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INTRODUCTION

Let T, b and le R*; ¢, ¢ eLw(O, T) be given. Our aim is to solve the following
optimal control problem: to determine the function ¥ in some reasonable class
of functions in such a way that the generalised solution u = uw(t, x) of the problem

ou Y(u %u
(I.1) o + —a(;) =b e on (0,T) x (0, w),
(1.2) u(t,0) = o(t) on <0,T),
(1.3) u(0,x) =0 on (0,0,
(1.4) lim sup |u(t, x)| =0

x- oo te{0,T)

may minimise the functional

(15) j :[uw(t, ) — o] dr .

The exact definition of the generalised solution is given in Appendix.

In Section 1 we specify among other the class in which we shall look for the func-
tion ¥, keeping in view the requirement of its numerical realization. The methods
of numerical solution of the problem are described in Section 2. Finally, in Section 3,
a numerical example is given. Some auxiliary theoretical results are summarized
in Appendix.

This problem appeared in connection with mathematicalmodelling of gas chroma-
tography. I should like to dedicate my article to the memory of its inspirer and my
adviser, Dr. Karel Boéek, from the Institute of Hygiene and Epidemiology in Prague.
My thanks are due also to Dr. Oldfich John, from the Faculty of Mathematics and
Physics of Charles University in Prague, for very valuable suggestions and remarks.
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1. PARAMETRISATION OF THE PROBLEM,

Let K be a compact subset of R” and for all a € K let a function ¥, € CZ(RI) be
defined so that ¥, and ¥ are bounded functions and v is Lipschitz continuous.
Let T, b, I be positive numbers; let ¢ and ¢ be fixed elements of the space Lw(os T)-
Let us write u, for the generalised solution of the boundary value problem (I.1),
(1.2), (1.3) and (1.4) for = y,. We want to determine « € K so that

(1.1) LT(u,(t, 1) — &1))* dt < j:(u,,(t, 1) — &(1))? dt

foralla e K.
Let us remark that @ € L(0, T) implies u,(+, x) e L (0, T) for all x e <0, o).
Conditions for the existence of a solution of this problem are formulated in Appendix.
The coefficient , in the equation (I.l) is closely connected with the distribution
coefficient of two substances in the chromatographics column, which is to be esta-
blished from the chromatogram &(1) (&(¢) describes the time distribution of the con-
centration of the investigated matter in the gas substance at the end of the column).

2. METHOD OF NUMERICAL SOLUTION

To obtain the numerical solution of the problem, the following steps are to be
executed:

1. To find an adequate method for the numerical solution of the ““direct’ problem
(I.1), (1.2), (1.3) and (I.4). Let us write i, for the approximate solution of this problem
foraeKand ¥ = y,.

2. To define an adequate approximation of the functional

P(u) = Jj(u(t, ) — &(1)* dt

(by means of a quadrature formula). Let us write @ for this approximative functional.

3. To give a method for the minimisation of the function I(a) = &(i,) on the set K.

Ad 1. Since the problem is defined on a rectangular domain, the finite difference
method will do the job.

Let N, M be positive integers and let L> 0, L> [. Put t = TN~ !, h = LM~ ..
Denote by uj, the value of a numerical solution at the point (nt, mh). The boundary
conditions (1.2), (1.3) and (I.4) are approximated in a natural way:

(2.1) ug = ¢(nt) for n =0,1,..,N,
(2.2) u? =0 for m=1,2,...M -1,
(23) uyy =0 for n =0,1,...,N.
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The discrete approximation of the equation (I.1) is of the form
(2.4) (1 + 2bpeh™2)uptt — bypth~2upty — byth™2u)" =
— [0 = 260 = ) oh T+ [B(1 — n) Th — ) T
+ [b(1 = n)th™2 + ' (up) th™ ] up,
for n=01,...N—1, m=12...M-—1

where n € {0, 1>. Changing the parameter n we get the spectrum of different schemes
(n = 0 gives the explicit method, n = 4 the Crank-Nicholson method, n = 1 the
implicit method). Passing from the n-th to the (n + 1)-st time step we solve the
system of linear equations. The matrix of this system does not change.

The situation when the practical calculations are performed, is characterized
by an additional condition

(2.5) inf {y/(x),xeR'} =6 >0.

In this case it is easy to see that the explicit finite difference scheme (which is the one
exclusively used) is stable if th™% < 1/(2b) and h < 2b6~'. The methods introduced
are modifications of standard methods used for the numerical solution of linear
parabolic problems (see for example [1]).

Ad. 2. In order to approximate our functional ¢ we use the simplest formula:

N
(26) é(w) =T. Zl(w'l'i - é(n_[))Z ) w = {w:;l}mfll .22....M];|
o(u) ~ ®({u(nt, mh)}) ~ o({u}})
Rt=1, ReN.

Ad 3. To minimise the function I we use a certain modification of the conjugate
gradient method. In every iteration of this method we must know the values of the
mappings I and grad I. We shall study possible methods of calculation of the value
grad].

1. The direct method
Put
(2.7) vp(a) = grad up(a) for n=0,1,...N, m=0,1,...M.

We can use the following recursive formulae for the calculation of these values.
Let ¢, be sufficiently smooth.

(2.8) vy =vhy =0 for n =0,1,...,N,
(2.9) W’ =0 for m=1,2,...M—1,

Il
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(2-10) opt = (1 = 2bth™2) o], + (bth™% — Spi(ul) th™ ) ol | +
+ (bth™2 + dg(up) th™ ) vj_ — Sth™*(grad, y.(u)) +
+ Ya(un) o) (upey — upy)
for n=01,...N—1, m=1,2,... M —1.

Further, it is evident that
N

(2.11) grad I(a) = 21 Y vj(uf — &(n1))
n=1

where Rt =1, ReN.

2. The dual method

Let us denote
(2.12) a =(ay, a5 ...,a,)" forall aek,
(2.13) u' = (uf, ul, ... up )T for n=20,1,..,N,
e I ELT R g ()8

ou" ou'| Oul'yy_ 4
k k
(2.15) du” _ %> for k=0,1,...,N.
da 0a;)i=12,. M-t
’ ji=1.2,....p

Let us remark that all calculations are performed with an arbitrary sufficiently smooth
function @ of (M — 1).(N + 1) variables. In our particular case

0P u
- = 2t(uy — &(n7)) Og; -
ou’
Let us define the mapping:
(2-16) JiRY I X R x R > R, 1 =(f1 S Sue1)T s

S1(vgs ooy Oy (s Ay oy @y €) = bh™ (e — 20y + vy) — 3Wi(vy) (v, — ) AT,
filvgs s oy gy @y, ooy, €) = bh™2(v;_ — 20; + vj44) —
—a(v;) (vj4y — V)™, j=2,3,. M =2,
Faa1(Vrs oo Oy @y ey @y €) = bh™ vy, — 20y ) + Ti(vpr— 1) var—oh Tt
Then the explicit finite difference method for our problem can be written in the form
(2.17) utt = u" + o f(u", a, p(nt)) for n=20,1,...N -1,

u®=0.
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Hence we have

R [ LT b G )
u da Oa

da da
for n=0,1,...,N—1; du®/da=0.

In this formula the standard notation is used. Further, it is evident that

N Nood du't XM=/ oul 0P ou’
2.19 rad I(a —_—— = — L, — ).
(2.19) & (a) = ,Z: ou' da igl j; <6u1' da, ou; 6ap)
Let us define vectors gte R ™! for n = 0,1,....,N +1; i =0,1,...,N so that

(2.20) g"=0, n=i+1,...N,N+1,

FENT
(221) gi = (5_“’_) ,

ou'

(222) gi=4g"""+ < f(u a, (p(nr))> gt n=0,1,..,i—1.

Then

i—1

) S8 = ) G- S = 3 [l - o] -

d

it . du’+1 _du’ o du’
___L (g;!-*'l)T +(g]+1 _ g{)T = 1.
j=o da da da

Using (2.18), (2.20), (2.22) and the last formula we obtain the relation

od du’
@) 0 S L 0(79)-
=0
Put
N
(2.25) =Yg, n=01,...,N+1.
=0

Using (2.19) we may write
(2.26) gradI(a) = Z (gf“)T f(u’ a, p(jr)) -

The sequence of the vectors {g"}N* solves the difference equation

(2.27)

T
gn — gn+1 + 7 <ai;f(un, a, (p(n,[))> gn+1 + <
u

ENT
aq)) for n=N,N—-1,...0
ou"
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with the initial condition
(2.28) g"tt =0,

because

ou"

T H\T
gt + r(f—nf(u”, a, w(nf))) gt + (6¢> -
u

y n a T n n al n n
=) [gi“ +T (—nf(u”, a, <p(nr))> gi“] tai= Y ditag=g".
i=n+1 ou i=n+1
Denote
(2.29) g" =Pl )" for n=0,1,...N +1

and put p§ =py =0, n=0,1,...,N + 1. Using (2.16), (2.27) and (2.28), we
obtain

(2.30) pi = (bth 2 — Y, (ui_) 3th ) pit{ +
+ (1 = 2bth™2 — y(u}) 3ch~Mufy, — ui_ ) P+ +
0P

+ (bth™2 + Yy(ufe,) 3th™Y) il + P

for n=N,N-1,...,0, i=1,2,....M —1;
Pt =0 for i=1,2,...M—1.

Further, it is evident that

3 Lierao(m) - - (6‘1’3(“?) ey = “?-l) .

oa; 2h ie1,..,
j=1,.., P
Hence we have
(2.32)
N M-1 1f, N n n
i7((“1""’(11’);. _TZ Z p{+la¢a(ui)ui+l _ui—ly k= 1729”-91"
Oay =0 i=o oa, 2h

The algorithm for the calculation of grad I(a) dy means of the dual method is
now quite clear. It is apparent that the dual method is more advantagenous than the
direct method, if p is sufficiently large. Evidently, the method introduced is closely
connected with the known principle of Lagrarge multipliers. Its vatious generaliza-
tions are often used for the solution of optimal control problems of mathematical
physics (see [2]).

Let us now give a sketch of our modification of the conjugate gradient method.
Denote
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ay ... the initial approximation of the solution,

Iy ... the maximal number of iterations,
k, ... the number of iterations executed,
@yp, - - . the approximation of the optimal solution obtained by our method.

Let K bea p-dimensional bounded interval {dy, h;» X ... x {d,, h,»>. Thealgorithm
of the method can be described as follows:

1. We choose a, € K and put k; = 0. .

2. ky + 1 > k.

3. If ky > I, or grad I(a,) = 0, we put a,,; = ao. The calculation is finished.
4. Weput s, = —[grad I(a,)]".
5

. We put (so); = 0 for all j = 1,2,..., p satisfying [(ao); = h; &(s,); > 0] or
[(a0); = d; & (s0); < 0.

6. If s, = 0, we put a,,, = a, and the calculation is finished.

7. We calculate o € M, so that I(a, + aoso) < I(ae + as,) for all w e My, where
M, = {0 = 0; a0 + aso € K}.

8. Weputa, = a, + oyS,-

9. If there exists j such that (s,); was replaced by zero in step 5 we put a, = a,
and go back to step 2 of the algorithm.

10. Foralli = 1,2, ..., p we execute
a. ki +1- k.
b. If ky > I, or grad T(a,-) = 0, we put a,,, = a; and the calculation is finished.

grad I(a;) . [grad I(a;)]"
grad I(a;_,) [grad I(a;_)]"’
S; = —[grad j(ai):'T T Mmisi-q

c. Weput m; =

d. Wecalculate o; € M; such thatI(a; + a;s;) < I(a; + as;)forallae M, ,
where M; = {a = 0,a; + as; €K} .

e. Weputa;,, =a;+ os;
11. We puta, = a,., and return to step 2.

The just described minimisation method is based on the Fletcher-Reeves algorithm,
which is included in the standard user’s library of the computers of series EC (sub-
routine FMCG). This algorithm serves to the determination of the local minimum
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of a nonconvex nonlinear function of many variables defined on R", n € N. By a simple
modification we obtain our method, which is suitable for the minimisation on multi-
dimensional bounded closed interval. A survey of the methods, which are often used
for numerical solution of optimal control problems, is given in [3]

If for example K = (dy, hy) x {d,, hy) x ... x {d,, h,> N {x;f(x) =z}, [ is
a nonlinear continuous function, we may combine the method introduced above
with the method of penal function (see Section 3).

The one-dimensional minimisation needed in steps 7 and 10d of the algorithm
was taken over from subroutine FMCG. We shall not describe its algorithm here.

3. EXAMPLE

In this section we describe one numerical experiment, which can serve to the
practical identification of the distribution coefficient. For a large concentration of the
investigated matter in the gas substance the distribution coefficient k, is given by
a known constant (K ), for a small concentration by an unknown constant (a, + K;),
which is greater than K,(a; > 0). Our aim is to identify the value a, and the values
a,, a; that determine the interval in which the value of the distribution coefficient
“passes” from a; + K, to K;.

Putting
(a, + K, for ye(—o,a,),
‘[ (t — ay)* (a; — 1)*dt
(3]) k1(y7a1’ aZ’ a}) = a1 ~ =+ K1

f‘h(z — a,)? (a5 — 1)* dt

for ye<a,, a3y,
K, for y e (a3, ©)

we obtain a reasonable expression for the distribution coefficient. k(+, ay, a,, a3)
is a piecewise polynomial nonincreasing function from C*(R"), k, = k,[{a,, as) is
the unique polynomial of the fifth order which satisfies k(a,) = a, + K, k;(a3) =
= Ky, ki(a;) = K{(a;) = 0, i = 2,3. In every real situation the physicists are able
to determine positive constants K;, i = 2, ..., 7so that a, € {K,, K3), a, e {K,, K5,
ay € (K¢, K;». Further (d/dy) (y - k4(y, a)) = 0. Hence we choose

(3-2) Ry = {(‘11, asz, 03)5R3;K2 fa;=K;3;,K, 20, 2K <Kg=a3= K7} >

d
R, = {(als a,, as) € Rs; 111()’: a) = @ (y . kl()’, a)) = 0} s

K =R NR;; a=(a,,a2,a3); p=3.
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The function ¥.() is given by

(3.3) Vily) = .

1+ S(y . ky(y, a))

where K is a known positive constant. The problem of minimisation of the function
T on K can be replaced by the problem of minimisation of the function I + K, . p
on the cartesian product of the intervals Ry, where K, is a sufficiently large positive
real number and p a suitable penal function corresponding to the condition which
defines the set R,. We choose

(3.4) pla) =0 forall aeR, for which min {hy(y,a),y =0} 20,
p(a) = [min {hy(y, a), y = 0}]* = hi((a, + a5 + (a3 + a3 — a,a;)'/?)[3, a)

in the other cases.

Possible numerical difficulties connected with the case when 1 + hy(-, a) is not
a positive function can be removed with the help of the following adjustment of the
function y; (which does not change the value of this function on K):

(3.5) Viy) = h2<1 N %(y (o, a)),

K
T V]€<K10, w)y

Ks_, . 2Ks
Ko Ko

> ?’)G(—CX),KI()),

where K, is a small positive real constant.

In our numerical experiment ¢ = v(-, l) was used, where v is the solution of the
problem (1.1), (1.2), (I.3) and (1.4) with y(v) = av, a is a fixed positive real number
and ¢(tf) = 1 on 0, 1>, ¢(t) = 0 on <{t,, T). Using the Laplace transform, we
obtain:

2 t 1 2 2
3.6 o, x) = —.e(“/Zb)x.x.J — e T Ol 4 |
() ) \/7"' max (0,1~ 10)4 \/(brs)

In this case we can check the correctness of the numerical result by an immediate
comparison.

Finally, let us look at the result of a particular example. Put: © = 0-01, h = 0-1,
b=051,=15,T=6,1=4,L= 12,1, = 07, K, = 09, K, = 0-01, K5 = 09,
K,=01,K;=04,K; =06, K, =09, K =2, Kg =1 and K;, = 0-1. In this
example the values of the function ¢ are the approximative values of the function
v(+, 4) with a = 1, calculated from (3.6) by means of simple Simpson’s quadrature
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Table 1. Iterations of the modified conjugate gradient method for the particular example described

in the text
Item aq a, a, 771 ~1(:11, a,, as)
1 0-6000 0-1200 0-7500 0-001879
2 0-5694 0-1000 0-7435 0-001642
3 04484 0-1000 0-7144 0-001038
4 0-3275 0-1000 0-6854 0-000549
5 01288 0-1000 0-6377 0-000175
6 0-1047 0-1583 0-7054 0-000150
7 0-0919 0-1894 0-7416 0.000146
8 0-1036 0-2539 0-8153 0-000118
9 01153 0-3185 0-8891 0-000098
10 0-1170 0-3280 0-9000 0-000095
11 0-1163 0-4000 0-9000 0-000090
12 0-1157 0-4000 0-9000 0-000090

formula with the step 0-005. As we can see from Table 1, the computation is finished
after the twelfth iteration. The vector (ay, a,, a;) = (0-1157, 0-4000, 0-9000) gives
a good approximation of the exact value y' = 1 (k,(x, a) = 1-0157 on (-0, 0-4),
ky(x, a) = 09 on {09, ), k,(x, a) € €0-9, 1-0157)), the “best uniform” approxim-
ation gives the vector (0-1, 04, 0-9). Let us remark that the calculation of grad I(a)
was executed with help of the direct method.

Remark: For the convergence of the minimisation iterative methods the choice
of the initial iteration is important. When it is convenient to have an initial iteration
in our method in the form of a linear function (Y(u) = du, & > 0) we can use the fact
that for all x > 0 and a > 0 there exists a unique point ;.. e(to, oo) at which
the function v(-, x) given by formula (3.6) has its maximum. The function a — T},
with the fixed x > 0 is an injective mapping of the interval (0, o) into the interval
(to, o0). The inverse mapping is defined by the formula

(37) a={x*to. [—1Tpax + 1[(Trax — to)] +6b10g [(Trax — o)/ Tmax J}'* -

Let there exist precisely one point at which the function ¢ has its maximum. Let us
write T for this point. Then we can put

(8 a={E[-1T + (T — 1o)] + 6blog[(T — o)) T}

if the expression on the right hand side is defined. -

APPENDIX

The appendix contains some theoretical results concerning our problem. Lemma 1
proves the existence of a solution of a certain integral equation which is, as Lemma 2

119



shows, the classical solution of the problem (I.1)—(1.4). The principle of mono-
tonicity for parabolic operators contained in Lemma 3 is used to prove the uniqueness
of the solution of (I.1)—(I.4) in Lemma 4. In Theorem 1 the results of Lemmas 2
and 4 are summarized and the correctness of the definition of the generalised solution
is shown. Theorem 2 establishes conditions of existence of the solution of our optimal
control problem. ‘

Denote

(A1)
t
T, o(t, x) = ij X @b o(t — t)dr, (t,x)e<0, Ty x <0, ),

NIANNCS!

(A.2)

l t + o0 z )
T, v(t, x) = — ot — 1, x — z) ———— . e F4qzdr, (1, x)e 0, T x
2 o1, ) JHH_OO( N (1. 9)e . T

x <0, ),

where ¢ and vare arbitrary functions such that the integrals on the right hand side
of these relations exist. Let

(A.3) h: €0, TY x (—o0, o) = <0, T) x <0, ),
h = (hy, hy), hy(t,x) =1, hy(t,x)=|x|.

Lemma 1. Let y € C'(R") and let ' be a bounded function on R'. Let ¢ € C(0, T)
and ¢(0) = 0. Then there exists a unique continuous and bounded solution u =
= u(t, x) of the integral equation

(A4)  u(t,x) =T, o(t,x) + To(Y cuoh)(t,x),(1,x)e <0, T x <0, oo>".

Let uy be an arbitrary function, continuous and bounded on {0, T) x {0, c0).

0

Then the sequence of functions {u,},-, defined by the recursive formula

(A5)  u,(t,x) =T, ¢(t, x) + To(Y o ty—y o h) (8, x), (1, x) € €O, T> x <0, c0)
converges uniformly to the function u.

Proof. Let p e R!. Let us write C(T",)00 for the Banach space of all functions that
are continuous and bounded on the set <0, T) x <0, o), with the norm || =
= sup {|o(t, )| e 7*; (1, x) € 0, T x <0, o0)}. Let us define the operator T': C{¥’, —
> CP,,Tu="Tip+ T,(youoh), p=4b~"sup{y'(£)>;¢eR'}. Then for all
u, ve CP, the inequality | Tu — Tv| < %|u — v| is valid. Using the Banach fixed
point theorem, we obtain the assertion of the lemma.

Lemma 2. Let y € C*(R"), y' and y" be bounded functions and let " be Lipschitz
continuous. Let ¢ € C'(<0,T)) and ¢(0) = 0. Then the continuous and bounded
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solution u of the equation (A.4) is the classical solution of the boundary value
problem (1.1), (1.2), (1.3) and (1.4); du[ox is a bounded function on (0, T» x (0, o).

Proof. Let uy = 0 and u,,, = Ty¢ + T5(Y o u, o h). By elementary considera-
tions and calculations we obtain the following results: the functions @ [ dt[ Ty¢],
0| ox[Ty¢], 0*[ox*[Ti¢] are defined, continuous and bounded in (0, T x (0, );
moreover 0 [ 01[Typ] = b 0* | 0x*[Typ] = Ty¢'; du, [ dx exists for all ne N and
(t,x)€(0, T) x (0, 0); the function du,/dx is continuous and bounded on its

domain and satisfies

%nz[whn[a(“’ ? °h)] n=012...
Ox 0x

e (t,x)e(0, Ty x (0, w)} ,

0
Denote L = sup ¢
0x

X, = sup{‘%‘—" e Pt x)e(0, Ty x (0, oo)} n=01,...,
X

Y, = sup Oty1 _ Oty e Py, x)e(0, TY x (0,00)% n=0,1,...,
0x 0x
Z, = sup {|u,y — u,| e " (1, x)€(0, T x (0,00)} n=0,1,...,

p=4b""sup {(y'(¢)*;EeR'} .
Then it is evident that
(A6) Zn+1 < ‘%Z" ) Z, § (L) Z() s Xn+1 = %Xn + L’

X, < (4)'X, +Z DL n=01,2,..,

Oyrz _ Oyiy _ T, [(,/,f(unﬂ)c_“n_ﬂ _ ‘l’t) 4 (W () —

0x ox 0x 0x

— y'(u,) ai) . hh;] n=0,l,...
oxX

Since " is a bounded function and the sequence {X,} is bounded (see (A. 6)) there
exists a positiveconstant RsothatY,,; < 1Y, + RZ, Hencewehave Y,,, < 1Y, +
+ RZy(L) Y, < (3)" Yy + n(3)" ' RZy, n = 0, 1,.... This fact evidently implies
the uniform convergence of the sequence {du, [ dx};-, on (0, T) x (0, c0). Further,
it is clear that du/dx exists on (0, T) x (0, c©), du[dx is continuous and bounded

on its domain, ou,[0x = du|ox,

ou oYouoh I%
=T, A ouoh) +5[Tl<p].

0x 0x
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Analogously we can prove the existence of continuous and bounded functions
0%u,[0x?, du,[ot (for all n e N), 0*u/0x® and du[ot defined on (0, T) x (0, 00) and
the uniform convergence of the sequences {0?u,[0x*} and {0u,[dr} to 0%u[dx* and
6u/(')t, respectively. In addition, we have

92_‘2‘.0, X) =T, [M:I 2 [Tyo] + T )J ‘z‘ﬁ_’i(‘_“f_(l))

ox 0x?

X — x2/(4bt) ou _ 6( oU o h)
e dr, —(t,x)=T,| """+ —[Tyo],
4b 73 o (%) 2[ ot 8t[ ]

where
ou(t, )% dult x)

0x x=0+ 0X

By repeated use of integration by parts and other simple adjustments we obtain
from the above formulae that u solves the equation (I.1). It is easy to see that u
satisfies the conditions (1.2), (1.3) and (1.4).

Lemma 3. Let functions a and ¢ be defined on (0, T) x (0, 1). Let functions u
and v be continuous on 0, T) x <0, Iy and let du[ot, dv[dt, *u[ox* and d*v[dx* be
continuous on (0, T) x (0, [). Let b be a positive constant. Let

ou %u ov 0%

A7 ——b——a(t,x)u —c(t,x) — < — — b— —
(A7) ot ox? (1) ( )x ot ox?

—a(t,x)v — (1, x) Z—U on (0, T) x (0,1),
X

(A-8) u(t,0) < ov(t,0) 1e<0, T,
(A.9) u(t, 1) < o(t, 1) te0, T,
(A.10) u(0, x) < v(0,x) xe<0,I).

Then u(t, x) < v(t, x) for all (t, x) € <0, T) x 0, I).

Proof. Letusputw=v — u, M = {te(0, T);3x€(0,/), w(t,x) < 0} . We assume
that M is a nonempty set. Let us denote t, = inf {1, t € M}. Then there exist sequences
{t,} = M, t, > t, and {x,} = (0, I) so that w(t,, x,) < 0. We may suppose that {x,}
converges. Let us denote x, = lim x,.. Evidently, (f,, xo)€(0, T x (0,1), w(to, xo) = 0,
ow[ot(te, xo) < 0, w[0x(to, Xo) = 0, 0*w|dx*(1,, xo) = 0. Hence we obtain a con-
tradiction with our assumptions.

Lemma 4. Let y € C*(R"), ¢ € C(€0, T)) and ¢(0) = 0. Let u = u(t, x), v = v(t, x)
be classical solutions of the problem (1.1), (1.2), (1.3) and (1.4). Let 0u|0x be a bounded
function. Then u= v.
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Proof. Let us put w = u — v. Then

Qw:%i;}——b_——a(t x) w(t, x) — c(t, x) (I x)=0,(t,x)e(0, T) x

(A.11) x (0, ),
w(0,x) =0, w(t,0)=0, xe(0,0), te0,T),
lim sup {|w(t, x)|; 1€<0, TY} =0,

X— 00

where
a(t, x) = —y"(&(1, x)) . dufox(t, x),
o(t, x) = —y'(v(t, x)),
min (4, v) £ ¢ < max (4, v).

Let us assume that a(t, x) < 0 on (0, T) x (0, o0). Let w; and w, be some solu-
tions of the linear problem (A.11). Let us put w” = w, + t[n + 1/n for all ne N.
Then we have Lw(” = (I/n) > 0 = Lw,, w{"(0, x) = (1/n) > 0 = w,(0, x),

wi™(t,0) = (1/n) t + (I/n) > 0 = w,(1,0). There exists a sequence {{,}, &, —
such that w{”(t, x) > w,(t, x), (1, x) € 0, T) x <§,, ). Using Lemma 3 we obtain

wi” > w, on €0, T> x <0, o). Hence it is evident that w, = w,.

If a(t, x) is not a nonpositive function, then there exists a positive constant & such
that a(t, x) < ¢ for all (#,x)e(0, Ty x (0, ). Using the substitution w(t, x) =
W(1, x) . €, we return to the first case again.

Theorem 1. Let € C*(R"), ' and " be bounded functions and let " be Lip-
schitz continuous.

1. Let ¢ € C'(K0, T)), ¢(0) = 0. Then there exists a unique classical solution
of the boundary value problem (1.1), (1.2), (1.3) and (1.4).

. Let ¢ € Ly(0, T). Then there exists a sequence {¢,}s-o = C'(0, T)), ¢,(0) = 0
such that ¢, — ¢ in the space Ly(0, T). Let us write u, for the classical solution
of the problem (1.1), (1.2), (1.3) and (1.4) for ¢ = ¢,. Let Ly, be the Banach space
of all functions f such that f(-, x) € L,(0, T) for all x € €0, o) and sup { f5|f(t, x)| dt;
x €0, o)} < oo, with the norm |f| = sup {[3 |f(t, x)| dt; x € 0, o0)}. Then the
sequence {u,}v_, converges in the space Lr .. Let us denote u =limu, The
function u is independent of the particular choice of the sequence {¢,} with the above
introduced properties.

Proof. 1. Thisresultis an immediate consequence of Lemmas 2 and 4.

2. Let us remark only that the integral representation of our problem
makes it possible to derive the estimate.

4 1
“un - uM||P~2 = d||u. — um”p,l + H(pn - (/)m“p,l ’

T
where H 17“1,,2 def: sup {j‘ |a(t, x)[ .e P dt, x e 0, oo)} ,
0
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r
ol | o0 e ar,
p =4b~"sup {y'(&)?, e R} .

Definition. The function u e Ly, defined in part 2 of Theorem 1 will be called
the generalised solution of the problem (1.1), (1.2), (1.3) and (1.4).

Lemma 5. Let \y fulfil the condition of Theorem 1.

I. Let ¢ € C(<0, T)), ¢(0) = 0. Let u be the classical solution of the problem
(I.1)=(1.4). Then for all (t, x) € <0, T) x <0, o), inf {p(1); T € <0, TH} =< u(t,x) <
< sup {p(1); T € €0, TH}.

2. Let ¢ € L,(0, T). Let u be the generalised solution of the problem (I.1)—(1.4).
Then for all xe<0, o), u(-,x)eL,(0,T), min {0, vraiinf {¢(r); T €0, T)}} <
< u(t, x) < max {0, vraisup {(z); T€ <0, T)}} and |u(t, x)| < vraisup {|o(); 7€
€ <0, T)} almost everywhere in 0, T).

Proof. 1. Let (to, Xo)€(0, TY x (0, 00) and u(to, xo) = sup {u(t, x), (1, x) €
€<0, Ty x <0, o0)}.

Put &= u(ty, xo) — sup @, v(t, x) = u(t, x) + &(T — 1)[(2T). Then o(ty, xo) =
= u(to, Xo) + &(T — to)[/(2T) > sup ¢ + /2 = sup {v(t, x); t = 0 or x = 0}. Thus,
if v(ty, x;) = sup {v(t, x); (t, x)€<0, T) x <0, )} then (1, x;)e (0, T) x (0, ),
Qufot(ty, x,) = dv[ot(ty, x,) + ¢/(2T) = &|(2T) > 0, du[ox(t,x,) = dv|ox(t;, x;) = 0
2ufox?(ty, x,) = 0*v[ox*(ty,x;) = 0 and  [Ou[dt + Y'(u) dufox — b 0*u[ox?]
(ty, x1) 2 ¢/(2T) which contradicts our assumption.

2. Let ¢,e C'(0, T)), 9,(0) =0, @, ¢ in L(0, T). Denote M = max {0,
vraisup {¢(7); T € <0, TH}}, ¥, = inf (M, ¢,) € C(K0, T)), ,(0) = 0.

Let &, e CY(<0, T)), &,(0) =0, sup |, — &| = 0 for n - co. Then &, - ¢ in
L,(0, T). We can suppose that the sequence {sup ¢,} is convergent and for all ¢ > 0
there exists no e N so that n = ny = u, < sup ¢, < M + ¢ where u, is the classical
solution of (I.1)—(1.4) with ¢ = &, If x €<0, ), p(t,u(t,x) > M + 2¢) =5 > 0

T

thenj u(t, x) = u,(t, x)| dt = &8 for all n = n,.
0

Theorem 2. Let y: R' x K — R' and let K be a compact subset of R". For all
aeK let Y, = (-, a)e C}(R"), Y, and , be bounded functions and let |, be
Lipschitz continuous. Let ¢ € L (0, T). Let us write u, for the generalised solution
of the boundary value problem (1.1), (1.2), (I.3) and (1.4) for y = . For all a; e K
and ¢ > 0 let there exist 5 > 0 such that for all xe R' and a € K the following
implication holds: |a — ao| < &= |¥(x,a) — ¥(x, ap)| <& Let ¢eL,(0,T)
and let | be a positive real number. Then there exists a € K so that for all a e K

T T
the inequalityf (ug(t, 1) — E(1))* dt = ‘[ (u (1, 1) — &(2))* dt is valid.
0 0
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Proof. From the integral expression of the problem (I.1)—(I.4) we obtain by
simple estimations that the mapping a — u, of the set K into Ly, is continuous.
Therefore, the mapping a — u,(", l) of the set K into L,(0, T) is continuous as well.
Further, for all x € €0, o) the inequality vraisup {|u,(1, x)|; 1€ <0, T)} < vraisup
{le(t);1€<0, T>} holds. Thus |P(u,) — P(uy)| < [u(, D) — up(*, D|Lio,m -
. [2 vraisup |@| + 2 vraisup |¢]] for all «, e K. The just introduced facts imply

T
the continuity of the functional I : K - R', I(a) = J. (u (1, 1) — &(1))* dt.

0
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Souhrn

NUMERICKA IDENTIFIKACE KOEFICIENTU
V PARABOLICKE KVASILINEARNI ROVNICI

JAN NEUMANN

V ¢ldnku je studovdn ndsledujici problém optimdlniho fizeni: urcit v kvasilinedrni
parcidlni diferencidlni rovnici parabolického typu jisty koeficient tak, aby feSeni
urcité okrajové ulohy pro tuto rovnici minimalizovalo dany integrdlni funkciondl.
Kromé ndvrhu a rozboru numerické metody obsahuje prdce i feSeni zdkladnich
problémé spojenych s formulaci ulohy (existence a jednoznalnost FeSeni okrajové
alohy, existence feseni ulohy optimdlni regulace).
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