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1. FORMULATION OF PROBLEMS

We shall approximate in various ways the following problem: Find a function
u: I — V with the following properties: 1) I = [0, T], 0 < T < oo and Vs a Hilbert
space satisfying Hy(Q) = V = H'(Q); 2) u(t) € K for almost all t € I, K being a closed
convex subset of V; 3) u e AC(I; Ly(Q)) N L(I; V), it € L,(I; L,(Q)) and relations
(1), (2) are satisfied:

(1) (a(t), v — u(t)) + a(u(t),v — u(t)) = (f(1),v — u(t)) VwekK
VteI\E,,

(2 u(0) = up ek,

where it = du/dt, E, is a set with the property mes E, = 0, the symbol (-, -) denotes

the scalar product in L,(Q) and Q is a bounded domain in the x;, x,-plane with

a sufficiently smooth boundary I The norm in V' is induced by the norm “ . H1 in

H'Y(Q); |o|f = |2 + |v]7 = (v, v) + (grad v, grad v). (The norm in the space

H*(Q) will be denoted by |-, the seminorm by |-|..) Further, we assume that

(3) ~ feC¥(I; Ly(Q)).

All notation concerning the function spaces is the same as in [10].
The space V will have the form

4 V={veH(Q):v=0on I},

where I'; is part of the boundary I' such that mes I'; > 0. Finally, we assume that
the form a(v, w): H'(Q) x H'(Q) - R has a potential J(v) (this means that there
exists a functional J(v): H'(Q) — R which is G-differentiable at arbitrary v € H'(Q)
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and satisfies
Q) a(v,w) = J'(v,w) Vo, we H(Q)

(for more detail see [2, Chapter 2])) and that J (v) is twice G-differentiable at arbitrary
v e H'(Q) and has the following properties:

(6) JO) =0, J(0,w)=0 YweH(Q),
(7) |J7(v, w, 2)| £ Ba|wls |z|1 Yo, w, ze HY(Q),
(8) |77 (v, w, w)| = Bi|w|} Vv, we HY(Q),

where B, f, are positive constants not depending on v, w, z.

The assumptions (5)—(8) have the following consequences: 1) the form a(v, w)
is linear in w; 2) the form a(v, w) is hemicontinuous, i.e. A » a(v + Az, w) is a conti-
nuous function on R for all v, w, z € H'(Q); 3) if we use Taylor’s theorem in the form

J'(o+y,0)=J(0,0) + J"(w + N, ¢, )
where 0 < 8 < 1 and o, ¢, { are arbitrary functions from H'(Q) (see [2]), we find

that the form a(v, w) is bounded, coercive, strongly monotone and lipschitz with
respect to v:

©) |a(v, )| = Bafoly W]y Vo, we HY(Q),

(10) a(v,v) = Byfo|} Vve HY(Q),

(11) a(v,v — w) — a(w,v — w) = ByJo — w|] Vo,we H'(Q),
(12) la(v, w) — a(z, w)| £ Ba|o — z|; [w|s Vo, w,ze HY(Q);

4) if we use Taylor’s theorem in the forms (see [2])
J(v) = J(0) + J'(0,v) + 3J"(v, v, v),
Jw) = J(@) + J'(0,w — v) + 3J" (v + 3w — v),w — v, w — v),
where 0 < 3 < 1, we find
(13) 1Bufoff = I () S 3Bseli Voe HY(Q),
(14) a(o,w — v) + J(v) = J(w) Z —3Bav — w|i Vv,we H'(Q).
Example 1. We give an example of a(v, w) and J(v) satisfying (5)—(8). Let
m(s) € C*([0, c0)) be a function with the property
(13)] B = ac—is[s m(s)] < B, V? e [0, ),
where 1, B are positive constants. Let us define a function

FO) = [[s o) s.
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Using the function F(y) let us define a functional

J(v) = J. F(|grad v]) dx,
Q
where
|grad o| = /[(dv/0x,)* + (0v[ox,)?] .
According to [2, Chapter 2] we have

J'(v, w) = 4 F(|grad (v + 9w)|) dx
dg J,
After a simple calculation we find that J(v) is the potential corresponding to the form

(16) a(v, w) = J m(|grad v|) éa_v_ M 4.

i i

9=0

In (16) and in what follows the summation convention over a repeated subscript
is adopted. Further,

(17) 70, w, 2) = [2?5 J(o + 9z, w)_J _

3=0

= | {m'(n) n~* ézﬁ.ﬁﬂ+m(n)ﬁzv_z dx,
o 0x; 0x; 0x; 0x; 0x; 0x;

where m'(s) = dm(s)[ds and # = |grad v|. In [16], estimates (7), (8) are derived
for J"(v, w, z) defined by (17).

Example 2. We give an example of a problem the variational formulation of which
is of the form (1), (2). Let us consider the following initial-boundary value problem:

(18) P <m(¢f)@‘—> =f in Q@x(0,7T],
(3)6,- 6x,-
(19) u=0 on I,,
0 0
(20) w20, m)5 20, MHuT =0 on Iy,
(21) u(x,0) = ug(x), xeQ,

where ¢ = |grad ul, f satisfies (3), I'; is the same as in (4), I', = I' — I'y, m(s) is the
function from Example 1, u, € H'(Q) and 9/dv is the normal derivative. Let us define

(22) K={veH'(Q):v=0o0nTIy,v=0o0nTI,}.

Then K is a closed convex subset of V. Let us multiply (18) by an arbitrary function
veK and integrate over the domain Q. Using integration by parts and Green’s
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theorem we obtain
(23) (i, 0) + a(u, v) — J m(é)g—uvds ~(f,v) Wwek,
o v
where a(u, v) is given by (16). According to (19) and (20,), we have u € K. Thus
relations (20;) and (23) imply

(24) (i, u) + a(u,u) = (f,u).
Relations (20,) and (22) give

25) Jm(&)alvdng VoeK.
: s ov

According to (23) and (25) we have
(26) (i1, v) + a(u,v) = (f,v) VwekK.

Substracting (24) from (26) we obtain (1). Thus problem (1), (2), where a(u, v) is
given by (16) and K by (22), is a variational formulation of problem (18)—(21) (under
the condition that the right-hand side of (21) belongs to K).

We give four approximate formulations of problem (1), (2). Let us start with the
discretization in time. We introduce 4t = T/ r, ¥ being a natural number, and consider
the partition of I = [0, T'] with the nodes '

t; = idt (i =0,..., r).
We set
It = 1)
and define Problem 1: Find U*eK (i = 1, ..., r) such that

) LU= U - U Ul - UY 2 (e - U)Wk,
t

(28) U’ =u,ek.

We have obtained (27) from (1) by means of the implicit Euler’s method.

To solve Problem 1 means to solve an elliptic variational inequality with a nonlinear
elliptic form a(u, v). Thus we shall define another discrete problem where this non-
linearity is removed. To this end let us write inequality (1) in the form

(29) (1), v — u()) + O(u(t), v — u(r)), =
> o(u(t),v — u(®)) + (f(1), v — u(t)) VoeK Viel\E,
where O is a constant satisfying

(30) 0 > B,[2
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and the forms (-, ),, w(-, -) are defined by
(31) (v, w), = (grad v, grad w) ,
(32) o(v, w) = O(v, w); — a(v, w) .

Discretizing the left-hand side of (29) by the implicit Euler’s method and the right-
hand side by the explicit Euler’s method we come to Problem 2: Let U° be given by
(28). Find U e K (i = 1, ..., r) such that

(33 (U= U = U) 40U - U, 2
t

2 o0 o= U)+ (ff - UY) YveK.

Let us point out that the test functions v — U’ are the same on both sides of (33).

The remaining approximate problems will be obtained by discretizing Problems 1
and 2 in space. We shall use the finite element method: Let us triangulate the domain
Q,i.e., let us divideitinto a finite number of triangles in such a way that two arbitrary
triangles are either disjoint, or have a common vertex, or a common side. (If a part
of the boundary I' is curved then each corresponding boundary triangle has one
curved side which is part of the boundary I'. Thus we only consider ideal curved
triangles which were defined in [14].) Every interior triangle, i.e. a triangle having
at most one point common with the boundary I', has straight sides only.

With every triangulation J we associate two parameters h and 3 defined by

h=maxhy, 9= minJ;
TeT TeT
where i and 3, are the length of the greatest side and the magnitude of the smallest

angle, respectively, of the triangle with straight sides which has the same vertices as
the triangle T. We restrict ourselves to triangulations satiysfying

9=29,, 9 =const>0.

A triangulation with this property will be denoted by 7.

On every triangulation 7, we define a finite dimensional space Z, with the following
properties:

a) Z, = C(Q);

b) every function v e Z, is uniquely determined by its values prescribed at the
vertices P; of the triangles of 77, (the vertices P; will be called the nodal points of 77,);

¢) the restriction of v € Z, to an arbitrary interior triangle is a linear function.

In the case of a polygonal boundary I" the space Z, is formed by piecewise linear
functions. The definition of the restriction of v € Z, to an ideal curved triangle can be
found in [14].
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If a convex set K = Vis defined by a condition (C prescribed on a subset A of Q)
then we define the finite element approximation K, of K in the following way: K,
consists of those functions of Z, which satisfy condition (C) at the nodal points
P;e A.

In this paper we restrict our considerations to convex sets K which satisfy

(34) K, K Vh,
(35) C*(Q)nK =K,
where the closure is taken in the norm | | ;.
The convex set K defined by (22) has both the properties (34) and (35). Property
(34) is evident because in the case of (22) we have
K,={veZ,:v=0o0nTI,v=0o0nI,}

and Z, < H'(Q). The proof of property (35) is a special case of the proof of [5,
Lemma Al].

Using (35) and the interpolation properties of functions from Z, we can prove
in the same way as in [13] (see also [3, pp. 134—135] or [6, p. 31]) that

(36) lim inf |jw — v,,Hl =0 Vwek.

h—0 vheKp
It follows from (2) and (36) that there exists u,, € K,, such that

(37) lim |[ug — ugs|; = 0.
h-0

Discretizing Problem 1 in space we obtain Problem 3: Let K, be given. Let
(38) U° = uy,ek,.
Find U'e K, (i = 1, ..., r) such that

(39) j—(Ui UL o — UY) 4 a(Uho — UY) 2 (fy 0 — U) WoeK,.
t

Finally, discretizing Problem 2 in space we come to Problem 4: Let K, be given.
Let U° be defined by (38). Find U’ € K, (i = 1, ..., r) such that

(40) i(U" - UL -U)+ 0U,v—UY) =

At
20U o= U)+ (fi"Yv - U) Yvek,.

It can be proved in the same way as in [1] that each of Problems 1 and 3 has only
one solution. Now we prove existence and uniqueness of the solutions of Problems 2
and 4. Let us write inequality (40) in the form

(41) bULv - U) 2 (v — U) Yoek,,
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where

b(o W) = - (0. w) + O, W),

l(v)— U’lu)~l—w(U’lu)-i-(f‘1 v) .

The bilinear form b(v, w) is symmetric, bounded on V x Vand V-eliptic,
@COHUHf < b(v,v) YveV,

where C, > 0 is the constant from Friedrichs’ inequality; the linear form I(v) is
bounded in the space ¥V and K, is a closed convex subset of V. Thus, according to
[3, Theorems 1.1.1 and 1.1.2], inequality (41) has a unique solution U'e K. The
proof in the case of Problem 2 is the same (we only replace K, by K).

In the case of Problems 1 and 2 let us define an abstract function U,(I) by the relation

+ %(Uf — U, teltionty], i=1,..,r.
t

42) U()=uU!
The function U,(t) is a continuous extension of the solution U°, UY, ..., U" of Problem
1 (or Problem 2) to the whole interval I.

Bock and Kacur [1] proved that problem (1), (2) has a unique solution and that
the sequence {U,(1)} generated by the solutions of Problems 1 converges for r — oo
to the exact solution of (1), (2) in the space C(I; L,(<)). They did not use assumptions
(5)—(8) concerning the form a(v, w); they only assumed (9), (10) and the mono-
tonicity of a(v, w) on K:

a(v,v —w) —a(w,o —w) 20 Vo,wekK.

However, their assumptions concerning the initial value u, are stronger.

The first aim of this paper is to prove, under the assumptions (5)—(8) concerning
the form a(v, w), that the sequence {U,(t)} generated by the solutions of Problems 2
converges for r — oo to the exact solution u(f) of problem (1), (2) in the space
C(I; L,(Q)). This will be done in Theorem 1.

In the case of Problems 3 and 4 let us define an abstract function U“(t) by the relation

43) Uv(n=U"t+ t —Atti—1 (U = U™Y, tefticnt], i=1,..r,

where & = (h, 4t). In what follows we shall consider a sequence {U} of functions
belonging to the set {U’} and its subsequences. The sequence {U”} will be chosen
in such a way that

6, = (hy,, (41),) >0 if n— .

It is essential that h, and (4¢), are mutually independent. For greater simplicity
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we shall use the symbol U,(t) instead of the symbol U*(t). The symbols {U,}, {U}
will denote subsequences of {U,}. Instead of the symbols of the type hm HU""I the

symbol Ilm NU “ will be used.

Instead of the symbol K, which denotes the approximation of K corresponding
to the triangulation 7, , we shall use the symbol K.

In accordance with [1], the functions U,(t) defined by (42) will be called Rothe’s
functions. In order to stress the discretization in space, the functions U,() defined
by (43) will be called the finite element Rothe’s functions.

In Section 2 the convergence of the sequence of finite element Rothe’s functions,
which are generated by the solutions of Problems 4, in the space C(I; L,())is proved.
In Section 3, the convergence in the space L,(I; V) is studied. In Section 4, under
additional regularity assumptions, some simple error estimates for the solution
of Problem 4 are presented.

2. CONVERGENCE IN THE SPACE C(I; L,(Q))

In this section we study in detail the convergence of the finite element Rothe’s
functions (43) corresponding to the solutions of Problems 4. The method of the proof
is based on the compactness and monotonicity method. In Lemmas 1—3 the exist-
ence of a limit function u(t) is established and in the course of proof of Theorem 2
it is shown that u(t) is the only solution of problem (1), (2).

Similar results can be obtained for Rothe’s functions (42) corresponding to the
solutions of Problems 2 (see Theorem 1).

Lemma 1. The solution U’ (i = 1,...,7) of the implicit-explicit scheme (38), (40)
satisfies the following relations:

HU"‘”l <cC 1=m<zr) Vr,

A
3

.illlﬁUiH% <cAt (1smsr) Vr,

IIA

c

IIA
3

<r) Vr
where
AU = U - UL,

In Lemma 1 and in what follows the symbol C denotes a positive constant independ-
ent of h, At and n and not necessarily the same at any two places.

Proof. We follow the ideas used in the proof of relation [16, (3.16)]. To the both
sides of (14)let us add the expression @|w — v|}. Denoting x = @ — B,[2 > 0 (see(30))
we obtain
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(44)  Olw —o|f +alv,w—v) = x|w — o]} + J(w) — J(v) Vo,we H'(Q).

Letussetv = U'~! € K, in (40) and multiply the obtained relation by — 4z. We get,
according to (32),

(45) |4U¥|§ + 4t ©|4U'}} + 4t a(U'™Y, AUY) £ Ad(f*, AUY).
Relation (44) with w = U, v = U'~! and relation (45) imply

|4U?

$+ % AU} + 41[J(UY) — J(UI™Y)] £ 44(fP72, AUY).
Let us sum up this relation from i = 1toi = m and use (13) and Friedrichs’ inequality
|4U*|} = Co| AU'|3. After summing by parts on the right-hand side we obtain

)

i=1

laui|3 + %CoAti |aut
i=1

|} + 1CoBy At|U™|} <

< 1B, 41| U°F + 4t]5°)o |U°]o +

+ At Ho U + 4c Y 45 U7

Using assumption (3) and the inequality
(46) lab] < a®[(2y) + yb?/|2

with various values of y we obtain from the above relation

@) 514013 + e, a1 [aU' + e, aifu <

m—1
Sepdt + ()Y U 1sm<y)
i=1

where ¢;, ¢, are positive constants not depending on m, r, n and h. Relation (47)
implies

o < ¢ + cary o

Using the discrete Gronwall’s inequality we obtain the first relation of Lemma 1.
As At = T|r this relation implies

(43) S oz < cjar.

Inserting (48) into the right-hand side of (47) we obtain the last two relations of
Lemma 1.

Corollary 1. The finite element Rothe’s functions (43) satisfy
(%) @ £ ¢ viel i,
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(50) j uzdr s C .

Proof. Relation (50) is the second relation of Lemma 1 written in another form.
Relation (49) follows immediately from the first relation of Lemma 1, using the fact
that 0 <t — t,_y < At for te[t;_y, 1))

In our considerations we shall need the following step-functions:

(51) (1) =U"Y, teltio,t) (i=1,..,r), #,(T) =U""
(52) U()=U", te(ti-nt;]] (i=1,....,7), T,[0) =U*
(53) L) =171, teltiont) (i=1,..,r), f(T) =f1.

Corollary 2. The step-functions ii,(t), U,(t) and the finite element Rothe’s functions
U, (1) satisfy the relations:

(54) lm@fi=c. |

o T
(56) [ ’

Relations (54)—(56) are immediate consequences of the first and third relations
of Lemma 1 and definitions of functions i,(t), U,(1), U,(1).

Ui =C Vn Viel,

U,(1) — U,(1)]} dt = C(41),,

i,(1) — U(1)|7 dt < C(41), .

Lemma 2. There exist a function u € C(I; Ly(Q2)) n L (I; V) and a subsequence
{U,} of {U,} such that

(57) U —u in C(I; Ly(9Q)),
(58) Ut) = u(t) weakly inV Vtel,
(59) U, —u weaklyin Ly(I; V),
(60) i, —u weaklyinLy(I;V).

Proof. According to (50), we have

J IHU,,(t) dt

¢+

[u.(t) = U)o = SCler =M v, el =[0,T].

0

Thus the functions U,(f) (n = 1,2, ...) are equicontinuous on I in the norm |- .
Relations (49) and Rellich’s theorem (see, e.g., [12, p. 17]) imply that the sequence
{U,(1)} is relatively compact in L,(Q) for every t € I. According to the generalization
of the Arzela-Ascoli theorem (see, e. g., [10, p. 42]), there exists a subsequence
{U,} of {U,} such that relation (57) holds, where u € C(I; L,(Q)).
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Let ¢ eI be arbitrary but fixed. Relation (49) and the compactness theorem (see,
e.g., [2 ,Chapter 1, Theorem 4.2]) imply that we can extract a subsequence {U (1)}
of {U,(t)} converging weakly in ¥ to an element we V. As (z, v) (z € L,(Q) fixed,
v € V) is a linear bounded functional on ¥ we see that also U,(t) — w in L,(Q). Rela-
tion (57) implies that w = u(t).

If {U,(t)} # {U(r)} then there exists an infinite subsequence {U, (1)} of {U,(r)}
with the property that no subsequence of {U,()} converges to u(r) weakly in V.
Using (49) and repeating the preceding considerations we find that a subsequence
{U(1)} of {U,(t)} converges to u(t) weakly in V. Thisis a contradiction. Thus {U (1)} =
= {U,(1)} and (58) is proved.

As the norm |-||; is weakly lower semicontinuous on V relations (49) and (58)
imply

[u(®)]; < liminf |U(1)], £ C Viel.
k= o0

Thus u € L,(I; V).
Relation (49) and the compactness theorem imply that a subsequence {U;} of
{U,} converges weakly in L,(I; V) to an element w € Ly(I; V). As the form

JT(Z(I), v(t)) dt (z € Ly(I; L,(Q)) fixed, v e L,(I; V))

is a linear bounded functional on L,(I; V) we see, according to [10, p. 125], that
also U; = w in L,(I; L,(Q)). Relation (57) implies that w = u. The rest of the
proof of (59) is the same as in the preceding case.

Relation (60) is a consequence of (56) and (59). Lemma 2 is proved.

Lemma 3. The limit function u(t) satisfies (2), u € AC(I; L,(R)), the strong derivat-
ive u(t) exists almost everywhere on I, it € L,(I; L,(2)) and
(61) U, =t weakly in Ly(I; L,(Q)),

where {U,} is the same subsequence of {U,} as in Lemma 2.

Proof. For every t € I and for every k we have
t
(62) (Ud(1), v) — (tops v) = j (U(2), ) dz VoeV,
0

using the notation ug, for u,,. According to (50) and the compactness theorem, we
can extract a subsequence {U,,} of {U,} such that
(63) U, =g weakly in L,(I, L,(Q)) .
Using (37), (57) and (63) we obtain from (62)
t
(u(), v) = (uq, v) = J. (g(r),v)dr VveV.

0
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As Vis dense in L,(2) and as (see [4, p. 126])

f COREE ( ] o9 d )

we get from the last relation

u(t) = up + th(r) dr.

]

Thus u € AC(I, Ly(Q)), u(t) satisfies the initial condition (2) and we have
i) = g(t) aeinl.

The proof of the relation {U,,} = {U,} is similar to the corresponding proof in Lemma
2. Lemma 3 is proved.

Theorem 1. Let K be a closed convex subset of the space V, which is given by (4),
let f be a function satisfying (3) and let the form a(v, w): H'(Q) x H'(Q) > R
have a potential J(v): H'(Q) — R, which is twice G-differentiable at arbitrary
ve H'(Q) and satisfies conditions (6)—(8). Then there exists a unique function
u(t) with the properties

u(t)e K Viel, ueAC(I; Ly(Q))n L(I; V), 1 eL,(I;Ly(Q))

and satisfying relations (1), (2). Further, every infinite sequence {U,} of Rothe’s
functions (42), where U',...,U" is the unique solution of the implicit-explicit
scheme (28), (33), converges to the solution u(t) of problem (1), (2) in the space
C(1, Ly(Q)):

lim |ju — U,Jlciryia0y) = 0
-

Theorem 2. Let the assumptions of Theorem 1 be satisfied and let the convex set K
satisfy conditions (34), (35). Then every infinite sequence {U,} of finite element
Rothe’s functions (43), where U, ...,U" is the unique solution of the implicit-
explicit scheme (38), (40) and where &, — 0, converges to the solution u(t) of problem
(1), (2) in the space C(I; Lo(Q)):

lim ”u - Un”cu;Lz(m) =0.
-

Proof. First we shall prove Theorem 2. Then we shall mention the differences
in the proof of Theorem 1.

We have to prove that the limit function u(t) appearing in Lemmas 2 and 3 has the
following properties: 1) u(t) e K Vt €I; 2) u(t) is the only solution of problem (1),
(2); 3) the whole sequence {U,} converges to u in C(I; L,(<)).

It follows from the assumptions of Theorem 2 that every function U,(¢) is defined
on a closed convex set K, and the sequence {K,,} has the following property: To
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every w € K we can find a sequence {w,}, where w, € K,, such that
(64) lim

n—ow

Moreover,according to interpolation properties of Z,, for every w e H*(Q) n K we have

(65) [w = mwl: < cn

where IT,w € K, is the interpolate of win Z,.

Lemma 4. Let w*e CO(I; H¥(Q)). Let to =0 < t; <ty <...<t, _; <t, =T
be the nodal points of the n-th partition of I into r, subintervals of the length
(41), = T[r,. Let

wa(t) = M(w5(t)), ticg<t=<t, (i=1,....,r,).
Then

W = w* Ly = 0.
Proof. We have, according to (65) and Lipschitz continuity,
T rn ti
[0 - wora=2g " g I +
i= ti-1

+ [we(t) = w3} dr = 27{C max [w(0)|3 b + M(w*) (41)7}

where M| (w*) is a positive constant depending on w* only. Lemma 4 is proved.

Lemma 5. The set &, = {we C*'(I;, H*(Q)): w(t)e KVt el} is dense in the set
Sy ={veLy(I;V):v(t)eKVtel}.

Proof. Let us choose v e &, and ¢ > 0 arbitrarily. Let 7 € &, be a step function

o(t) =z' on [0,1,], #(t)=12", te(ticy,t;]] (i=2,...,n)

such that ||5 — v||,r,», < £/2 (We can achieve it using (87) with At = T/n sufficiently
small). Let M = max |z' — 2|, (i,j = 1, ..., n). Let us choose § satisfying 0 < § <
< ¢?/(4M*n) and let us define

T}:ti—é/z, T,2=tl+6/2 (i=1,--.,n_‘1),

P it
W) =z + Z—f—(t — <) on [th] (i=1,...,n-1),

n—1
W(t) = 5(t) on INU (7:,3, ‘rf) .
i=1

We have |W — ]|, < &2, |W — o] L,av) < & Thus the set &3 = {we C(I; V):
w(f) e KVt €1} is dense in the set &,.

Let us choose ve &5 and &> 0 arbitrarily. Let 6 > 0 be such that
Hv(t’) —o(t")| < ¢/5 for all ¢, 1" el satisfying the inequality |t =] <o
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Letty =0<t; <ty <..<t,_y<t,=T be points for which t,—¢t,_, <9
(i =1, ...,n). Owing to (35) we can find w; e H*(Q) n K such that |w; — o(t;)[; <
<¢5 (i=0,1,...,n). Let us define the function

wi(t) = wi_y + ﬁ:-tﬁu(z— ti)) on [fiipt] (i=1,...n).
i ti-a

Then we have “we(t) - v(t)”l <eVtel Aswyr)e &, we see that the set &, is dense
in the set 5.

Let us choose ve &, and ¢ > 0 arbitrarily. Using the preceding results we can
easily find w e & such ”w - v”Lz(,;V) < & Lemma 5 is proved.

The proof of Theorem 2 is divided into four parts 4)— D):

A) The closed convex set K us weakly closed. Thus, according to relation (58),
we have u(f)e KVt e I.

B) We shall prove that the limit function u(t) is a solution of problem (1), (2). Let
us write relation (40) by means of functions U,(1), (1), U,() and f() in the form

(66) (U1), v — T(1)) + 0(U(1) — i (1), v — T(1))y —
~ (fi1), v — U1)) = a(ii(1), U(t) — v) YveK, VieI\NE Vk,
where mes E = 0. Let us choose a function w* € &4, let us set v = w,(t) for a given
teINE, where w;(f) is the step function from Lemma 4, let us add the term
a(i, (1), w*(t) — u(t)) to the both sides of (66) and let us integrate (66) in (7, 1),
where t' < t” are arbitrary in I. We obtain
[t 5200 - 10 + 000 =m0 5200) - T -
= (), wi(1) = U1) + a(a(0), w(t) = u(r))} di =

2 [ (0. w2() = 510) + @) 0 = o)) o

a(@(1). U) = a((1). w(0) + a(@(0). Ur) = (1)),
(U0, wi(1) = U(1) = (Uu0), wH(1) = u(1)) +
+ (U(1), Wi(1) = w(1) + u(t) — UL(1) + U(1) = U(D)) »
(1), wi(1) = T(1) = (1) = 1 (), W) = V(1)) +
+ (f(2), w*(r) — u(t) + wie(r) — w*(1) + u(r) — Uy(t) + U (1) — U(1))

we obtain after passing to the limit for k — oo by means of Lemmas 2—4, Corollary 2
and assumption (3):

| lim sup ‘[il:a(ak(t), i) — u() dr < j ::(li(t) — F(0), wH(t) — u(i) di +
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"
+ lim sup'[ a(im, (1), w*(1) — u(r)) dt.
k— o0 t’

The right-hand side is bounded by CHW* - u”Lz(,;y). As w* is an arbitrary function
from &, the expression ||u - w*HLZ(,;V) can be arbitrarily small, according to Lemma
5. Thus

(67) tim sup J ::la(ﬁk(t), A1) — u(t)) di 0.

"
The form b(v, w) = J a(v(1), w(t)) dt defined for all v, w e L,(¢, t"; V) is bounded,
y

hemicontinuous and monotone, according to (5)—(8). Thus, according to [11,
Chapter 2, Section 2.4], the form b(v, w) is pseudomonotone and relations (60), (67)

imply
lim inf b(i,, i, — v) = b(u,u — v) Vve Ly(¢',1"; V).

k— 0

Then we also have

(68) lim inf f a0, ) — v) dt = J a(u(t), u(t) — v)
k= o0 t’ t
YveK, Vi,t"el, t <t".

Let us choose v € K arbitrarily. According to (64), we can find a sequence {v,}
such that v, € K, and v, — vin H'(Q). As we have

a(it (1), (1) — v) = a(@ (1), @,(1) — v) + a(ii1), v — v,)

we obtain from (68):

(69) im nf f :a(ak(t), B(1) — v) di = f :ja(u(t), u(i) — v)dt.

Setting v = v, in (66), adding a(i,(1), i, (1) — U,(t)) to the both sides of (66), inte-
grating the result in (t’, t"), where t' < t”, and letting k — oo we obtain, according
to relation (69), Corollary 2 and Lemmas 2, 3:

10 [ (@00~ () + alu()5 = () = (00 = ()} 81 2 0
YveK Vi, t"el, t' <t".

As t', 1" are arbitrary we see that relation (1) is satisfied by the limit function u(z)
and its derivative u(t).

C) Now we prove the uniqueness of the solution. Let us choose w(f) e &, (sce
Lemma 5). We can find a sequence {W,(1)} = &, of step functions such that

w, > w in Ly, V).
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Using relation (70) (which can be obtained by integrating (1)) we can write

j;{(d(r), w,(1) — u(r)) + a(u(z), w,(x) — u(r)) —
— (f(x), Fy(z) — u(x))} dz =2 0.

Passing to the limit for n —» oo we find

J‘;{(ﬁ(r), w(t) — u(r)) + a(u(z), w(r) — u(x)) -
= (f(x), w(z) —u(r))}dr =20 VYweS,.

Let uy, u, be two solutions of problem (1), (2). Setting u = uy, w = u, and
u = u,, w=uy in the last inequality and taking into account the monotonicity
of a(v, w) we obtain after adding up:

(600 = 62000 = wa) 2 = st - w0l <0,

because u;(0) = u,(0) = uy. Thus u,(r) = u,(t) a.e. on (0, T).

D) Let us assume that there exists an infinite subsequence {U,} of {U,} with the
property that no subsequence of {U,} converges to u in C(I; L,()). Using (49) and
repeating all preceding considerations we find that a subsequence {U;} of {U}
converges to a function ¢ in C(I; L,(Q)) and that ¢ is a solution of problem (1), (2).
At the same time ¢ # u in C(I; L,(Q)). This is a contradiction with the uniqueness
of problem (1), (2). Thus {U,} = {U,}. Theorem 2 is proved.

The proof of Theorem 1 is similar to the proof of Theorem 2 but simpler. Lemmas
1—3 hold without any change for sequences of Rothe’s functions U, and correspond-
ing step functions i#,, U,. The situation is simpler because now K, = K and we can
choose v = u(t) (¢ fixed, t € I \ E) as a test function in (66). Integrating (66) in (¢', t")
and letting k — co we easily find (67) and then (68). Choosing v € K arbitrarily,
integrating (66) in (', t”) and letting k — oo we find, according to (68), Corollary 2
and Lemmas 2, 3, that relation (1) is satisfied by the limit function u(t). Parts A, C, D
the proof remain the same. Theorem 1 is proved.

Remark. If K contains zero and satisfies (34), (35) and if u, = 0 then in the case
of Problem 3 we can easily prove convergence of finite element Rothe’s functions
to u in C(I; L,(2)) under the assumption that the form a(v, w) is bounded, coercive
and monotone.

3. CONVERGENCE IN THE SPACE L,(I; V)
In the case of Problem 4, the convergence is proved under réstrictive conditions:
in Theorem 3 we assume a special form of the convex set K, in Theorem 5 the param-

eter h, depends on the parameter (4t),.
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Theorem 3. Let the assumptions of Theorem 2 be satisfied and let K be a closed
convex cone with its vertex at zero. Then, in addition to the results introduced in
Theorem 2, we have

lim |U, — u| ) = 0.
n—oo

Proof. The proof is a generalization of the proof of [16, Theorem 3.1]. Therefore,
the reasoning, which is the same as in [16], is only sketched.
According to (11) and Friedrichs’ inequality we have

2
La(1;v) *

T T
(71) J a(u,u — U,) dt —f a(U,,u — U,)dt 2 C|u — U,

0 0

Let us set F,(t) = a(u(t), u(t) — U,(1))- Then, according to (9) and Lemmas 1 and 2,
|F.(1)] £ B,C(C + 1) V¥n Viel,
han(t) =0 Vtel.

n— o0

All assumptions of the Lebesgue dominated convergence theorem [10, p. 60] are
satisfied; hence

T
(72) limJ- a(u,u — U,)dt = 0.
n—>0,J0

It remains to prove that the second integral on the left-hand side of (71) tends
to zero. First we prove relation (76). To this end let us set v = 0 and v = 2U* in (40).

Summing up the resulting equation from i = 1 to i = r we obtain
(713) Y (AU, UY) + 04t Y, (AU UY), + 4ty (U1, UY) =
i=1 =1 &

- Atél(f"‘l, U,

Let us pass to the limit for n — oo in (73). Using (9), (12), Lemmas 1 and 2 and the
same argument as in the text between (3.26) and (3.27) of [16] we obtain

(74) lim J Ta(U,,, U, dt = '[ :(f, u)dt + 1[u(0)]5 — |u(T)|3 -

n—-»ow JO

Let t e I\ E be arbitrary. Let us set v = 0 and v = 2 u(r) in (1). We get
(75) (a(r) = f(t), u(®)) + a(u(z), u(t)) =0 VieI\E.

Integrating this relation in (0, T) and comparing the result with (74) we find

(76) lim f " a(U,, U,) di = j " a(u, ) dt

n—ow JO 0

27



Now we prove that

r ‘

(77) lim j a(U,u —U)dt =0,
k—+ow JO

where {U,} is a subsequence of {U,}. Let us set

(78) put), vy = a(U,(t),v) YveV.

Taking into account (9) and (49) we see that

b, € Loo(Ia V*) s l

Py L (I;V*) é C’

Therefore, there exist an element ¢ € L, (I; V*) and a subsequence {¢;} of{¢,}such
that
(79) ¢ — @ weakly*in L, (I; V¥).

Letussetv = U’ + zin (40), where z € K, = K,,. Using (32) we obtain
(80) z}—(AU", z) + O(4UL 2), + a(U™Y, z) = (f7Y, 2) VzeK,.
t

Let us choose v € K arbitrarily and let {1}, v, € K}, be such a sequence that

lim Hvk — le =0.
Let us consider a function Y(t) e C*(I) with the property y(#) = 0 and let us set
z = v Y(¢;) in (80). After summing (80) from i = 1 to i = r and after multiplying
(80) by 4t let us pass to the limit for 8, — 0 in the resulting relation. Using (79),

Lemmas 1—3 and an argument similar to that used in the text between (3.24)
and (3.25) in [16] we find

J:{(d(t) — 1) 0) + <ol oD} W() dt 2 0 VoeK Vgec(l),
Y() = 0.

Let M be an arbitrary measurable subset of I and xM(t) its characteristic function.
We can replace Y(f) by xu(t) in the last relation [because the proof of density of
C*(I)in L,(I) implies that we can find a sequence {i;} such that

lim W5 = sty =0 ¥i(1) 2 0
and because i — f e LZ(IJ; E;(Q)), ¢ € L(I, V*)]. Thus we have
(81) (i(r) = f(1),v) + <o(1),v> 20 VoeK Viel\E.
For every element‘ yE LZ(Q) there exists a unique element g, € V* for which

»,v) = {g,,v> YveV
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(see [4, Chapter 1]). Let us set
(1) = 0.(1) = a,(0) + (1.
Then we can write, according to (81),
(82) (o) v) 20 WoeK VieINE
and we have
(83) @@(r) = f(1),v) + <o(t) — o(t),vd) =0 VveK VielI\E.

Let us choose ¢ €I \ E arbitrarily and set v = u(f) in (83). Comparing the result
with (75) we find

(84) <o(1), u(t)> = a(u(?), u(t)) + <o(t), u(t)> VtelINE.
Relations (78), (79) and (84) imply
T T T
limj a(Uy, u) dt =J a(u, u) dt + J {o,u) dt.
k= J0 0 0
This result and relation (76) give
T T
limj a(Uy, u — Uy dt = f (o, u) dt.
k=00 0 0

As a(U,,u—U,) < a(u,u — U,) we obtain from (72) that the right-hand side
of the last relation is less than or equal to zero. This result together with relation (82)
gives (77).

From the assertion of Theorem 2 it is easy to see that whole sequence {U,} con-
verges to u in L,(I; V). Theorem 3 is proved.

In the case of Problem 2 we can prove the general result:

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then

lim U, = uf .50, = 0
n— oo

where {U,} is a sequence of Rothe’s functions.

Proof. Using the functions (42), (51)—(53) we obtain from relation (33) (we
write n instead of r)

(85) J:{(Un’ Uy — Un) + @(Un = Uy, Uy — Un)1 - (_f,,, v, — U,,)} dr =

T —
> [ a(ii,, U, — v,) dt

0

where v, = v,(f) is an arbitrary step function of the form
(86). v(t)=9g", te(tit], g'eK (i=1,..,n).
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We have u(t) € L,(I; V) and u(t) e K Vi e I. Let us set

(87) zi = Ait_[” u(t)dr.

ti-y

As z' € K we can define a step function z,(f) of the type (86) by setting g* = z'. We
have (see [9])

(88) z,—>u in Ly(L; V).

Let us set v,(f) = z,(¢) in (85) and let us pass to the limit for n — oo. Owing to (88)
and Lemmas 2, 3 we find that the left-hand side of (85) tends to zero. Thus

T
lim supj a(ii,(1), U (1) — z,(1))dt £ 0.
n— o 0
Using again (88) we see that the last relation implies

lilil—»sutlp J:a(ﬁ"(t), (1) — u(t))dt £ 0.

Using Corollary 2 of Lemma 1 and the same argument as in deriving relation (72)
we find

T

limJ’ a(u(t), @,(t) — u(r))dt = 0.

n—wy 0

The last two relations together with the strong monotonicity (11) imply
lim sup Hﬁ,, - u”fzu;y) =0.

Using this result and Corollary 2 we obtain the assertion of Theorem 4.
If we consider an arbitrary convex set K in the case of Problem 4 we can prove
only the following result:

Theorem 5. Let the assumptions of Theorein 2 be satisfied. Then for every sequence
{(41),}, where (4t), » 0, we can find a sequence of finite element convex sets K,
such that we have

lim HU,, - uHLZ(I;V) =0,
- 00
where {U,} is the corresponding sequence of finite element Rothe’s functions.

Proof. For every (4t), let us construct z*, ..., z" (n = T/(4t),) by means of (87).
Let us choose the corresponding triangulation 7, (and thus the finite element
space Z, — or simply the parameter h,) in such a way that

(89) “vi — ziul < cx((4r),) (i=1,....n)

where v’ € K, is the finite element approximation of z', ¢ is an arbitrary positive fixed
number independent of n and C* is an arbitrary positive constant independent of n.
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Using the functions (43), (51)—(53) we obtain from (40) relation (85) where now

(90) vty =g, te(ti-y, 1], 9'€K, (i=1,...,n).
Let us set g' = v' in (90). Then we easily find by means of (88) and (89) that
(91) v,—u in Ly(I; V).

Passing to the limit for n — oo in (85) we find owing to (91) and Lemmas 2, 3:

lin:ﬂs;lp f:a(ﬁn(t), U,(1) = v,(t))dt £ 0.

The rest of the proof is the same as in the case of Theorem 4. Theorem 5 is proved.

4. SOME ERROR ESTIMATES

For greater simplicity we restrict ourselves to the case V = H(’,(Q). The convex
set K will be defined by

(92) K ={veHyQ):v=0 ae in Q}.

In this case Green’s theorem gives (under the condition that u is sufficiently smooth)
(93) a(u,v) = —(Au,v) Vve Hy(Q),

where A is the operator generating the form a(+, -); in the case of Example 1 we have

au =2 (m(]grad ul) %")

i i

We shall consider only domains Q with polygonal boundaries and the approximate
solutions defined by Problem 4.

Theorem 6. Let the assumptions of Theorem 1 be satisfied and let K be of the form
(92). Let the solution u of problem (1), (2) be such that

ue C(I; H(Q)), e Ly(I; H(RQ)),
ite Ly(I; V*), Aue C(I; Ly,(Q)).

Then we have

luf — U3} < C(h + 4t + |luo — U°|,),

where U, ..., U™ is the solution of Problem 4 and C is a constant independent of h
and At.

Proof. According to [8], for every v e Hj(Q) there exists an interpolate I,v € Z,
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such that
IveK,=2Z,NK if vekK,

(94) o Je—tpf, s R, (=015k=1,2).
According to [16], for all v, w, z from H'(Q) we have
(95) |o(v, w) — oz, w)| < 1o = 2|, |w],

where the form (-, -) is given by (32) and t is a constant independent of v, w. z
and such that
0<r<0O.

Letussett = t;,v = U'in(29) and v = I,u'in (40), where u’ = u(t;). Multiplying
(29) by —4t and (40) by —1 and adding up the resulting inequalities we obtain
(96)  At(i’, ef) + (AU, U' — Lu') + @4di(u', €'); + 041U, U' — Lu'); £
S Ato(UL U = Lu') + At o(u’, ef) + Ai(f7, e') + Au(f*~', U* — Lu'),

where

(97) el =ul - U'.
Let us set

(98) n'=u' — Lu'.
Then

Ul —Lu' =5 — e

Let us write AU in the form AU' = Au’ — Ae' and letus add At{w(u' "', ¢' + ') —
— w(u'~', ¢ + )] to the right-hand side of (96). Using (32) we obtain after re-
arranging the terms in (96):

6 13
By + 41(By — |Bi[) £ X By + 4t Y, By,
k=4 k=17

where
Bi = (4é',¢), By = 0(', ¢'),,
By =o' ) - oUYe), B, =(4¢,n),
By = (du' — Ati', é'), B = —(du',n"),
By =(4f%¢), By=(f""n"), By =06(\n),
B, = o(u', ¢') — w(u'™1, ¢'), B, = O(du’,n"), ,

BI;Z = a)(Ui_la 7]1) - w(ui_17 ’1i)~: B113 _a(ui_1> ’7')

Let 1 £ m £ r and let us denote
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Then we can write

m m . 7 13
S B+ 413 (B, — [B) £ TS, + 415,
i=1 i=1 k=4 k=17
We have
em

m .
551z e 3 - 4

Using (95) and Friedrichs’ inequality |v]} = C,v]|; we obtain

58— 1) = M e e - e e
i=1 i=1

where M = (0 — 1) Co > 0. The last three inequalities imply, for 4t < 2/t,

m 6 13
(99) le™[2 + 2ma Y ]2 < ]2 + 23 Si + 24t 3 ..
i=1 k=4 k=1
Now we prove that the following estimates hold:

(100) 28, < 3e||5 + [e°

o+ »;MAz.Zlﬂe"H% +

+ Ch*|u2irm2ayy + Chz”‘"“iz(l;m(nw

(tor) 285 < %MAtiil le'l + cA|il s »
(102) 286 < CR([la],crim 0 + [ éamcar) »
(103) 24tS; < iM Atilne"ﬁ + CAt*,
(104) 24185 = Ch*||ucqimeay »
(105) 2418y = %MAtél[]e‘H% + Ch?|[u &2 »
(106) 2 At Syo < ML glue»‘uz Al o »
(107) 24t Sy1 £ CAR|i|) 2oy + Ch*|u] e »
(108) 24t Sy2 = {MAL|e°|] + %;-MAté:‘Heinf +

+ Ch?|ul &y »

=

(109) 241 S35 = CR||ucrncon At cuiraon -
First we prove (100). We have

m—1

(110) S, = (e, ") ~ (e ") —ii/:'l(ei’ Aniﬂ) <
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m—1 .
< oo lmlo + elc In*llo + X lelo 40" o
Relations (94), (98) and Taylor’s theorem give
(111 Ilo 5 CHlulls 5 CHlulsamion-

(11

2) . . it tit1 1/2
[4n' o < Ch|dui*!|, < ChM i dt| £ Ch {Atf a: dt} .
1 1 ti
Inserting (111) and (112) into (110) and using inequality (46) several times with

various values of y we obtain (100).
Now we prove (101). We have, according to the formula for integration by parts

[4, p. 148],

(113) f” (ti—y — 1) Gi(t), z) dt = 1,y {di', z) — f” <ii(t), 1z dt,

where z € K, © K c Hy(Q). Integrating again by parts we find

(114) —f (1), 1) dt=r (o i)y dt = (i, 1.2) + (@2, 1 12) =

= {dut, z) — t;<it, 2> + 1_ T 2D,

because (v, w) = (v, w) if v e Ly(Q) and we V = Hy(Q). Inserting (114) into (113)
we obtain

ti

(115) (ti=1 — 1) <Gi(1), zy dt = (4u’ — And?, 2) .
ti-y

Using (115) with z = ¢ we get

(116) S5 < Ati ) |(ii(t),ei>|dt§Ati {Atf” Hii”*dt}llz |;e,-
i i=1 ti-y

i=1g ti-y

1-

Relation (101) follows from (116) by means of inequality (46).

Relations (102)—(109) can be proved similarly by means of (93), (95), (111), (112)
and (46). Inserting (100)—(109) into (99) and using the standard argument we easily
obtain the assertion of Theorem 6.
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Souhrn

APROXIMACE PARABOLICKYCH VARIACNICH NEROVNIC
ALEXANDER ZEN{SEK

V ¢&ldnku jsou studovdny rtizné aproximace parabolické variatni nerovnice (1),
kde a(u, v) je nelinedrni eliptickd forma majici potencidl J(v), ktery je dvakrdt
G-diferencovatelny pro libovolné v e H'(Q). Tato vlastnost formy a(v, w) umoZiiuje
dokdzat konvergenci pfibliznych feSeni definovanych linearizovanymi schématy (33)
a (40). Schéma (40) je pIng diskretizovdno — v prostoru metodou koneénych prvki
a v ase Eulerovou diferentni metodou (levd strana implicitni, pravd strana explicitni
formuli). Silnd konvergence jak v prostoru C(I; L,(2)), tak v prostoru L,(I; H'(Q))
je dokdzdna bez jakychkoliv pfedpokladit o hladkosti pfesného feSeni. V zdvéru
¢ldnku jsou provedeny odhady chyby za dodate¢nych pfedpokladii o hladkosti feseni.

Author’s address: Doc. RNDr. Alexander Zenisek, DrSc., Oblastni vypo&etni centrum VUT,
Obranch miru 21, 602 00 Brno.
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