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1. FORMULATION OF PROBLEMS 

We shall approximate in various ways the following problem: Find a function 
u: I -> V with the following properties: i) I = [0, T], 0 < T < oo and Vis a Hilbert 
space satisfying H^(Q) C Vc Hl(Q); 2) u(t) e K for almost all t eI,K being a closed 
convex subset of V; 3) u e AC(l; L2(Q)) n Ljj; V), u e L2(l; L2(Q)) and relations 
(1), (2) are satisfied: 

(1) (u(t), v - u(t)) + a(u(t), v - u(t)) ^ (f(t), v - u(t)) Vv e K 

VteI\Ev, 

(2) u(0) = u0eK, 

where u = dujdt, Ev is a set with the property mes Ev = 0, the symbol (•, •) denotes 
the scalar product in L2(Q) and Q is a bounded domain in the xl9 x2-plane with 
a sufficiently smooth boundary F. The norm in V is induced by the norm || • || x in 
HX(Q); ||t?||i = ||I?IQ + |v | i = (v,v) + (grad v, grad v). (The norm in the space 
Hk(Q) will be denoted by || • | f e, the seminorm by | • \k.) Further, we assume that 

(3) feC°>\l;L2(Q)). 

All notation concerning the function spaces is the same as in [10]. 
The space Vwill have the form 

(4) V = {v e H1^) :v = 0 on rt} , 

where F1 is part of the boundary F such that mes Fi > 0. Finally, we assume that 
the form a(v, w): H*(Q) x H1^) -> R has a potential J(v) (this means that there 
exists a functional J(v): HX(Q) -> R which is G-differentiable at arbitrary ve HX(Q) 
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and satisfies 

(5) a(v, w) = J'(v, w) Vv, w e HX(Q) 

(for more detail see [2, Chapter 2])) and that J(v) is twice G-differentiable at arbitrary 
v e HX(Q) and has the following properties: 

(6) J(0) = 0 , J'(0, w) = 0 Vw e H\Q) , 

(7) \J"(v, w, z)\ ^ p2\w\x |z|i Vv, w, z e Hl(Q) , 

(8) |J"(v, w, w)| = pt\w\l Vv, w e HX(.Q) , 

where Pl9 P2 are positive constants not depending on v, w, z. 
The assumptions (5) —(8) have the following consequences: 1) the form a(v, w) 

is linear in w; 2) the form a(v, w) is hemicontinuous, i.e. X -> a(v + Az, w) is a conti­
nuous function on K for all v,w,z e H^Q); 3) if we use Taylor's theorem in the form 

J'((D + \j/, <p) = J'(co, cp) + J"(o> + Si//, cp, \j/) 

where 0 < $ < 1 and co, <p, \j/ are arbitrary functions from H1(Q) (see [2]), we find 
that the form a(v, w) is bounded, coercive, strongly monotone and lipschitz with 
respect to v: 

(9) \a(v, w)\ = /?2|v|i \w\x Vv, w e Hl(Q) , 

(10) a(v, v) = ^Ivl? Vv e Hx(0), 

(11) a(v, v - w) - a(w, v - w) = j5i|v - w|i Vv, w e HX(Q) , 

(12) |a(v, w) - a(z, w)\ ^ p2\v - z\x |w|- Vv, w, z e ff^G) ; 

4) if we use Taylor's theorem in the forms (see [2]) 

J(v) = J(0) + J'(0, v) + iJ"(Sv, v, v) , 

J(w) = J(v) + J'(v, w - v) + iJ"(v + S(w - v), w - v, w - v) , 

where 0 < 3 < 1, we find 

(13) ipt\v\l ^ J(v) = ifi2\v\2
± Vv e H\Q) , 

(14) a(v, w - v) + J(v) - J(w) = -iP2\v - wj? Vv, w e HX(Q). 

Example 1. We give an example of a(v,w) and J(v) satisfying (5) —(8). Let 
m(s) e Cx([0, oo)) be a function with the property 

(15)1 p1^^[sm(s)]Sp2 Vse[0,oo), 
as 

where Pu P2 are positive constants. Let us define a function 

F(y) 

12 

s m(s) ds , 



Using the function F(y) let us define a functional 

J(v)= | F(|gradv|)dx, 

where 

|grad v| = ^[(dvjdx,)2 + (dvjdx2)
2] . 

According to [2, Chapter 2] we have 

J'(v, w) = \—{ F(|grad (v + 9w)\) dx] . 
LddJf. Jd=o 

After a simple calculation we find that J(v) is the potential corresponding to the form 

(16) a(v, w) = m(|grad v|) dx . 
JQ dXidXi 

In (16) and in what follows the summation convention over a repeated subscript 
is adopted. Further, 

(17) J"(v, w, z) = ["— J'(v + $z, w)l 
Ld# i>=o 

f f ,/ x _x dv dz dv dw , , dw dz) ^ 
= lm(n)n - _ — _ _ + m(f7) U x , 

JQI dXidXi dxj dxj dxt 5xj 
where m'(s) = dm(s)/ds and r\ = |gradv|. In [16], estimates (7), (8) are derived 
for J"(v, w, z) defined by (17). 

Example 2. We give an example of a problem the variational formulation of which 
is of the form (1), (2). Let us consider the following initial-boundary value problem: 

(18) u-^-(m(^~)=f in flx(0,T], 
OXi \ CXiJ 

(19) u = 0 on F! , 

(20) u > o , mli) -T = 0 , m(f) u ̂  = 0 on F2 , 
v 7 Ov Ov 

(21) u(x, 0) = u0(x) , x e Q , 

where ti; = |grad u|,f satisfies (3), Fx is the same as in (4), F2 = F — Fl5 m(s) is the 
function from Example 1, u0 e H1(Q) and djdv is the normal derivative. Let us define 

(22) K = {v e H^rQ) : v = 0 on F1? v ^ 0 on F2} . 

Then K is a closed convex subset of V. Let us multiply (18) by an arbitrary function 
v e K and integrate over the domain Q. Using integration by parts and Green's 
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theorem we obtain 

(23) (ii, v) + a(u, v) - f m(() — v ds = (/, v) Vv e K , 

where a(u, v) is given by (16). According to (19) and (20x), we have u eK . Thus 
relations (203) and (23) imply 

(24) (u, u) + a(u, u) = (/, u) . 

Relations (202) and (22) give 

(25) f mtt) — vds^ 0 V v e K . 
Jr2 dv 

According to (23) and (25) we have 

(26) (u, v) + a(u, v) = (/, v) Vv e K. 

Substracting (24) from (26) we obtain (1). Thus problem (l), (2), where a(u, v) is 
given by (16) and K by (22), is a variational formulation of problem (18) —(21) (under 
the condition that the right-hand side of (21) belongs to K). 

We give four approximate formulations of problem (1), (2). Let us start with the 
discretization in time. We introduce At = Tjr, r being a natural number, and consider 
the partition of I = [0, T] with the nodes 

t. =- iAt (i = 0 , . . . , r) . 

We set 

f=M) 
and define Problem 1: Find U1 e K (i = 1 , . . . , r) such that 

(27) — (Ul - U ' - \ v - U1) + a(U*, v - U1) = (f, v - Ul) V v e K , 
At 

(28) U° = u0eK. 

We have obtained (27) from (l) by means of the implicit Euler's method. 
To solve Problem 1 means to solve an elliptic variational inequality with a nonlinear 

elliptic form a(u, v). Thus we shall define another discrete problem where this non-
linearity is removed. To this end let us write inequality (l) in the form 

(29) (u(t), v - u(t)) + S(u(t), v - u(t))± = 

= co(u(t), v - u(t)) + (f(t), v - u(tj) Vv e K \/teI\Ev 

where Q is a constant satisfying 

(30) 0 > p2J2 
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and the forms (•, -)l9 co(-9 •) are defined by 

(31) (v, w)1 = (grad v, grad w) , 

(32) co(v, w) = O(v, w)t — a(v, w) . 

Discretizing the left-hand side of (29) by the implicit Euler's method and the right-
hand side by the explicit Euler's method we come to Problem 2: Let U° be given by 
(28). Find U'eK(i = 1 , . . . , r) such that 

(33) ~(U< - U'-\v - U'*) + Q(U\v - U')i ^ 
At 

= co (U ' - \v - U1) + (Z1"1,!? - U*) V v e K . 

Let us point out that the test functions v — Ul are the same on both sides of (33). 
The remaining approximate problems will be obtained by discretizing Problems 1 

and 2 in space. We shall use the finite element method: Let us triangulate the domain 
Q9 i.e., let us divide it into a finite number of triangles in such a way that two arbitrary 
triangles are either disjoint, or have a common vertex, or a common side. (If a part 
of the boundary F is curved then each corresponding boundary triangle has one 
curved side which is part of the boundary F. Thus we only consider ideal curved 
triangles which were defined in [14].) Every interior triangle, i.e. a triangle having 
at most one point common with the boundary F, has straight sides only. 

With every triangulation 9~ we associate two parameters h and 9 defined by 

h = max hT , 9 = min 9T 
Te9~ Te$~ 

where hT and ST are the length of the greatest side and the magnitude of the smallest 
angle, respectively, of the triangle with straight sides which has the same vertices as 
the triangle T. We restrict ourselves to triangulations satiysfying 

9 ^ #o - #o = const > 0 . 

A triangulation with this property will be denoted by £Th. 
On every triangulation ZTh we define a finite dimensional space Zh with the following 

properties: 

a) Zh c C(Q); 

b) every function v e Zh is uniquely determined by its values prescribed at the 
vertices Pj of the triangles of 3Th (the vertices Pj will be called the nodal points oi2Th)\ 

c) the restriction of v e Zh to an arbitrary interior triangle is a linear function. 
In the case of a polygonal boundary F the space Zh is formed by piecewise linear 

functions. The definition of the restriction of v e Zh to an ideal curved triangle can be 
found in [14] . 
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If a convex set K c Vis defined by a condition (C prescribed on a subset A of Q) 

then we define the finite element approximation Kh of K in the following way: Kh 

consists of those functions of Zh which satisfy condition (C) at the nodal points 

Р3еЛ. 
In this paper we restrict our considerations to convex sets K which satisfy 

(34) Kh c K V/i, 

(35) C°(Q) n K = K , 

where the closure is taken in the norm || • || t . 

The convex set K defined by (22) has both the properties (34) and (35). Property 

(34) is evident because in the case of (22) we have 

Kh = {v e Zh: v = 0 on Fl9 v = 0 on F2} 

and Zh c Hl(Q). The proof of property (35) is a special case of the proof of [5, 

Lemma Al] . 

Using (35) and the interpolation properties of functions from Zh we can prove 

in the same way as in [13] (see also [3, pp. 134—135] or [6, p. 31]) that 

(36) lim inf ||w — vh\\t = 0 Vw e K . 
h~*0 Vh^Kh 

It follows from (2) and (36) that there exists u0h e Kh such that 

(37) lim ||uo ~ «0fc||i = 0 . 
fc->0 

Discretizing Problem 1 in space we obtain Problem 3: Let Kh be given. Let 

(38) U° = u0heKh. 

Find Ul e Kh (i = 1, ..., r) such that 

(39) — (Ul - U^^v- Ul) + a(U\v- Ul) = (f\v - Ul) >/veKh. 
At 

Finally, discretizing Problem 2 in space we come to Problem 4: Let Kh be given. 

Let U° be defined by (38). Find Ul e Kh (i = 1,..., r) such that 

(40) -i- (Uf - U1""1, v - Uf) + S(U\ v - U% = 

At 

= co(Ui~\v-Ui) + (fi-\v-Ul) VveK f t . 

It can be proved in the same way as in [1] that'each of Problems 1 and 3 has only 

one solution. Now we prove existence and uniqueness of the solutions of Problems 2 

and 4. Let us write inequality (40) in the form 

(41) b(U*, v -Ul)= l(v - Ul) Vv G Kh , 
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where 

b(v, w) = — (v, w) + <9(v, w)i , 
At 

/(p) = - ( U 1 - 1 , v) + c^U '"1 , p) + ( / ' " - , v) . 
At 

The bilinear form b(v, w) is symmetric, bounded on V x Vand V-eliptic, 

6>C<>Hi = %*>) VveV, 

where C0 > 0 is the constant from Friedrichs' inequality; the linear form l(v) is 
bounded in the space Vand Kh is a closed convex subset of V. Thus, according to 
[3, Theorems 1.1.1 and 1.1.2], inequality (41) has a unique solution U* e Kh. The 
proof in the case of Problem 2 is the same (we only replace Kh by K). 

In the case of Problems 1 and 2 let us define an abstract function Ur(t) by the relation 

(42) C7r(0 = Ui-1+^^^-(Ui-Ui-1), telU-uti], i = l,...,r. 
At 

The function Ur(t) is a continuous extension of the solution U°, U1, ..., Ur of Problem 
1 (or Problem 2) to the whole interval I. 

Bock and Kacur [1] proved that problem (l), (2) has a unique solution and that 
the sequence {Ur(t)} generated by the solutions of Problems 1 converges for r -> GO 
to the exact solution of (l), (2) in the space C(I; L2(Q)). They did not use assumptions 
(5) —(8) concerning the form a(v, w); they only assumed (9), (10) and the mono-
tonicity of a(v, w) on K: 

a(v, v — w) — a(w, v — w) ^ 0 Vv, w e K . 

However, their assumptions concerning the initial value u0 are stronger. 
The first aim of this paper is to prove, under the assumptions (5) — (8) concerning 

the form a(v, w), that the sequence {Ur(t)} generated by the solutions of Problems 2 
converges for r -> co to the exact solution u(t) of problem (l), (2) in the space 
C(I; L2(Q)). This will be done in Theorem 1. 

In the case of Problems 3 and 4 let us define an abstract function Ud(t) by the relation 

(43) U\t) = Ui-i +t~ti~i(Ui-Ui-1), te[t,-» f , ] , i = l , . . . , r , 
At 

where d = (h, At). In what follows we shall consider a sequence {U3n} of functions 
belonging to the set {U3} and its subsequences. The sequence {U3n} will be chosen 
in such a way that 

5H = (hn9(At)H)->0 if n - o o . 

It is essential that hn and (At)n are mutually independent. For greater simplicity 
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we shall use the symbol Un(t) instead of the symbol Udn(t). The symbols {Ufc}, {U,} 
will denote subsequences of {U„}- Instead of the symbols of the type lim ||U*n|| the 
symbol lim ||Un| will be used. dn~*° 

«->O0 

Instead of the symbol Khn, which denotes the approximation of K corresponding 
to the triangulation SThn, we shall use the symbol Kn. 

In accordance with [1], the functions Ur(t) defined by (42) will be called Rothe's 
functions. In order to stress the discretization in space, the functions Uw(f) defined 
by (43) will be called the finite element Rothe's functions. 

In Section 2 the convergence of the sequence of finite element Rothe's functions, 
which are generated by the solutions of Problems 4, in the space C(I; L2(Q)) is proved. 
In Section 3, the convergence in the space L2(I; V) is studied. In Section 4, under 
additional regularity assumptions, some simple error estimates for the solution 
of Problem 4 are presented. 

2. CONVERGENCE IN THE SPACE C(I;L2(Cl)) 

In this section we study in detail the convergence of the finite element Rothe's 
functions (43) corresponding to the solutions of Problems 4. The method of the proof 
is based on the compactness and monotonicity method. In Lemmas 1 — 3 the exist­
ence of a limit function u(t) is established and in the course of proof of Theorem 2 
it is shown that u(t) is the only solution of problem (l), (2). 

Similar results can be obtained for Rothe's functions (42) corresponding to the 
solutions of Problems 2 (see Theorem l). 

Lemma 1. The solution U{ (i = 1 , . . . , r) of the implicit-explicit scheme (38), (40) 
satisfies the following relations: 

\Um\i S C (IS m = r) Vr, 

m 

I I^U'llo S CAt (1 = m ^ r) Vr , 
i = i 

m 

ElM^li ^ C (1 S m ^ r) Vr 
i = i 

where 

AUl = U1* - U*"1 . 

In Lemma 1 and in what follows the symbol C denotes a positive constant independ­
ent of h, At and n and not necessarily the same at any two places. 

Proof. We follow the ideas used in the proof of relation [16, (3.16)]. To the both 
sidesof(14)letusaddtheexpression<9|w — v\\.Denoting x = 0 — p2\2 > 0 (see(30)) 
we obtain 
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(44) 0\w - v|2 + a(v, w - v) = x\w - v\\ + J(w) - J(v) Vv, w e HX(Q). 

Let us set v = Ul_1 e K,, in (40) and multiply the obtained relation by — Af. We get, 
according to (32), 

(45) \\AUTo + M ®\AU% + At "(U1'1, AUl) S At(f-\ AUl) . 

Relation (44) with w = U\ v = Uf_1 and relation (45) imply 

||AU'||2 + x Al|AU*|2 + At[J(U*) - J(Uf_1)] ^ At(f~\ AUl). 

Let us sum up this relation from i = 1 to i = m and use (13) and Friedrichs' inequality 
lAU1!2 ^ C0|| ziU'l2. After summing by parts on the right-hand side we obtain 

m m 

X I^Uilo + xCoAt^ IMU'lli + iCoiS^tlU""!? ^ 
t = i > = i 

^ ^ 2 ^ t | | t l 0 | | ? + ^ t | | j 0 | | o | t l 0 | o + 
m 

+ ^ii/ra-i|0|Ura|1 + ^tsiMjiio|t!jfl1. 
i = i 

Using assumption (3) and the inequality 

(46) \ab\ ^ a2j(2y) + yb2\2 

with various values of 7 we obtain from the above relation 
m m 

(47) £ \AU% + ct AtYJAUf, + cx At\Um\\ ^ 
i = 1 i = 1 

m - 1 

^ c2 Al + c2(/1t)2 £ ll^fli (1 = m = r) 
i = l 

where cu c2 are positive constants not depending on m, r, n and h. Relation (47) 
implies 

m - l 

|Um||2 = C + CAt£ ||Uf||2. 
i = l 

Using the discrete GronwalFs inequality we obtain the first relation of Lemma 1. 
As At = T\r this relation implies 

m 

(48) LM?--C/-lt . 
i = l 

Inserting (48) into the right-hand side of (47) we obtain the last two relations of 
Lemma 1. 

Corollary 1. The finite element Rothe's functions (43) satisfy 

(49) 1 ̂ (0111 = C W e / Vn> 
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(50) 
rт 

\Ůn(t)\\2
0át<C Vn. 

Proof. Relation (50) is the second relation of Lemma 1 written in another form. 
Relation (49) follows immediately from the first relation of Lemma 1, using the fact 
that 0 <£ t - ti^1 < At for te[t^u tt). 

In our considerations we shall need the following step-functions: 

(51) un(t)=Ui~1, telu-uu) (i = 1 r ) , un(T) = W 1 

(52) Un(t) = U\ t €(_!_!, tf] (i = l , . . . , r ) , t7B(0) =-= I/1 

(53) f„(0 = r - S te[t^uti) (i = l , . . . , r) , f„(T) __-/*-*. 

Corollary 2. The step-functions un(t), Un(t) and the finite element Rothe's functions 
U„(t) satisfy the relations: 

(54) 

(55) 

(56) 

|i7„(í)|i á C, \\Un(t)\\iúC Vn V í e J , 

í | E 7 „ ( í ) - U „ ( ř ) | | ? d í á C ( _ ř ) B . 

í | i 7 „ ( ř ) - U „ ( t ) | | ? _ t ^ C ( - t ) „ . 

Relations (54) —(56) are immediate consequences of the first and third relations 
of Lemma 1 and definitions of functions un(t), Un(t), Un(t). 

Lemma 2. There exist a junction u e C(l; L2(Q)) n L^(l; V) and a subsequence 
{Uk} oj {Un} such that 

(57) 

(58) 

(59) 

(60) 

P r o o f . According to (50), we have 

Uk ->u in C(I; L2(Q)), 

Uk(t) -* u(t) weakly in V Vt e I, 

Uk ~* w weakly in L2(l; V) , 

ufc -* w weakly in L2(l; V). 

|U„(ř") - U„(í')||o = U„(í) dř S C\ť - ť\í/2 \fť,ťel = [o, r ] . 

Thus the functions Un(f) (n = 1, 2, ...) are equicontinuous on I in the norm || • | |0. 
Relations (49) and Rellich's theorem (see, e.g., [12, p. 17]) imply that the sequence 
{Un(t)} is relatively compact in L2(Q) for every t eL According to the generalization 
of the Arzela-Ascoli theorem (see, e. g., [10, p. 42]), there exists a subsequence 
{Uk} of {[/„} such that relation (57) holds, where u e C(l; L2(Q)). 
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Í: 

Let t el be arbitrary but fixed. Relation (49) and the compactness theorem (see, 
e.g., [2 ,Chapter 1, Theorem 4.2]) imply that we can extract a subsequence {Uj(t)} 
of {Uk(t)} converging weakly in V to an element w e V. As (z, v) (z eL2(Q) fixed, 
v e V) is a linear bounded functional on Vwe see that also Uj(t) -* w in L2(£-). Rela­
tion (57) implies that w = u(t). 

If {Uj(t)} 4= { /̂c(0} ^ e n t n e r e exists an infinite subsequence {Um(t)} of {Uk(t)} 
with the property that no subsequence of {Um(t)} converges to u(t) weakly in V. 
Using (49) and repeating the preceding considerations we find that a subsequence 
{Ut(t)} of {Um(0} converges to u(t) weakly in V This is a contradiction. Thus {Uj(t)} = 
= {Uk(t)} and (58) is proved. 

As the norm || • || t is weakly lower semicontinuous on V relations (49) and (58) 
imply 

ll^t)!! S liminf \\Uk(t)\\x = C VteI . 
fc-» 00 

Thus u e L^I; V). 
Relation (49) and the compactness theorem imply that a subsequence {U,} of 

{Uk} converges weakly in L2(I; V) to an element w e L2(I; V). As the form 
»T 

(z(t), v(t)) dt (z e L2(I; L2(Q)) fixed, v e L2(l; V)) 
i o 

is a linear bounded functional on L2(I; V) we see, according to [10, p. 125], that 
also Uj -* w in L2(/; L2(-3)). Relation (57) implies that w = u. The rest of the 
proof of (59) is the same as in the preceding case. 

Relation (60) is a consequence of (56) and (59). Lemma 2 is proved. 

Lemma 3. The limit function u(t) satisfies (2), u e AC(I; L2(Q)), the strong derivat­
ive u(t) exists almost everywhere onI,u e L2(I; L2(Q)) and 

(61) Uk~* u weakly in L2(l; L2(Q)) , 

where {Uk} is the same subsequence of {Un} as in Lemma 2. 

Proof. For every t e I and for every k we have 

(62) (Uk(t), v) - (u0k, v) = \\uk(T), v) dr Vv e V, 
J o 

using the notation uok for u0hk* According to (50) and the compactness theorem, we 
can extract a subsequence {Um} of {UJ such that 

(63) Um--g weakly in L2(I, L2(Q)). 

Using (37), (57) and (63) we obtain from (62) 

(u(t), v) - (u0,v) =' J (#(T), v) dr Vv e V. 
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As Vis dense in L2(Q) and as (see [4, p. 126]) 

*t / pt 
(g(x), v) dT = I g(x) dt, v 

o \Jo 

we get from the last relation 

pt 
u(t) = u0 + g(x) dx . 

Jo 

Thus u e AC(I, L2(Q)), u(t) satisfies the initial condition (2) and we have 

u(t) = g(t) a.e. in I . 

The proof of the relation { Um} = { Uk} is similar to the corresponding proof in Lemma 
2. Lemma 3 is proved. 

Theorem 1. Let K be a closed convex subset of the space V, which is given by (4), 
let f be a function satisfying (3) and let the form a(v, w): H1^) x H1^) -> R 
have a potential J(v): H1^) -> R, which is twice G-differentiable at arbitrary 
v e H1(Q) and satisfies conditions (6) —(8). Then there exists a unique function 
u(t) with the properties 

u(t)eK V t e I , u e AC(I; L2(Q)) n LJ7; V), u eL2(I;L2(Q)) 

and satisfying relations (l), (2). Further, every infinite sequence {Ur} of Rothe's 
functions (42), where U1, ..., Ur is the unique solution of the implicit-explicit 
scheme (28), (33), converges to the solution u(t) of problem (1), (2) in the space 
C(I, L2(Q)): 

lim ||u - U,||c(/;L2(fl)) = 0 . 
r-> oo 

Theorem 2, Let the assumptions of Theorem 1 be satisfied and let the convex set K 
satisfy conditions (34), (35). Then every infinite sequence {Un} of finite element 
Rothe's functions (43), where U1, ...,Ur is the unique solution of the implicit-
explicit scheme (38), (40) and where 3n -> 0, converges to the solution u(t) of problem 
(1), (2) in the space C(I; L2(Q)): 

l im Iu - Un\\C(r.L2{Q)) = 0 . 
n->oo 

Proof. First we shall prove Theorem 2. Then we shall mention the differences 
in the proof of Theorem 1. 

We have to prove that the limit function u(t) appearing in Lemmas 2 and 3 has the 
following properties: 1) u(t)eK Vl eI ; 2) u(t) is the only solution of problem (1), 
(2); 3) the whole sequence {Un} converges to u in C(I; L2(Q)). 

It follows from the assumptions of Theorem 2 that every function Un(t) is defined 
on a closed convex set Kn and the sequence {Kn} has the following property: To 
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every w e K we can find a sequence {wn}, where wn e Kn, such that 

(64) lim Iwn — w\x = 0 . 
n-» oo 

Moreover, according to interpolation properties of Zn, for every w e H2(Q) n K we have 

(65) | w - / T l l w | | 1 ^ Chn\\w\\29 

where I7nw e Kn is the interpolate of w in Zn. 

Lemma 4. Let w* e C 0 j l (I ; H2(iQ)). Le* *0 = 0 < tt < t2 < . . . < trn-x <trn= T 

be the nodal points of the n-th partition of I into rn subintervals of the length 

(At)n = T\rn. Let 

wn*(t) = I7n(w*(l,)) , tt-x <t = tt (J = l , . . . , rn) . 

Then 
г;* i ł * L2(l;V) — 0 

Proof. We have, according to (65) and Lipschitz continuity, 

r|w.*(0 - w*(0||? dt ^ 2 £ f " {|w*(r() - W(t,)H + 
JO .= l j * i - i 

+ |w*(f,) - w*(t)||2} dt ^ 2T{Cmax \\w*(t)\\l h2 + M(w^)(At)2} 
tel 

where M(w^) is a positive constant depending on w* only. Lemma 4 is proved. 

Lemma 5. The set £f x = {w e C°A(I; H2(Q)): w(t)eKVtel} is dense in the set 
5?2 = {v e L2(I; V): v(t) e K Vt e I}. 

Proof. Let us choose v e 9*2 and s > 0 arbitrarily. Let v e <^2 be a step function 

vXO-z1 on [ 0 , t x ] , v(l)=-z£, t e ( r , _ ! , *,] (i = 2, . . . ,n) 

such that ||v — v||L2(/;F) < e/2 (we can achieve it using (87) with At = T\n sufficiently 
small). Let M = max \zl — zJ\\ t (i, j = 1, ..., n). Let us choose O* satisfying 0 < 8 < 
< s2j(4M2n) and let us define 

T? = r , - 5 / 2 , T2 = tt + dl2 (i = l , . . . , t t - 1), 

< t ( ^ - M + ^ i ^ ( ^ T } ) on [ T * , T 2 ] (i = l , . . . , n - l ) , 
O* 

w(t) = v(t) on / \ U ( T - , T 2 ) . 
i = i 

We have ||w - v\\L2(I;V) < e/2, || vv - I> | | L 2 ( J ; F) < £- T r i u s t n e s e t ^ 3 = {w e C(I; V): 
w(t) e K Vl eI} is dense in the set £f2. 

Let us choose v e 93 and e > 0 arbitrarily. Let <5 > 0 be such that 
||v(t') - !>(*")||i < e/5 for all t\ t" e I satisfying the inequality \t'- t"\ < 5. 
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Let l0 = 0 < t! < t2 < ... < i*„_i < tn = T be points for which t; — ti^.l < 8 
(i = 1, ...,n). Owing to (35) we can find wt e H2(Q) n K such that \\wt — v(f|)||i < 
< e/5 (i = 0, 1, ... , w). Let us define the function 

we(0 = Wi-i + Wf ~" W i " ' (* - i<-i) on [*,_,.,*,] (i = l, . . . , n ) . 

Then we have || w£(t) — v(t)|| x < £ Vt e I. As w£(t) e 5^1 we see that the set S^1 is dense 
in the set S?3. 

Let us choose v e Sf 2 and s > 0 arbitrarily. Using the preceding results we can 
easily find w e Sft such ||w — t?||L2(/;F) < e. Lemma 5 is proved. 

The proof of Theorem 2 is divided into four parts A) — D): 

A) The closed convex set K us weakly closed. Thus, according to relation (58), 
we have u(t) eKMtel. 

B) We shall prove that the limit function u(t) is a solution of problem (l), (2). Let 
us write relation (40) by means of functions Uk(t), uk(t), Uk(t) andffc(t) in the form 

(66) (Uk(t), v - Uk(t)) + 0(Uk(t) - uk(t), v - Uk(t))x -

- (fk(t), v - Uk(t)) = a(uh(t), Uk(t) -v) Vv e Kk Vl e I \ E Vk , 

where mes E = 0. Let us choose a function w* e Sfu let us set v = w*(t) for a given 
t e I \ E, where w*(t) is the step function from Lemma 4, let us add the term 
a(uk(t), w*(t) — u(t)) to the both sides of (66) and let us integrate (66) in (t\ t"), 
where t' < t" are arbitrary in I. We obtain 

Г 

ÀS 

{(U,(0, w*k(t) - Uk(i)) + 0(Uk(t) - uk(t), w*k(t) - Uk(t)\ -

- (A(t), w*k(t) - Uk(t)) + a(uk(t), w*(t) - u(t))} dt ^ 

^ J {a(uk(t), w*(t) - w*k(t)) + a(uk(t), Uk(t) - u(t))} dt. 

a(uk(t), Uk(t)) = a(iik(t), uk(t)) + a(uk(t), Uk(t) - uk(t)), 

(Uk(t), w*k(t) - Uk(t)) = (Uk(t), w*(t) - u(t)) + 

+ (Uk(t), w*k(t) - w*(t) + u(t) - Uk(t) + Uk(t) - Uk(t)), 

(AW, w*(0 - Uk(t)) = (fk(t) - j(t), w*k(t) - Uk(t)) + 

+ (f(t), w*(t) - u(t) + w*k(t) - w*(t) + u(t) - Uk(t) + Uk(t) - Uk(t)) 

we obtain after passing to the limit for k -* oo by means of Lemmas 2 — 4, Corollary 2 
and assumption (3): 

ft" 
lim sup 
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a(uk(t), uk(t) - u(t)) dř ^ (ů(t) - f(t), w*(t) - u(t)) dř + 



lim sup a(йk(t), 
&->oo J ť 

+ lim sup a(uk(t), w*(t) - u(t)) át. 

The right-hand side is bounded by C||w* — w| |L 2 ( / ; F ). As w* is an arbitrary function 
from c^! the expression IIu — w* | L 2 ( / ; F ) can be arbitrarily small, according to Lemma 
5. Thus 

v 
(67) lim sup a(uk(t), uk(t) - u(t)) df __ 0 . 

fe-> 00 J t' 

The form b(v, w) = a(v(t), ^(t)) dt defined for all v, w e L2(t', t"; V) is bounded,. 

hemicontinuous and monotone, according to (5) —(8). Thus, according to [11, 
Chapter 2, Section 2.4], the form b(v, w) is pseudomonotone and relations (60), (67) 
imply 

lim inf b(uk, uk — v) ^ b(u, u — v) Vv e L2(tf, t"; V) . 
&-> 00 

Then we also have 

(68) lim inf a(uk(t), uk(t) - v) dt ^ a(u(t), u(t) - v) dt 
Hoo J . ' J t' 

VveK , W,t"el, t' < t" . 

Let us choose v e K arbitrarily. According to (64), we can find a sequence {vk} 
such that vk e Kk and vk -> v in H1(Q). As we have 

«(w/c(l), uk(t) - vk) = a(uk(t), uk(t) - v) + a(uk(t), v - vk) 

we obtain from (68): 
ч" _ _ Г 

a(uk(t), uk(i) — vk) åt ^ a(u(t), u(t) — v) át 
ť Jť 

(69) lim inf 
!<-*00 J 

Setting v = vk in (66), adding a(uk(t), uk(t) — Uk(t)) to the both sides of (66), inte­
grating the result in (f, t"), where t' < t", and letting k -> co we obtain, according 
to relation (69), Corollary 2 and Lemmas 2, 3: 

(70) ^ {(u(t), v - u(t)) + a(u(t), v - v(t)) - (f(t), v - u(t))} dt ^ 0 

VveK W,t,fel, tf < t" . 

As f, t" are arbitrary we see that relation (l) is satisfied by the limit function u(t) 
and its derivative u(t). 

C) Now we prove the uniqueness of the solution. Let us choose w(t) e £f2 (see 
Lemma 5). We can find a sequence {w„(t)} c y2 of step functions such that 

wn -* w in L2(I; V) . 
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Using relation (70) (which can be obtained by integrating (1)) we can write 

{(W(T), W„(T) - M(T)) + a(u(T), W„(T) - U(T)) -

-(f(T),Wn(T)-u(T))}dT = 0. 

Passing to the limit for n -> oo we find 

{(W(T), W(T) - U(T)) + a(u(T), W(T) - U(T)) -

- (/(T), W(T) - U(T))} dT = 0 V w e y 2 . 

Let ul9 u2 be two solutions of problem (1), (2). Setting u = uu w = u2 and 

u = u2, w = u1 in the last inequality and taking into account the monotonicity 

of a(v, w) we obtain after adding up: 

I (ui(т) - u2(т), ui(т) - u2(т)) dт = ł | | u i ( 0 - u2(t)Џ й 0 , 

because wi(0) = w2(0) = u0. Thus u±(t) = u2(t) a.e. on (0, T). 

D) Let us assume that there exists an infinite subsequence {Us} of {Un} with the 

property that no subsequence of {Us} converges to u in C(I; L2(Q)). Using (49) and 

repeating all preceding considerations we find that a subsequence {Ut} of {Us} 

converges to a function cp in C(I; L2(Q)) and that cp is a solution of problem (1), (2). 

At the same time cp + u in C(I; L2(Q)). This is a contradiction with the uniqueness 

of problem (1), (2). Thus {Uk} = {Un}. Theorem 2 is proved. 

The proof of Theorem 1 is similar to the proof of Theorem 2 but simpler. Lemmas 

1 — 3 hold without any change for sequences of Rothe's functions Ur and correspond­

ing step functions ur, Ur. The situation is simpler because now Kk — K and we can 

choose v = u(t) (t fixed, t e I \ E) as a test function in (66). Integrating (66) in (t\ t") 

and letting k -» oo we easily find (67) and then (68). Choosing v e K arbitrarily, 

integrating (66) in (t\ t") and letting k -> oo we find, according to (68), Corollary 2 

and Lemmas 2, 3, that relation (1) is satisfied by the limit function u(t). Parts A, C, D 

the proof remain the same. Theorem 1 is proved. 

R e m a r k . If K contains zero and satisfies (34), (35) and if u0 = 0 then in the case 

of Problem 3 we can easily prove convergence of finite element Rothe's functions 

to u in C(l; L2(Q)) under the assumption that the form a(v, w) is bounded, coercive 

and monotone. 

3. CONVERGENCE IN THE SPACE L2(I; V) 

In the case of Problem 4, the convergence is proved under restrictive conditions: 

in Theorem 3 we assume a special form of the convex set K, in Theorem 5 the param­

eter hn depends on the parameter (At)n. 
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Theorem 3. Let the assumptions of Theorem 2 be satisfied and let K be a closed 

convex cone with its vertex at zero. Then, in addition to the results introduced in 

Theorem 2, we have 

lim ||Un - u\\L2(I;V) = 0 . 
n-+ oo 

Proof. The proof is a generalization of the proof of [16, Theorem 3.1]. Therefore, 

the reasoning, which is the same as in [16], is only sketched. 

According to (11) and Friedrichs' inequality we have 

12 
IІL2(/;V) * 

/•T /*T 

(71) a(u, u - Un) dt - a(Un, u - Un) dt ^ C\\u - Un\\ 
Jo Jo 

Let us set Fn(t) = a(u(t), u(t) — Un(t)). Then, according to (9) and Lemmas 1 and 2, 

\Fn(t)\ ^p2C(C + l) Vn V t e I , 

lim F„(t) = 0 Vt e I . 
n->oo 

All assumptions of the Lebesgue dominated convergence theorem [10, p. 60] are 

satisfied; hence 

rr 
(72) lim a(u, u - Un) dt = 0 . 

n->oo J 0 

It remains to prove that the second integral on the left-hand side of (71) tends 

to zero. First we prove relation (76). To this end let us set v = 0 and v = 2Ul in (40). 

Summing up the resulting equation from i = 1 to i = r we obtain 

(73) 1L(AU\ Ul) + OAtj](AUi,Ui)1 + At£a(U'-\ Ul) = 
i=l i=l i=l 

-Attif-w1). 
i = i 

Let us pass to the limit for n -> oo in (73). Using (9), (12), Lemmas 1 and 2 and the 

same argument as in the text between (3.26) and (3.27) of [16] we obtain 

(74) lim \\(Un, Un) dt = \(f, u) dt + i\\u(0)\\2 - i\\u(T)\\2 . 
n->oo J o J o 

Let t e I \ E be arbitrary. Let us set v = 0 and v = 2 u(t) in (l). We get 

(75) (u(t) - f(t), u(t)) + a(u(t), u(t)) = 0 Vt e I \ E . 

Integrating this relation in (0, T) and comparing the result with (74) we find 

f*T f*T 

(76) lim a(Un, Un) dt = a(u, u) dt. 
n->ooJo J o 
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Now we prove that 

(77) lira 
k-*oo 

T 

a(Uk, u - Uk) dí = 0 , 

where {Uk} is a subsequence of {Un}. Let us set 

(78) <cpn(t),v> = a(Un(t),v) VvGV. 

Taking into account (9) and (49) we see that 

<Pn e Ljl, V*) , \\(pn\\L(x(I;vn S C . 

Therefore, there exist an element cp e Ljl; V*) and a subsequence {cpk} of{(Bn}such 
that 
(79) cpk - cp weakly* in L^ (I; V*) . 

Let us set v = Ul + z in (40), where z e Kk = Kft;{. Using (32) we obtain 

(80) — (AU1*, z) + 6>(AU*, z)x + a(U ' " \z ) = (f~\z) VzeKfc. 
At 

Let us choose v e K arbitrarily and let {vk}, vk e Kk, be such a sequence that 

lim \\vk — v\\x = 0 . 
fc->oo 

Let us consider a function ^(t) e C°°(I) with the property \\j(t) = 0 and let us set 
z = vk \j/(ti) in (80). After summing (80) from i = 1 to i = r and after multiplying 
(80) by At let us pass to the limit for 8k -» 0 in the resulting relation. Using (79), 
Lemmas 1 — 3 and an argument similar to that used in the text between (3.24) 
and (3.25) in [16] we find 

*T 

{(u(t) - f(t), v) + <[cp(t), v>} \j/(t) dt = 0 Vv e K Vi> G C°°(I) , 
i 

i A ( t ) ^ o . 

Let M be an arbitrary measurable subset of I and /M(t) its characteristic function. 
We can replace i//(t) by #M(0 in the last relation [because the proof of density of 
C°°(I) in L2(I) implies that we can find a sequence {ij/j} such that 

lim I ^ - XM\\L2(I) = 0 il/j(t) = 0 

and because u — / e L2(I; L2(Q)), cp e Ljl, V*)]. Thus we have 

(81) (u(t) - f(t), v) + {cp(t),v} = 0 Vv e K V* e I \ E . 

For every element j> e L2(0) there exists a unique element gy e V* for which 

(y, *) T <#r v> Vt; G F 
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(see [4, Chapter 1]). Let us set 

*(O = 0a(O ~ df(t) + <p(t). 

Then we can write, according to (81), 

(82) <<j(t), v> = 0 Vv e K \fteI\E 

and we have 

(83) (u(t) - f(t), v) + <(p(t) - a(t), v> = 0 Vv e K W e I \ E . 

Let us choose t eI\E arbitrarily and set v = u(t) in (83). Comparing the result 
with (75) we find 

(84) <(?(t), u(t)} = a(u(t), u(t)) + <c/(t), u(t)> VteI\E. 

Relations (78), (79) and (84) imply 

pT !*T pr 
lim a(Uk, u) dt = a(u, u) dt + <<r, w> d t . 
fc->oo J 0 J o J o 

This result and relation (76) give 
rT FT 

lim a(Uh, u — U/c) dt = {a, u} dt. 
fc-»oojo J o 

As a(Un, u — Un) ^ a(u, u — Un) we obtain from (72) that the right-hand side 
of the last relation is less than or equal to zero. This result together with relation (82) 
gives (77). 

From the assertion of Theorem 2 it is easy to see that whole sequence {Un} con­
verges to u in L2(I; V). Theorem 3 is proved. 

In the case of Problem 2 we can prove the general result: 

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then 

lim |Un - M IL2(J;K) = 0 
n->oo 

where {Un} is a sequence of Rothe's functions. 

Proof. Using the functions (42), (51) —(53) we obtain from relation (33) (we 
write n instead of r) 

(85) T{(Un , vn - Un) + 0(Un - un, vn - Un\ - (/„, vn - Un)} dt ^ 

l*T 

= a(um Un - vn) dt 

where vn = vn(t) is an arbitrary step function of the form 

(86) vn(t) = g\ t e ( t , _ ! , tf], gleK (i = 1, ..., n) . 
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We have u(t) e L2(l; V) and u(t) e K Vt e I. Let us set 

1 
(87) 

Лt 
U(T) dx , 

As z'1 e K we can define a step function zn(t) of the type (86) by setting gl = zl. We 

have (see [9]) 

(88) zn->u in L2(I;V). 

Let us set vrt(t) = zn(t) in (85) and let us pass to the limit for n -» oo. Owing to (88) 
and Lemmas 2, 3 we find that the left-hand side of (85) tends to zero. Thus 

rr 
limsup a(un(t), Un(t) - zu(t)) dt = 0 . 

H-+00 J 0 

Using again (88) we see that the last relation implies 

lim sup a(un(t), un(t) — u(t)) dt ^ 0 . 
w-»oo J O 

Using Corollary 2 of Lemma 1 and the same argument as in deriving relation (72) 
we find 

rт 
lim a(u(t), ӣn(t) - u(tj) ăt = 0 . 

n -> oo J 0 

The last two relations together with the strong monotonicity (11) imply 

lim sup J]un — W | | L 2 ( J ; F ) — 0 • 
n-»-oo 

Using this result and Corollary 2 we obtain the assertion of Theorem 4. 
If we consider an arbitrary convex set K in the case of Problem 4 we can prove 

only the following result: 

Theorem 5. Let the assumptions of Theorem 2 be satisfied. Then for every sequence 
{(At)n}9 where (At)n -> 0, we can find a sequence of finite element convex sets Kn 

such that we have 

l im \\Un - M||L 2(J;F) = °> 
«—> 00 

where {Un} is the corresponding sequence of finite element Rothe's functions. 

Proof. For every (At)n let us construct z 1, ..., zn (n = TJ(At)n) by means of (87). 
Let us choose the corresponding triangulation ZTn (and thus the finite element 
space Zn — or simply the parameter hn) in such a way that 

(89) I K - - 1 i = C*((̂ 0»)£ 0 - 1 . •••>») 
where vl e Kn is the finite element approximation of z\ e is an arbitrary positive fixed 

number independent of n and C* is an arbitrary positive constant independent of n. 
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Using the functions (43), (51)-(53) we obtain from (40) relation (85) where now 

(90) vn(t) = g\ te(tt-uu], g'leKn (i = l , . . . , n ) . 

Let us set gl = vl in (90). Then we easily find by means of (88) and (89) that 

(91) vn->u in L2(I;V). 

Passing to the limit for n -> co in (85) we find owing to (91) and Lemmas 2, 3: 

lim sup 
т 

a(u„{t), U„(t) - v„(t)) dř S 0 • 

The rest of the proof is the same as in the case of Theorem 4. Theorem 5 is proved. 

4. SOME ERROR ESTIMATES 

For greater simplicity we restrict ourselves to the case V = H0(-3). The convex 
set K will be defined by 

(92) K = {v e Hl
0(Q): v = 0 a.e. in Q] . 

In this case Green's theorem gives (under the condition that u is sufficiently smooth) 

(93) a(u, v) = -(Au, v) Vv e H\(Q), 

where A is the operator generating the form a(-, -); in the case of Example 1 we have 

d I /i , ix dus 

]~dx~; 

Au = — ( m(|grad u|) 
dxt \ 

We shall consider only domains Q with polygonal boundaries and the approximate 
solutions defined by Problem 4. 

Theorem 6. L£t the assumptions of Theorem 1 be satisfied and let K be of the form 

(92). Let the solution u of problem (1), (2) be such that 

u e C(I; H2(Q)) , u e L2(I; HX(Q)), 

ueL2(I;V*), Au e C(I; L2(Q)) . 

Then we have 

max \\ul - CF|0 + { A t £ \\ul - U'||2}1/2 S C(h + At + ||u0 - U0^), 
i = l r / = ! 

where U1, . . . , Ur is the solution of Problem 4 and C is a constant independent of h 

and At. 

Proof. According to [8], for every v e H0(O) there exists an interpolate I^v e Zh 
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such that 
IhveKh = Zhf)K if veK, 

(94) ||v - Ihv\\j = C hk-J\\v\\k (j = 0, 1; fc = 1, 2 ) . 

According to [16], for all v, w, z from Hl(Q) we have 

(95) |a>(v, w) — co(z, w)| ^ T\V — z\x \w\t 

where the form co(-, •) is given by (32) and T is a constant independent of v, w. z 
and such that 

0 < T < 0 . 

Let us set t = th v = Ul in (29) and v = I^u1 in (40), where ul = u(tt). Multiplying 
(29) by —At and (40) by — 1 and adding up the resulting inequalities we obtain 

(96) At(u\ el) + (AU\ Ul - Ihu
l) + 0At(u\ e% + OA^U', Ul - Ihu

i)l = 

= At G)(U£_1, Ul - I„ul) + At co(u\ e{) + At(f'\ el) + At(fl~\ U'1 - I„uf) , 

where 

(97) el = ul - UJ'. 

Let us set 

(98) i/' = ul - I„u'. 

Then 
Ul - I;ju< = ;f - el. 

Let us write A U1 in the form A Uf = Au* — Ae'andletusaddAt^u1"1, el + rf) — 
— co(u l_1, el + u1)] to the right-hand side of (96). Using (32) we obtain after re­
arranging the terms in (96): 

B[ +At(Bi
2-\B

i
3\)^iBi

k + At1£Bi
k, 

k=-4 k^l 

where 

Bi = (Ae\ el) , B2 = 0(e\ ei)l , 

B3 = c0(u l '-\ el) - cofi1'1, el) , Bi = (Ae\ rf) , 

Bj. = {Aul - Atii\ el) , Bl
6 = ~(Au\ rjl) , 

Bij = (Af\ el) , B< = (fl~\ if) , B< = 0(e\ r,% , 

Bl
l0 = co(u\ el) - cofa*-1, el) , Bl

u = 0(Au\ rji)1 , 

B[2 = co(Ul~\ rf) - co^'1, t]1), Bi3 = -a{ul-\ nl) • 

Let 1 = m — r and let us denote 

m 

Sk = I,Bk (fc->4,...,13). 
> = i 
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Then we can write 
m m 7 13 

YB\ +AtY(Bi
2-\B

i
3\)^YJSk + AtYSk. 

i = l i = l fc=4 k = 7 

We have 
m 

V Rl > l\\pm II2 - i l l ? 0 II2 

ZJ Ul = 2\\e || 0 2\\e || 0 ' 
i = l 

Using (95) and Friedrichs' inequality jv|2 ̂  QJH|i w e obtain 
m m 

AtYiB't-m^MAtYWeTt-irAVW, 
i = l i = l 

where M = (O - T) C0 > 0. The last three inequalities imply, for At ^ 2/T, 
m 6 13 

(99) ||e
m||2 + 2MJ^ih1|i ^ \\e°\\l+2lZS* + 2At^St. 

i = l fc = 4 fc = 7 

Now we prove that the following estimates hold: 
m 

(100) 2S4 ̂  i |e»|g + | e ° | | 2 + W^t I |e'||? + 
i = l 

+ ^ p||C(/;H2(!Q)) + Ch PI|L2(I;HH«)) ' 
m 

(loi) 2S5 ̂  |M^X ||e'-||2 + cjt2|al£1(/.v.), 
i = l 

(102) 2S6 :g Ch2(|u||22(/.„1(n)) + ||tt||a;H.(0))). 
m 

(103) 2 ^ t S 7 g IMzK^lle ' l2 + CAt2 , 
i= 1 

(104) 2zkS 8 ^Ch2\\u\\C(I.HHan, 

m 

(105) 2<4rS9 g \MAtX ||e'|i + C/T2 | |W||CU;H2(0)) , 
i = l 

m 

(106) 2zl.S1 0 g *M.4.-£ie'|i + Cdi2 |u| | i , ( I iH . (n ) ) , 
i = l 

(107) 2 Jt S t l ^ CAt2\u\2
Ll(I,HHQ)) + C/j2||u||c(/^(n)). 

m 

(108) 2A tS 1 2 S WM\e°\\2i + iMAtX ||e'||f + 
i = i 

_| ^-t» 2 || || 2 
~ ^ n | |w | | c (J ;H 2 ( -Q)) > 

(109) 2 At Sis ^ C/i2|u||C(/;H2(0)) | |-4M||C(I;L2(0)) . 

First we prove (100). We have 
m - l 

(110) S4 - « „«) - (e°, r,1) - £ («', ^ i + 1) = 
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< \\pm\\ IUmll 4- IU°II HwMI a . V IIP'II I I / 1 M 1 ' + 1 I I — W 11° I n 11° + II II1 I n 11° + 2... \r IIo \\^n ||o • 
/ = i 

Relations (94), (98) and Taylor's theorem give 

(111) l^'llo S Ch2\ui\2 S Ch2\\u\\ |C(J;H-(ß)) : 

(112) 
Ur]l + 1\\o й Ch\\Aui + 1\L û Ch ůdt ú ChlAt \\ů\\ldt\ 

Inserting ( i l l ) and (112) into (110) and using inequality (46) several times with 
various values of y we obtain (100). 

Now we prove (101). We have, according to the formula for integration by parts 
[4, p. 148], 

z> < (ŕ), řz> dř , (113) f" (t,_t - t) <«(0, z> dt = r,_! <_!„', 
J * i - 1 

where z e Kh a K c= Hl(Q). Integrating again by parts we find 

(114) - <u(t), tz) dt = <z, u(t)> dl - (u\ t(z) + (ti**"1, .Vjz) = 
J t i - i J ? i - i 

= <Au*, z> - l£<wl", z> + t ^ ^ u ^ ' 1 , z> , 

because <v, w) = (v, w) if v e L2vO) and w e V = Hl(Q). Inserting (114) into (113) 
we obtain 

(115) ' (*,_! - l) <u(r), z> dl = (Au* - Atu*, z) . 
J f i - i 

Using (115) with z = el we get 

m tVf m f r t i ^jl/2 

(116) S5 = At£ \<u(t),el)\dt^ Al£ i ^ M N | * d ' f M i ' 
i = l J f i - i i = l t J ti-x j 

Relation (101) follows from (116) by means of inequality (46). 
Relations (102)-(109) can be proved similarly by means of (93), (95), (111), (112) 

and (46). Inserting (100) —(109) into (99) and using the standard argument we easily 
obtain the assertion of Theorem 6. 
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Souhrn 

APROXIMACE PARABOLICKÝCH VARIAČNÍCH NEROVNIC 

ALEXANDER ŽENÍŠEK 

V článku jsou studovány různé aproximace parabolické variační nerovnice (l), 
kde a(u, v) je nelineární eliptická forma mající potenciál J(v), který je dvakrát 
G-diferencovatelný pro libovolné v e H1^). Tato vlastnost formy a(v, w) umožňuje 
dokázat konvergenci přibližných řešení definovaných linearizovanými schématy (33) 
a (40). Schéma (40) je plně diskretizováno — v prostoru metodou konečných prvků 
a v čase Eulerovou diferenční metodou (levá strana implicitní, pravá strana explicitní 
formulí). Silná konvergence jak v prostoru C(I; L2(Ú)), tak v prostoru L2(l; ff^O)) 
je dokázána bez jakýchkoliv předpokladů o hladkosti přesného řešení. V závěru 
článku jsou provedeny odhady chyby za dodatečných předpokladů o hladkosti řešení. 
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