sin %cp . 

It is easy to verify that u = grad p e V, 

( O f 

u(xu x2) = u(r, cp) = (f(r - r2) sin - + - (7r - 4) sin \ip cos <p , 

j(r2 — r) cos h - (lr — 4) sin \ip sin cp) , 

is the solution of the system (1.1) —(1.2) for F2 = dQ, g = 0 and for f given by (5.2). 

In the calculation of the approximation for solution u of (1.1) —(1.2), the initial 

triangulation of Q with h = 1/2 containing 12 elements was chosen. Refinements 
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were carried out three times. The finite element mesh of Q for h — 1/8 and the 

corresponding solution uh can be seen in Figure 5.3. 

\ 
\ M ' 

\ . I 

\ \ v v 

/ 

У 

/ 

Fig. 5.3. Finite element mesh of Q and the corresponding solution uh for h~ 1/8. 

The values of errors in different norms are listed in Table 5.4. 

Table 5.4. Errors in Example 5.3. 

" - uи Һ 

1/2 •1472717 1-961094 3-054758 
1/4 •0319256 1-142105 1-775036 
1/8 •0097791 •622665 •962657 
1/16 •0036453 •330447 •510507 

The above results confirm the theoretical accuracy. 
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S o u h r n 

APROXIMACE KONEČNÝMI PRVKY DIV-ROT SYSTÉMU 
S KOMBINOVANÝMI OKRAJOVÝMI PODMÍNKAMI 

NA NEHLADKÝCH OBLASTECH 

MICHAL KŘÍŽEK, PEKKA N E I T T A A N M Á K I 

Na rovinných omezených oblastech s po částech hladkou hranicí je vyšetřována 
metoda konečných prvků pro řešení div-rot systému (1.1) s kombinovanými okrajo
vými podmínkami (1.2). Je dokázána jednoznačná řešitelnost variační úlohy (1.1) až 
(1.2) i její diskrétní aproximace opírající se o lineární prvky. Dále jsou odvozeny 
aproximační vlastnosti této metody, které jsou ilustrovány třemi testovacími příklady. 
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Praha 1, Czechoslovakia, Assoc. Prof. Pekka Neittaanmáki, Department of Physics and Mathe-
matics, Lappeenranta University of Technology, Box 20, 538 51 Lappeenranta 85, Finland. 
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