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SVAZEK 30 (1985) A PLI K A C E M ATE M A T I KY ČÍSLO 1 

OPTIMIZATION OF THE DOMAIN JN ELLIPTIC PROBLEMS 
BY THE DUAL FINITE ELEMENT METHOD 

IVAN HLAVACEK 

Dedicated to Professor Milos Zldmal on the occasion of the sixtieth anniversary 
of his birthday 

(Received March 9, 1984) 

INTRODUCTION 

The problem of optimal domain in elliptic boundary value problems has been 
studied thoroughly on a simple model by Begis and Glowinski [1]. It is the aim 
of the present paper to extend their results to two further types of cost functional, 
namely to those involving the gradient of the solution of the state problem. Thus 
we minimize (i) the internal energy (i.e., the Dirichlet integral) and (ii) the norm 
of the outward flux. 

A dual variational formulation of the state problem (in terms of gradients) is used 
for the numerical solution and finite element subspaces of divergence-free (solenoidal) 
piecewise linear functions are employed (see [2], [4]). The existence of an optimal 
domain is proved and an analysis of the convergence of piecewise linear approxima
tions presented. 

Let us mention that the state problem with unilateral boundary conditions has 
been studied by Necas and the author in [6] and by Haslinger and coauthors in 
[5], [8] (see also [9]). 

1. FORMULATION OF THE OPTIMIZATION PROBLEMS 

Let us consider the following model problems: Let Q(v) c R2 be the domain 
(see fig. 1) 

Q(v) = {0 < xt < v(x2), 0 < x2 < 1} , 

where the function v is to be determined from one of the twro problems 

(1.0) SIM?)) = min (i = 1, 2) 

over the set of v e tflad. 
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Here 

ągad = he C(0)'J([0,1]) (i.e. Lipschitz function) , 

0 < <x й v й ß, \àvjáx2\ = Cľ , | v(x2) áx2 = CЛ 

áx 

with given constants a, /?, Cv C2; 

(i.i) My(v)) = f |v><») 
J^(y) 

(1-2) /a(K»))- llWHI-i/aJW. 
and j!(v) denotes the solution of the following boundary value problem: 

(1.3) ~Ay=f in fifc), 

y = 0 on F(v) , 

дv 
= 0 on ðfì(i>) - Г(v). 

The function / e l3(Qfi) is given, £2̂  = (0, /?) x (0,1), dyjdv denotes the derivative 
with respect to the outward normal to F(v) and the norm in (1.2) will be defined 
later. In the following, we denote by Hk(Q) the Sobolev space W2

k)(Q) with the usual 
norm ||"||fe,fl and the scalar product (., .)fe)f2, H° = L2. For vector-functions, the 
notation 2 

l4.--(Elk«l*.0)1/a; 

will be used. 

2 

Ľ 
i=í 

(ч,P)k,Q = E f e ^ à f î 

51 



It is well-known that the state problem (1.3) can be formulated in the following 
variational way. Let us introduce the subspace 

V(v) = {we H'(Q(v)) : yw = 0 on F(v)} , 

where y is the trace operator, y: H1(Q(v)) -» H1/2(dQ(v)). 
The weak solution of (1.3) is the function y = y(v) e V(v) such that 

Wy . Vw dx = \ fw dx Vw e V(v) . 
J Q(v) J Q(v) 

There exists a unique weak solution for any v e °ttad. 
Next we explain the sense of the functional $"2 in (1.2). 

Definition 1.1. Let us introduce the subspace 

Vc = {we H\Q): yw = 0 on dQ - F0} 

where F0 is an "extension" of F, such that F c: F0 c dQ, F0 is connected and open 
in dQ and denote 

H1,2(r) = y(Vc) . 

For cp e H1/2(F) we define the norm 

C1-4) IMIi /2 ,E= inf IHkfl-
yv = q> 
veVc 

For the linear continuous junctionals geH 1/2(F) = [H1/2(r)]' ™e define the 
usual norm 

(1-5) M - i / a . r - sup - % - £ . . 
(peHi/-(r) (?) i / 2 , r 

Lemma 1.1. Let g e H"1/2(F) be given and let u e Vc be the solution of the follow
ing problem 

(1.6) (Vu . Vw + uw) dx = <g, yw} Vw e Vc. 
JQ 

Then it holds 

l1-7) ||g||-i/2,r = N k o -

Proof. From the relation (1.6) we obtain, using (1.4) 

<g,9> ^ hh,Q i n f Iklliifl == Ml-.*- lk|i/2.r • 
yw = <p 
weVc 

Consequently, by means of (1.5) we can write 

(1-8) W I - i / 2 . r ^ H l i . - -
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Inserting w = u in (1.6) and using (1.4), we obtain 

H | i U = <g>Y«> ^ ||g | |-i/2,r ||Yw||i/2,r S |g | | - i /2 , r \\u\\i,n • 

Cancelling and combining the result with (1.8), we are led to (1.7.) Q.E.D. 

Definition 1.2. Let y e HX(Q) be such that Ay e l3(Q) exists (in the sense of distri
butions). 

We define a functional dyjdv e H~1/2(F) by the following relation 

(1.9) / ^ , w\ = J (Vy . Vco + co Ay) dx , 

where co is any element ofVc such thatyco = w on F0. 
Next let y = j(v) be the weak solution of the state problem (1.3). Since A3; = 

= —fel3(Q), we can apply the Definition 1.2 and Lemma 1.1 to define a function 
u = u(y(v)) as a solution of the following problem: 

find u e Vc(v) such that 

(1.10) (Vw . Vw + uw) dx = (Vy . Vw + w Ay) dx Vw e Vc(v). 
J :Q(tO J :Q(» 

Using Lemma 1.1 we can write 

(1-11) f2{y{v))=\\u{y{v))\\2
lMv). 

The latter relations will be used instead of (1.2) for the definition of the cost 
functional J?2- Henceforth let us choose dQ — F0 independent of v. 

2. EXISTENCE OF THE OPTIMAL DOMAIN 

In the present Section we shall prove that at least one solution of the problems 
(1.0) exists. 

The solution j;(v) of the state problem for any v e °Uad can be extended by zero 
to a rectangular domain 

Qb = (0, S) x (0,1) , 8 > fi . 

The extended function will be again denoted by y and obviously y e HX(Q^) holds. 
The function f will be extended to Qb by zero, as well. 

Lemma 2.1. Let {vn} be a sequence of vn e %ad Vn. Then a subsequence {vk} and 
element v e ^ad exist such that 

(2.1) y(vn)-+y(v) in H1^,), 

vk -> v in C([0, 1]) . 
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We may write 

(Vym, V(pn)o,nm = ( / , (pn)o,Qm 

for all m great enough. Passing to the limit with m, we obtain 

(Vy*, V(pn)o,Q6 = ( / <P„)o,na • 

Passing to the limit with n, we are led to the relation 

(Vy*, Vw)0fD(tJ) = (/, w)0Mv) ; 

consequently, y* = y*(v) holds. 

Since the definition of ym implies 

||Aym||o,!Qm
 = \J9 ymJ0,Om » 

using the extensions and the weak convergence, we obtain 

(2.6) ||Vym||iU = (L 4 A - (/> 4 A = I M I O A • 

From (2.5) and (2.6) the convergence of norms in Hi(Qs) follows. Consequently, 
the strong convergence (2.1) holds. Q.E.D. 

Theorem 2.1. There exists at least one solution of the optimisation problems (1.0), 
i = 1, 2. 

Proof. Let us consider a minimizing sequence for fu i.e., vn e °Uad, 

(2.7) / i ( y ( 0 ) -» inf /i(y(v)) , n -> oo . 

Let us apply Lemma 2.1 to obtain a uniformly converging subsequence {%} with 
a limit v, such that 

(2.8) /iCK**)) = IvjfcUU - ||vKf)|o,flW = /i(X»)) • 

Combining (2.7) and (2.8) we arrive at the following relation 

inf / 1 (y(v ) ) = / 1 ( j ; (v ) ) . 

Consequently, v is a solution of (1.0) for i = 1. 

The case i = 2. Let us denote by uk the solution of the problem (1A0) on the 
domain Q(vk) = Qk, where y = yk is substituted on the right-hand side. Inserting 
w = wfc in (1.10), we obtain 

(2.9) \\uk\\
2

UQk = f (Vj>* . Vuk + &yk . Mfc) dx . 
J Qk 
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Every function uk will be extended onto the rectangle Q3 as follows: we define for 

vk(x2) < xx < 2v^(x2) 

(2.10) uk(xu x2) = u^(2vfc(x2) - xl9 x2) . 

Thus the extension uk is "symmetric" with respect to the graph of vk. It is easy to 
derive the following estimate for x e Q(2vk) — Qk: 

(2-11) \Vuk(x)\2^(2 + 4(v'k)
2)\Vuk(x*)\2, 

where xs is the "symmetric" point with the coordinates 

x\ = 2vk(x2) - xx , Ns
2 = x2 . 

For points where x{ > 2vk(x2), we define uk = 0. Then using (2.11) we can write 

J |Vu,|2 dx S \Vuk\
2 dx £ C0 j |Vufc|

2 dx , 
J 51.5 - «k J .0(21*) -O f c J Qk 

where C0 does not depend on k and ufc, if vk e °Uad. 
Since 

I uk áx , <A.k U A _ 

IQ6-Qk J Qk 

we arrive at the estimate 

(2-12) K| |U-« f c^Co|WIU-

Inserting AjOT = —f in (2.9), we obtain 

| |W /c | | l , f} f c = | |y / . | | l ,O f c | |M /e | | l ,O f c + | | / | | 0 . O f c ||Wfc||0,fifc • 

Using the boundedness of norms of yk (cf. (2.2)), we deduce 

(2-13) \\uk\\unk^C Vk. 

Combining (2A2) and (2.13), we obtain 

(2A4) | K | U ^ C2(l + C0) . 

Consequently, a subsequence of {uk} (which will be denoted by the same symbol) 
and a function u e H1(QS) exist such that 

(2.15) uk -> u (weakly) in HX(Q^) , fc ~> oo . 

Next let us seek the limit of the right-hand side of (2.9) for k -» oo. We can write 

(2.16) (Vyk, Vu,)0 A = (Vy*, Vuk)0,Qd ~» (Vj!*, Vu)0tOS = (Vy*, Vu)0Mv), 

where the strong convergence of {yk} and the weak convergence (2.15) has been used. 
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Moreover, one easily finds that 

(2.17) Ayk -* Ay* (weakly) in L2(Qd). 

In fact, for any w e I?(Qd) we have 

-(Ay fc, w)0}Qs = (/, w)0,flk -> (/, w)o,fl(I;) = -(Ay*, W)OMV) • 

From (2.15) and the Rellich's Theorem it follows that 

(2.18) ufc -» u in L2(.Q5) , fc -> oo . 

Thus we may write 

(2.19) (Ayk, uk)0tQk = (Ayk, uk)0)D(5 -> (Ay*, U) 0 ,G, - (Ay*, u)0Mv). 

If we substitute (2.16) and (2.19) into (2.9), we obtain 

Let us verify that 

(Vj* . Vu + Aj*u) dx 
Q(v) 

И|lł(p) = w ( y * ) 

in the sense of the definition (1.10). 

First we shall prove that 

(2.21) (Vu . Vw + uw) dx = (Vy* . Vw + Ay*w) dx Vw e Vc(v). 
J Q(v) J Q(v) 

In fact, let a w e Vc(v) be given. Let w e H1^) be the extension of w constructed 
in the same way as in (2.10). Then 

w\ПkeVc(vk) fc 

By virtue of (1.6) and (1.9), we have 

(2.22) ľ (Vuft 
Jßk 

. Vw + ukw) dx (Vyk. Vw + Aykw) dx . 
ß/< 

Using the convergence (2.1) and (2.17), we obtain that the right-hand side tends to 

(Vy* . Vw + Ay*w) dx . I < 
JD(v) 

For the left-hand side of (2.22) we may write 

(Vufc. Vw + ukw) dx — (Vu . Vw + uw)dx 
'k J Q(v) 

< 
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= (Vufc • Vw + ukw) dx — (Vuk. Vw + uhw) dx 
IJ.Qk JQ(V) 

+ [^"k * ^ W + UkW — (Vu . VW + uw)] dx = I n + I2fc . 
Uft(t;) 

On the basis of (2.15) and of the uniform convergence of {vfe}, it holds 

Iifc S |(wfc, w)1)A(^ksD(t,))|| ^ ||fifc||i,nd ||w||ifA(flk,.Q(i?)) -* 0 , 

where 
A(A, B) = (A-B)[J(B~ A) 

denotes the symmetric difference of the sets A and B. The weak convergence (2.15) 
implies that also 

I2fc -+ 0 . 

Consequently, passing to the limit in (2.22) we obtain (2.21). 
The subspace Vc(Qd) is weakly closed in H1^). Since uk e FC(.Q,5), the weak 

limit u e Vc(Qd) and therefore 

U\Q(V) G yc(v) • 

From the uniqueness of the solution of (1.10) we conclude that 

u\Q{v) = u(y*) . 

Inserting w = u(y*) into (2.21) we obtain 

|Ky*)li,«(y) = I (Vy* • Vu(j;*) + Ay* u(y*)) dx . 
JQ(V) 

From (2.20) and (1.11) it follows that 

fi(y(vk)) = \\uk\
2,Qk - \\u(y*)\\2

lMv) = SiiM • 

Since {%} is a minimizing sequence, v is a solution of the optimization problem 
for / = 2. Q.E.D. 

3. DUAL FORMULATION OF THE STATE PROBLEM 

Since the cost functionals are expressed in terms of the gradient Vy and not in terms 
of the function y itself, it seems to be advantageous to employ the dual variational 
formulation of the state problem. Thus we shall calculate the gradient Vy directly. 
To this aim we have to introduce the space of solenoidal (divergence-free) vector 
functions 

Qo(v) = {<? 6 [L2(Q(v))f : div q = 0 in Q(v) , 

q . v = 0 on dQ(v) - F(v)} . 
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We shall use also the following equivalent definition 

Q0(v) = L e [L2(Q(v))]2 : J q . Vw dx = 0 Vw e V(v)\ . 
I J o(i>) J 

Let us construct the vector field 1 = (lu 12), 

*Xi 

(3.1) Ii(x1 ? x2) = - f(t, x2) d t , I2 = 0 , : 
Jo 

assuming that the integral has sense for x2 = 0, x2 = 1 and almost all x2 e (0, 1). 
It is readily seen that 

div 1 = dlljdx1 = — f in rQ̂  , 

I . v = l1vl = 0 on O^ — rp , 

where F^ = {(xl5 x2) : xx = /?, x2 e (0, 1)} . 
Then a suitable dual formulation of the problem (1.3) is: to find q(v) e Q0(v) 

such that 

(3-2) (q(v), p)0Mv) = - ( 1 , f»)0flJ(p) Mp e Q0(v) . 

There exists a unique solution of (3.2) and 

(3.3) 1 + q(v) = Vy(v) 

holds. (Henceforth 1 denotes everywhere the restriction of the vector field (3.1) onto 
the domain under considerations and y(v) is the weak solution of (1.3)). 

The cost functional fx can be rewritten as follows 

/.(Xt,)) = \\z + i(v)\\20MV) = f*Mv)). 

Using (3.3) in (1.10), (1.11), the cost functional J'2 can be transformed into 

/Mv))=Hq(v))\\Uv), 
where u = u(q(v)) is the solution of the following problem 

.4) í (Vu 
Jfí(o) 

(3.4) (Vu . Vw + uw) dx = [(I + q(v)) . Vw - wf] dx Vw є Vc(v) . 
ß(o) 

Obviously, Theorem 2.1 yields the existence of a solution of the equivalent optimiza
tion problem 

(3.5) f*(q(v)) = min 0 = 1,2) 

over the set of v e °llai. 
In fact, for all w e %ad we may write 

ft(q(v)) = /&(»)) ^ StM) = /?(q(w)). 
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4. APPROXIMATION OF THE DUAL STATE PROBLEM 

Let N be a positive integer and h = 1/N. We denote by ej9 j = 1, 2,...,N, the 
subintervals [(I — l) h,jti] and introduce the set 

laă Ь є *. uh\ej ' =адvл, 
where Px denotes the set of linear polynomials. Let Qh denote the domain bounded 
by the graph rh of the function vh e <%h

ad9 i.e. Qh = Q(vh). 
The domain Qh will be carved into triangles by the following way (see fig. 2). 

•*, 

* * 

Fig. 2. 

We choose a0 e (0, a) and introduce a uniform triangulation of the rectangle 
M = [0, a 0] x [0, 1], independent of vh if h is fixed. 

In the remaining part Qh - 01 let the nodal points divide the intervals [a0, vh(jh)"] 
into M uniform segments, where 

M= 1 + [ ( £ - a 0 ) N ] 

and the square brackets denote the integer part of the number inside. One can find 
easily, that then the segments parallel with the xi-axis are not longer than h and 
shorter than h(a - a0)/(/J - a0). 

One also deduces the following estimate for the interior angles co of the triangulation 

t g G , ^ p ^ ( l + C1 + C?)^. 
p - a0 

Consequently, one obtains a regular family ($~h(vh)} of triangulations, with 

max (diam K) rg h/sin co0 ? 
Ke3Th(vh) 

co0 = arctg (j 
a0 

a0 

(1 + c! + C\ 
>" ) 
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Let us consider the space jVh(vh) of piecewise linear solenoidal (divergence-free) 
functions on the triangulation 2Th (see [2], [4]) and define 

Sh = Jfh(vh) n Q0(vh) = {qhe Jr
h(vh) : qh. v = 0 on dQh - Th} . 

Instead of the problem (3.2) we shall solve the following approximate problem: 
to find qh(vh) e Sh such that 

(4-1) (qh(vh), Ph)0 ,«„ = - (I p")o A ^p" £ Sh. 

There exists a unique solution of (4.1) for any h and any vh e °ilh
ad. 

Lemma 4.1. Let {vh}, h ~> 0, be a sequence oj vhe
(JUh

ad, converging uniformly 
to a function v. 

Then 
q°\vh) - q(v) in [L2(Qd)f for h - 0 , 

where qoh is the solution of (4.1) extended by zero to the domain Qd — Qhandq(v) 

is the solution of (3.2), extended by zero to Q3 — Q(v). 

Proof. We find easily that the limit v belongs to °Uad. It follows from (4.1) that 

| | - fc | |2 <^ || " | | | |-ftll 
||*f | |0 ,D h = | | A | | 0 , % ' \H | | 0 , D h ' 

consequently, 
|| —ft11 <r* II Til r* 
\\q \\o,Qh = \\A\\o,Qf} — L 

and 

(4-2) |q°*| 0 > n 4 ^ C Vft 

holds for the extension qoh. 
Therefore a subsequence of {q0h} exists (and we will denote it by the same symbol) 

such that 

(4.3) q0h~>q (weakly) in [L2(Qd)f for h -+ 0 . 

We can show that 

(4.4) q\Q(v) e Q0(v) . 

In fact, let us consider a w e V(v) and denote by w its extension to Qd by means 
of zero. A sequence {wx}, x ~> 0, exists such that 

wx E C°(D6) , wx = 0 on Qd - Q(v), 

supp wx n F(v) = 0 , 

(4.5) wx-+w in H^Qs). 

There exist a h0(x) such that wx vanishes on T(vh) for h < h0(x) , so that 

W*\QH e V(vh) Mh < h0(x) . 
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Since qh e Sh c Q0(vh), we have 

(q\ vw„)0)fi), = 0 . 
Using (4.3), we obtain 

0 = (q°\ Vwx)o,n, -> (q, Awx)0^ . 

Passing to the limit for % -> 0 and uding (4.5), we arrive at 

(q, Vw)0jO(l7) = (q,V#)0,fld = 0 
and (4.4) is verified. 

Next we show that 

(4.6) q = 0 a.e. in Q& - Q(v). 

In fact, let q 4= 0 on a set E c Q& — £2(v), mes F > 0. 
Let / £ be the characteristic function of the set E. From (4.3) it follows for h -> 0 

that 

( q ° \ XEq)o,o, -* (q. xEq)0 ,^ = ||q||o,E > o . 

On the other hand, we may write 

(q°> XB4)O,Q6 = (q \ q)o,«hnE .= |q°*||ofoh ||q||o,0hnE -* o , 

since (4.2) holds and 

mes (Qh n E) -> 0 . 

Thus we come to a contradiction. 
Let us show that q solves the dual problem (3.2). Let us consider ape Q0(v). 

From Theorem 3 in [3] and from its proof we deduce that a sequence {p*}, n -> 0, 
exists such that 

p*e[C-(Q&)]\p%v)eQ0(v), 

supp px n (dQ(v) - F(v)) = 0, 

PxUheQ0(vh) V / T < / ? 1 ( X ) , 

(4.7) f>* -> p in [I^(.2(v))]2 for % -> 0 . 

In the paper [2] (see also [4]) a projection operator 

rh: [C™(Q&)]2 n Q0(vft) -> jrh(vh) 

has been introduced. The properties of py and rh imply that 

rhp"BQ0{vh) Vfc < / . , (* ) . 

By virtue of (4.1) we have 

(4-8) (q\ rhp%ttth = - (I, r„p*)0 ,fi„. 
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Let us extend rhp' by means of zero and denote the extension by the same symbol. 
We may write 

\(<t°h, rhp%,ns - (q, p%Q6\ g |(q°\ rhP*)0,a6 - (q°\ *>*)o, J + 

+ \(l°h,PXUd-(q,Px)o,ol 

The second term tends to zero by virtue of (4.3). The first term can be estimated 
as follows: 

|(q°", rhp* - p*)0<Q6\ 5S \\q0h\\OtS}6 \\rhP* - p*\0,Qh - 0 , 

where (4.2) and the following result (see Theorem 2.2 in [4]) has been used: 

(4-9) hpx-px\\o,ah^Ch2\\p%,Qs. 

Consequently, using also (4.6), we obtain 

(4-10) (q°\ rhp*)0tOd^ (q, p*)0Mv), h -> 0 . 

Furthermore, we can write 

(4.11) |(I, rhp*)0,Qh - (I, p*)0Mv)\ S \(X, r„p* - p*)0,Qh\ + |(I, p*)0iQh -

~ (I Px)o,w\ - 0 

for h -> 0, if we make use of (4.9) and 

mes A(Qh, Q(v)) -» 0 . 

Passing to the limit in the equation (4.8) and using (4A0)5 (4.11), we obtain 

(<I>P*)OMV) = -(%>Px)o,n(v) • 

From the convergence (4.7) the equation (3.2) follows. Since the solution of (3.2) is 
unique, we arrive at q = q(v). 

On the basis of (4.1), we have 

ßь (4-12) l f l1o A =-(*.«r)o, 

Consequently, using the weak convergence (4.3) and (3.2), we obtain 

||q°"||o,«, = - ( % g°'%,«a - -(11)0.0, = ~(l «J)O,O(,) = 

II ( Ml2 - I! II2 

= ||9W||o,r?(t;) — ||9||o,.Qd ' 

Combining the weak convergence and the convergence of norms, we arrive at the 

strong convergence in [ L 2 ^ ) ] 2 . 

Since q(v) is the unique solution of (3.2), the whole sequence qoh(vh) converges 

to q(v). 
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5. APPROXIMATIONS OF THE FIRST OPTIMIZATION PROBLEM 

Lemma 5.1. Let {vh}, h -> 0, be a sequence of vhe°Uh
ad, converging uniformly 

to a function v. Let qh(v^) be the solution of (4.1). 
Then 

/!(<r>*))-/!(«00) tor h^o, 
where q(v) is the solution of (3.2). 

Proof. By virtue of (4.12) and Lemma 4.1, we have 

/:(<r>*)) = W A . + & «?")o,«h - I* IU. ) + (i i(v))o,BW = s i m ) . 
where the last equation is a consequence of (3.2). 

Theorem 5.1. Let {coh}, h -> 0, be 67 sequence of solutions of the following appro
ximate problem 

(5.1) /?(q*(cofc)) = min , cohe<%h
ad. 

Then a subsequence {coh} exists such that for h -> 0 

c% -> OJ in C([0, 1]) , 

and 

(5.2) , > , * ) - ,(«,) in [L2(<2,)]2 , 

where q0h are the solutions oj (4.1), extended by means of zero, q(co) is the solution 
of (3.2), extended by means of zero and co is a solution 0/(1.0), i = 1. Any uniformly 
convergent subsequence oj {coh} tends to a solution oj (1.0) and (5.2) holds. 

Proof. Let us consider a v e ^ a d . There exists a sequence {%}, fi -> 0, such that 
vh e °Uh

ad, vh -> v in C([0, 1]), (see e.g. [ l ] , Lemma 7.1). 
Since °Uad is compact in C([0, 1]), a subsequence {cofi} and co e $fad exist such that 

coh —> co in C([0, 1]) for h -> 0. By definition, we have 

/?(«*(©-)) =g /?(qBW) Vfi. 

Applying Lemma 5.1 to both the sequences {coh} and {vh}, we obtain 

/ * ( q ( a ) ) ) ^ / * ( q ( t > ) ) . 

Consequently, co is a solution of the optimization problem (3.5), which is equivalent 
with (1.0). The assertion (5.2) follows from Lemma 4.L 

The rest of the Theorem is easy to prove by the argument used above. 

R e m a r k 5.1. The problem (5.1) has at least one solution for any h. 
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6. APPROXIMATION OF THE SECOND OPTIMIZATION PROBLEM 

We have seen in Section 3, that the second cost functional can be written in terms 
of the solution u of an auxiliary problem (3.4). We shall solve instead an approximate 
problem, corresponding to (3.4), using the subspaces 

VI c C(Qh) n V%vh) 

of standard piecewise linear finite elements on the triangulations ^h(vh). 
We define the following problem: to find uh e Vh such that 

(6.1) (Wuh . Vw„ + uhwh) dx = j (1 + qh) . vwh ds Vw,, 6 Vc
h. 

J Qh J Th 

Note that replacing Q(v) by Qh, q(v) by qh e Sh and w by wh e V
c
h, the right-hand side 

of (3.4) can be transformed to that of (6.1) by means of the integration by parts. 
In fact, we have 

(6.2) f [(I + qh) . Vw„ - fwh] dx=[ (1 + qh) . vw„ ds . 
inh J Th 

The approximate second cost functional can be defined by means of (6.1) as follows 

(6.3) J\(vh) = fWW)) = Hl\vh))\\lnh = f (2 + q*) • VH* ds . 
JTh 

Then the optimization problem (1.0) for i = 2 will be replaced by the following 
approximate problem: 

(6.4) J\(vh) = min , vh e <%h
ad . 

To find the relation between the solutions of (6.4) and of the problem (1.0), we first 
have to analyze some properties of the solution of the problem (6.1), namely its 
dependence on the "control variable" vh. 

Lemma 6.1. Let {vh}, h -> 0, be a sequence of vh e %ad, converging uniformly 
to a function v. 

Then a subsequence {uh} oj solutions {uh} of the problem (6.1) exists such that 
for h -> 0 

(6.5) uh-+ u (weakly) in HX(Q^) , 

where uh is the extension of un according to (2.10), "symmetric" with respect to the 
curve Fn, and the restriction 

(6.6) u\Q(v) = u(y(vj) = u(q(v)) 

is the solution 0/(1.10) or (3.4), respectively. 

65 



Proof . Inserting wh = uh into (6A) and using (6.2), (4.2), we obtain 

||w/j||i,iQh = ||* + Q \\o,nh \\v
uh\\o,nh + ||/||o,oh ||Mi.||o,.Qh = C||MA||lfflh, 

so that 

( 6 ' 7 ) I"* 111-Oh = C • 
For the extension uft we may write, using an analogue of (2.11), (2.12) and (6.7), 

the following estimate 

(6.8) ||fiJ|?tOdg(l + C0)C2. 

Consequently, a subsequence of {uh} exists (and we shall denote it by the same 
symbol) such that 

(6.9) uh - u (weakly) in H1^) , u e H1^) • 

Let a w e Vc(v) be given. There exists a sequence {wx}, x -> 0, wx e C°°(S5), wx|^(y) e 

e Vc(V), 

supp wx n F! = 0 , Fx = a.Q(v) - F0 

wx -> w in H ^ ^ v ) ) for % -> 0 . 

Let nhwx denote the Lagrange linear interpolate of wx over the triangulation 3~h\ 
consequently, nhwx e Vc(vh) n C(Qh) Vh. 

Let x be fixed, for the time being. Obviously, we can insert nhwx into (6.1) and use 
(6.2) to obtain 

(6.10) (uh, nhwx)UQh = {(I + qh) . Vnhwx - fnhwx] dx . 
Ji2h 

We shall pass to the limit with h -> 0 in (6.10). Denoting by m positive integers and 

Gm = J(x l 5 x2) : 0 < Xi < v(x2) , 0 < x2 < 1 1 , 

Gm c ^ for h < h0(m). Then we may write 

t6-11) |K> ¥ , ) I A - (", wx)ltGm| = 

= \(UH9 W x ) 1 > G m + (%, 7IftWx - W x ) l f G m + (flfc, 7 l f t W x ) 1 ) f i h _ G m -

- ("• wx)1>Gm| ^ \(uh - u, wx) l f GJ + 

+ \(uh9 nhwx - wx)UGm\ + \(uh, nhwx)1}Qh„Gm\ . 

Consider a positive s. From (6.9) it follows that the first term on the right-hand 
side of (6.11) is not greater than s/6 if h < hx(&, m). 

To estimate the second term, we employ the well-known inequality 

(6-12) ||wx - nhwx\ltQh = Cfc|wx||2fflh = Cfc|wj|2,0d • 
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Combining (6.7) and (6A2), we obtain 

(6.13) \(uh, nhwx - wx)UGm\ = Ch\\wx\\2tQ6 < e/6 
for h < ft2. 

It remains to estimate the third term. For all triangles K e ?Th and h we have 

| |n„W*||i,K = C | | w x | | 2 i K . 

Let Gm be the smallest union U of triangles KG 2Th such that U 3 Qh — Gm. 
Obviously, we may write 

(6.14) mesGm = - + 2ft + \\vk - v\\„ , 
m 

where || * || «> denotes the norm in C([0, 1]). 
Consequently, 

| |^wx | |2
A_G m = ||7rfcwx||

2
>Gmri = £ ||-rhwx||JiK __ C2 £ |wx||._,„ = C2|wx|j^GmH. 

KeGm
h KeGm

h 

Using again (6.7), we may write 

( 6 . 1 5 ) \(uh, -T f cWx) l i f l f c_GJ ^ \\uh\\llQh \\nhWx\\l,Qh-Gm ^ C | | w x | 2 ) G m h . 

Combining (6.11), (6.13) and (6A5), we derive for h < h3(s, m) 

|("/i. %wx)i,„h ~ (w, wx)ljD(y)| g |(ufc, 7irtwx)1>f2h - (u, wx)liGJ + 

+ \(u,^)l,Q(v)-Gm\ ^ fi/3 + C | | w x | | 2 ) G m a + | | tt | | i ,ij ( t ,) | | w x | | l i f l ( t 7 ) _ G w . 

By virtue of (6A4), we conclude for h -> 0 that 

(6.16) (wfl, 7rwwx)1>flh -> (u, wx)ltQ(v). 
Furthermore, we have 

(617) |(1 + q\ Vnhwx)0>Qh ~ (1 + q(v), Vwx)0Mv)\ „ 

„ |(1 + q\ VTI.W - Vwx)0f„h + (1 + q\ Vwx)0 A -

- (1 + q\ Vwx)0,Gm + (1 + q\ ?wx)0iGm - (1 + q(v), Vwx)0,„((l)| = 

g |1 + q\ V(7irtwx - wx))0.„h| + 1(1 + q\ Vwx)0A_GJ + 

+ |(1 + q\ Vwx)0iGw - (1 + q(v), Vwx)0f„(p)| = Iik + /21, + hh • 

Using (4.2) and (6.12), we can write 

(6.18) Ilh = (j|X||o.o, + fiqi|o,flh) „"_*- - _ | 1 A ' - 0 , 
for ft -> 0, 

(6.19) /2ft = (j|X||0iO, + ||,*|o,0h) |VW»1OA-*_ - ° 

for m -» 00, ft < ft0(m), ft -> 0. 
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Finally, making use of (4.3), we obtain 

(6.20) I3h S |(I + q \ Vwx)0jGm - (1 + q(v), Vwx)0,GJ + 

+ |(1 + q(w),Vwx)0fn(I,)-Gm| -

= |(q* - q(f>), Vwx)0,Gm| + |(* + q(^)5 Vwx)0,^(y)_Gm| ~> 0 

for m -> oo, ft < fti(m), ft -> 0. 
Combining (6.17)-(6.20), we deduce for ft -> 0 

(6.21) (1 + q \ V7r,wx)0jfih -> (1 + q(v), Vwx)0,D(l7) . 

We also have 

(6.22) |(f 7iftwx)0,Dh - (f wx)0,^(y)| _̂  

^ | ( f 7T„WX ~ Wx)o,^h| + | ( f Wx)0>Oh - ( f Wx)o,0(p)| ^ 

-^ | | / | | o ,% | | ^ W x - Wx||0,flh + | ( / Wx)o,A(Qh,Q(v))\ -* 0 

for ft -> 0, where (6.12) has been used. 
Passing to the limit with ft -+ 0 in (6.10) and using (6.16), (6.21) and (6.22), we 

derive the equation 

(w, wx)1>fi(fj) = (I + q(v), Vwx)0,r2(t;) ~ ( / wx)0, f i ( i ; ). 

Passing to the limit with x -> 0, we obtain 

("> w)i,«(to = (1 + q(^)- Vw)oifl(p) ~ (/, w)0,fl(p), 

i.e., (3.4) is fulfilled by the restriction u\Q^vy 
The space 7c(fi^) is weakly closed in H1^). Since uh e Vc(Qd), u e VC(Q8) follows 

and u\Q(v) e Vc(v). The uniqueness of solution of (3.4) implies the assertion (6.6). 

Lemma 6.2. Let the assumption oj Lemma 6.1 be satisfied. Then a subsequence 
{ft}, ft -> 0, exists such that 

fUl%))-+f*Mv)) for fi-0, 

where q(v) is the solution of (3.2), f*h is defined by means of (6.3). 

Proof. On the basis of (6.3), (6.2) we may write 

(6.23) SWiPk)) = [ [ ( * + <**) • Vuk - Juh-\ dx , 

where uh is the solution of (6.1). 
Henceforth, we shall denote all subsequences of {ft} by the same unchanged 

symbol. 
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First we have 

| ( 2 , Vu/,)o,,?h ~ ( / , uh)o,Qh ~ ( 2 , V u ) 0 , D ( y ) + ( / , u)o,Q(v)\ ^ 

= |(A, Vuh)0,Qh - (I, Vuh)0Mv)\ + |(2, Vu, - Vu)0,fi(y)| + 

+ | ( / , uh)o,Qh ~ ( / , ^/j)o,.Q(t;)| + | ( / Uh ~~ u)o,.Q(y)| = 

~ Il/i + I2/i + I3/i + ^4/j • 

Using (6.8), we obtain 

l\h = |(2, Vu/,)0, A(.Qh,̂ (tO)| = || W/,|| 1,̂ 11 2||0, A(.Qh,«(y)) ~> 0 * 

From the weak convergence (6.9) it follows that 

I2/.~>0, 14,-0. 

Furthermore, we have 

13/i = II M*||0,.0.5 ||J II0, A(Qh,Q(v)) *"* 0 . 

Altogether, we can write 

(6.24) (I, Vu,)0,.Qh - (/, uh)0^h -> (2, Vu)0^(,) - (/, w)o,«(«>) • 

Next we shall estimate (for q(v) = q) 

|(q\ V « 4 ) 0 A - (q, Vu)0,Q(y)| £ |(q\ V u ^ - (q, Vu„)0,„h| + 

+ |(q, Vw„)0^h - (q, Vfi^ca^l + |(q, Vuft)0,«(y) - (q, Vu)0,oo»| = 

~ ^5/. + 6̂/1 + *-lh ' 

By virtue of Lemma 4.1 and (6.7) we may write 

hh -S 1 q* - q||o,fl, IKIk^ -» ° ; 

using also (6.8), we obtain 

16h = ||q||o,A(ili,,0(»)) | |^*||l,Oa ~* ^ • 

Finally, 

I 7 4 - > 0 

follows from the weak convergence (6.9). 

We combine the latter three results to obtain 

(6.25) (q\ Vuh)0,Qh -> (q, V u ) 0 , ^ } . 

Making use of (6.23), (6.24) and (6.25), we arrive at 

flh(<?(vd) -* $ + *(»). Vu)o>fl(l0 - (j, U)o,0(„) • 
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By comparison of the limit with the right-hand side of (3.4), one finds the assertion 
of the Lemma 6.2. 

Remark 6.3. The problem (6.4) has at least one solution for any h. 

Theorem 6.1. Let {vh}, h -> 0, be a sequence of solutions oj the approximate 
problem (6.4). Then a subsequence {v^}, H -> 0, exists such that 

v£~>v in C([0,1]), 

where v is a solution of the problem (1.0), i = 2. 
The corresponding solutions q\v^) of the approximate state problem (4.1) and 

the solutions uh(q (%)) Of the problem (6.1) converge in accordance with Lemma 
4.1. and Lemma 6.1, respectively. 

Any uniformly convergent subsequence of {vh} has the properties mentioned 
above (the limit is a solution Of (1.0) a.s.o.). 

Proof. Consider an arbitrary ne%ad and a sequence {nh}, h -> 0, such that 
Ik e #2* Vh-*n in C([0, 1]) (see [1] - Lemma 7.1). 

Since °Uad is compact in C([0, l]), a subsequence {vh} and v e tylad exist such that 
vh -> v in C([0, 1]). 

By definition, we have (see (6.3), (6.4)) 

(6.26) Jl(vK)^jl(m) Vh. 

Applying the Lemma 6.2 to both sequences in (6.26), we arrive at 

/ ! («?(f)) = /*(«.(>?))• 

Consequently, v is a solution of (3.5), which is equivalent with (L0). The rest 
of the Theorem is obvious. 

7. SEVERAL REMARKS ON THE NUMERICAL SOLUTION 

To solve the approximate optimization problems (5.1) and (6.4), respectively, 
one has to apply some algorithm of nonlinear programming (see [10], [11] et al.). 
It is well-known, that an efficient algorithm requires the knowledge of the gradient of 
the cost functional. 

To calculate the gradient, one can use the method of an adjoint problem. We shall 
sketch the latter approach briefly on the example of the problem (5.1). 

We may write 
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where {\\JJ}\ are the basis functions of the space Sh, Xj are real coefficients and denote 

vh(ih) = vi9 i = 0, 1, ...,N. 

Then 

fì(чXvh))=jh(v,x(v))^Ąv), v e Г 1 

and the approximate state problem (4.1) takes the form of the following system 

of n linear equations 

(7.1) A(v)x = ^ ( v ) 

(see [7] — Lemma 2.2). 

The problem 

(7-2) A(v)Z = f(v,X(v)) 
dx 

is called adjoint to (7.1). It is not difficult to derive that 

V^)=^(, ; x W ) + ^ J ^ ^ x W 

~1T 

í, 

where £ is the solution of (7.2). 

The matrices 

% dJF dA(v) 

dv dv dv 

can be assembled from "local" increments, i.e. from those parts connected with 

single triangular elements. For details, see e.g. [9], where an analogous optimization 

problem has been solved. 
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Souhrn 

OPTIMALIZACE OBLASTI V ELIPTICKÝCH ÚLOHÁCH 
DUÁLNÍ METODOU KONEČNÝCH PRVKŮ 

IVAN HLAVÁČEK 

Vyšetřuje se úloha najít optimální část hranice oblasti pro kombinovanou okrajo
vou úlohu s Poissonovou rovnicí. Účelový funkcionál je buď (a) vnitřní energie, tj. 
Dirichletův integrál nebo (b) norma vnějšího toku hranicí. 

K numerickému řešení stavové úlohy se užívá duální variační formulace — pro
střednictvím gradientu řešení, a prostory solenoidálních po částech lineárních funkcí. 

Dokazuje se existence optimální oblasti a některé konvergenční výsledky. 
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