
Aplikace matematiky

Jan Neumann
Numerical identification of a coefficient in a parabolic quasilinear equation

Aplikace matematiky, Vol. 30 (1985), No. 2, 110–125

Persistent URL: http://dml.cz/dmlcz/104132

Terms of use:
© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/104132
http://dml.cz


SVAZEK 30 (1985) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

NUMERICAL IDENTIFICATION OF A COEFFICIENT 
IN A PARABOLIC QUASILINEAR EQUATION 

JAN NEUMANN 

(Received April 28, 1984) 

INTRODUCTION 

Let T, b and leR+; <p, £ e 1^(0, r ) be given. Our aim is to solve the following 
optimal control problem: to determine the function \p in some reasonable class 
of functions in such a way that the generalised solution u = u^(t, x) of the problem 

( u ) % + m=bp o n (0, T) x (0, oo) ,' 
ot ox ox 

(1.2) u(t, 0) = cp(t) on <0, r> , 

(1.3) u(0, x) = 0 on <0, oo > , 

(1.4) lim sup |u(t, x)\ = 0 
JC->CO f e<0 ,T> 

may minimise the functional 

(i.5) f[«,(t, o - <r(t)]2 dt. 

The exact definition of the generalised solution is given in Appendix. 
In Section 1 we specify among other the class in which we shall look for the func­

tion xj/, keeping in view the requirement of its numerical realization. The methods 
of numerical solution of the problem are described in Section 2. Finally, in Section 3, 
a numerical example is given. Some auxiliary theoretical results are summarized 
in Appendix. 

This problem appeared in connection with mathematical modelling of gas chroma­
tography. I should like to dedicate my article to the memory of its inspirer and my 
adviser, Dr. Karel Bocek, from the Institute of Hygiene and Epidemiology in Prague. 
My thanks are due also to Dr. Oldfich John, from the Faculty of Mathematics and 
Physics of Charles University in Prague, for very valuable suggestions and remarks. 
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1. PARAMETRISATION OF THE PROBLEM 

Let K be a compact subset of Rp and for all a e K let a function \j/a e C2($l) be 
defined so that i/>a and \\i"a are bounded functions and \jj'a is Lipschitz continuous. 
Let T, b, I be positive numbers; let cp and £ be fixed elements of the space Loo(0, T). 
Let us write ua for the generalised solution of the boundary value problem (Ll), 
(1.2), (1.3) and (1.4) for ij/ = \j/a. We want to determine a e K so that 

(i.i) J W , o - mr dt ̂  j\ua(t, i) - my dt 
for all a e K. 

Let us remark that 9 e 1^(0, T) implies ua(-, x) e L^O, T) for all x e <0, 00). 
Conditions for the existence of a solution of this problem are formulated in Appendix. 

The coefficient ^a in the equation (1.1) is closely connected with the distribution 
coefficient of two substances in the chromatographics column, which is to be esta­
blished from the chromatogram £(t) (£(t) describes the time distribution of the con­
centration of the investigated matter in the gas substance at the end of the column). 

2. METHOD OF NUMERICAL SOLUTION 

To obtain the numerical solution of the problem, the following steps are to be 
executed: 

1. To find an adequate method for the numerical solution of the "direct" problem 
(Ll), (V2)> (L3) and (1.4). Let us write ua for the approximate solution of this problem 
for a e K and \j/ = i^a. 

2. To define an adequate approximation of the functional 

*(«)= [T(u(tJ)-^(t))2dt 
Jo 

(by means of a quadrature formula). Let us write $ for this approximative functional. 

3. To give a method for the minimisation of the function 1(a) = $(iia) on the set K. 
Ad 1. Since the problem is defined on a rectangular domain, the finite difference 

method will do the job. 
Let N, M be positive integers and let L> 0, L$> I Put T = TN~\ h = LM'1. 

Denote by um the value of a numerical solution at the point (m, mti). The boundary 
conditions (L2), (1.3) and (1.4) are approximated in a natural way: 

(2.1) un
0 = cp(nx) for n = 0, 1, ..., N , 

(2.2) um = 0 for m = 1,2, . . . , M - 1 , 

(2.3) un
M = 0 for n = 0, 1, . . . ,N . 
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The discrete approximation of the equation (1.1) is of the form 

(2.4) (1 + 2hnTh-2)un
n

+l - brjTh~2un
m

+
+\ - br\xh-2un

m\\ = 

= [i _ 26(1 - r,)Th"2]un
m + [6(1 - rj)Th~2 - W^xh'^uUx + 

+ [6(1 -n)Th~2 + WK)rh-i]u:n_1 

for n = 0, 1, . . , /V - 1, m = 1,2, . . . , M - 1 

where i/ e <0, .1 >. Changing the parameter /? we get the spectrum of different schemes 
(n = 0 gives the explicit method, r\ = \ the Crank-Nicholson method, f/ = 1 the 
implicit method). Passing from the rc-th to the (n + l)-st time step we solve the 
system of linear equations. The matrix of this system does not change. 

The situation when the practical calculations are performed, is characterized 
by an additional condition 

(2.5) inf {*//(*), xeR'} ^ d > 0. 

In this case it is easy to see that the explicit finite difference scheme (which is the one 
exclusively used) is stable if T/?~2 ^ 1/(26) and h :§ 26<5_1. The methods introduced 
are modifications of standard methods used for the numerical solution of linear 
parabolic problems (see for example [1]). 

Ad. 2. In order to approximate our functional <P we use the simplest formula: 

(2.6) $(w) = x . £ (w"R - Z(m))2 , vv = {w"m}m=, ,2,...M_, 
n=\ n- 1 , 2 , . . . . N 

0(u) « ^({u(/TT, mh)}) » *({«:}) 

RT = I, REN . 

Ad 3. To minimise the function I we use a certain modification of the conjugate 
gradient method. In every iteration of this method we must know the values of the 
mappings I and grad 7. We shall study possible methods of calculation of the value 
grad I. 

1. The direct method 

Put 

(2.7) vn
m(a) = grad u"m(a) for n = 0, 1, ..., N , m = 0, 1, . . . , M . 

We can use the following recursive formulae for the calculation of these values. 
Let \j/a be sufficiently smooth. 

(2.8) v
n

0 = vn
M = 0 for n = 0 , l , . . . , N , 

(2.9) v°m = 0 for m = 1 ,2 , . . . ,M - 1 , 
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(2.10) v"m
+1 = (1 - 2bTh~2)vm + (bxh-2 - Wa«)rh-l)vm+, + 

+ (bxh'2 + WaK)rh-l)v"m^ - I r h - ^ g r a d ^ X ) + 

+ *KK)K+i -""-.) 
for „ = 0,1,. . . ,JV - 1 , m = 1,2, . . . , M - 1 . 

Further, it is evident that 

(2.11) grad/(a) = 2 T f vK(uR-l;(m)) 
M = l 

where RT = l, ReN. 

2. The dual method 

Let us denote 

(2A2) a = (a1? a2, ..., ap)
T for all aeK, 

(2.13) M« -= (u"[, « ; , . . . , i # i . , ) T for n = 0, 1,...,N, 

(2.14) £ - . ( i i , . . . , J ^ ) for „ = 0,l,...,iV, *-*({«•.}), 
Ou \Ou" vuM_x] 

(2A5) djl_,(dA) for k = 0J,...,N . 
da V^JA=l,2,...,Af-l 

y = i , 2 , . . . , P 

Let US remark that all calculations are performed with an arbitrary sufficiently smooth 
function $ of (M — 1) . (N + 1) variables. In our particular case 

— = 2 T ( 4 - ^ ( W T ) ) ^ . 
du" 

Let US define the mapping: 

(2.16) J : RM~X xR'x R1 - ff^"1 , / = (fl9f2, . . . , f M _ 1 ) T , 

f^vi, ...,vM_1,a1, ...,ap9C) = bh"2(c - 2 v ! + v2) - # « ( l > i ) ( t > 2 - ^ u " 1 , 

jX^i. ••• ,*>M-I>0I> -;aP,c) = bh~2(vJ.l - 2vy + vy+1) -

- # ^ ) ( ^ + i - vj_x) h'1 , 7 = 2, 3, ..., M - 2 , 

fM-i(vw",vM^ua1,...,ap9c) = bh~2(vM_2 - 2vM_j) + Wa(vM-\)vM-2h~1-

Then the explicit finite difference method for our problem can be written in the form 

(2.17) uIt + 1 = un + Tf(un, a, (?(uT)) for u = 0, 1, ..., N - 1 , 

u° - 0 . 

113 



Hence we have 

, „ l c A duw + 1 du n f d r, n , ,,dun d tl n , ,r\ 
(2.18) — — = —- + r —-f(un, a, cp(m)) — + - f (u" , a, cp(m)) 

da da \jou da da 

for n = 0 ,1 , . . . ,N - 1 ; du°/da = 0 . 

In this formula the standard notation is used. Further, it is evident that 

(2.19) gradJ(fl) = ̂ ^ = i M Z ( - ^ - ^ V 
i = \ dul da i = ij=i \dulj dal du) dap) 

Let us define vectors g^eR*1'1 for n = 0, 1, ...,N + 1; i = 0,1, ...,N so that 

(2.20) gn = 0, n = * + 1, . . . ,N ,N+ 1, 

<"» i-®T. 
(2.22) a'/ = ar,+ t f '£ ; / (M n ,a ,<p(nT))y^ + ' , » = 0.1 i - 1 . 

Then 

(2.23)» f - w)' £ - b?)'^ - s r « m ' ^ - w~) -
cu da da da J=oL da da J 

- ' iTtof-^-^W'-^l-
/=o L \ da da J da J 

Using (2.18), (2.20), (2.22) and the last formula we obtain the relation 

(2-24) d£M = - i (a{+y^/Ka,<Kjt)). 
Ou da /=o Ga 

Put 

(2.25) g" = £ g w , n = 0 , l , . . . , N + l . 
t = 0 

Using (2.19) we may write 

(2.26) grad 1(a) = t £ (a '+ 1)T i-/(u>, a, ?(/*)) • 

j=o da 

The sequence of the vectors {a"}^ 1 solves the difference equation 

(2.27) 
0» = 0»+i + T / A ^ f o r n = = N , N - i , . . . o 

\Ou / \ O v / 
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+ 9l = 9" • 

with the initial condition 

(2.28) a N + 1 = 0 , 

because 

9 - + t(A/(„-,„W))T
3".+(^)T = 

- £ V + * (^ /K» ,H»*) ) )V1 + »;- f »; 
i=«+l L \vu J i=«+l 

Denote 

(2.29) gM = (Pi,...,PM-i)T for n = 0 , l , . . . ,N+ 1 

and put pn
0 = pM = 0, n = 0,1, ...,N + 1. Using (2.16), (2.27) and (2.28), we 

obtain 

(2.30) pi = (brh-2 - ^ K - i ) i ^ " 1 ) P"-i + 

+ (1 - 2WT 2 - rjtf)*h- \u"i+l - uU))Pl+i + 

+ (bxh~2 + ^K + >H^ _ 1 ) i - ? +
+ i + ~ 

OUi 

for n = N, N - 1,...,0, i = 1,2,...,M - 1 ; 

pf+1 = 0 for i = 1,2, . . , M - 1. 

Further, it is evident that 

(2.31) f/(„", a, „H) = - ( « ^ ^ ) 
^ \ 5fly 2fc / i - , l , . . . ,M- l 

J = l , . . . , f > 

Hence we have 

f%, .,)--.£"fV-aiasii^i. *-!.....,,. 
Gafc J=o i=o Gafe 2n 

The algorithm for the calculation of grad I(a) dy means of the dual method is 
now quite clear. It is apparent that the dual method is more advantagenousthan the 
direct method, if p is sufficiently large. Evidently, the method introduced is closely 
connected with the known principle of Lagrarge multipliers. Its vatious generaliza­
tions are often used for the solution of optimal control problems of mathematical 
physics (see [2]). 

Let us now give a sketch of our modification of the conjugate gradient method. 
Denote 
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a0 ... the initial approximation of the solution, 

l! ... the maximal number of iterations, 

ki ... the number of iterations executed, 

aopt . . . the approximation of the optimal solution obtained by our method. 

LetK be a p-dimensional bounded interval <d!, hx} x ... x (dp, hp}. The algorithm 
of the method can be described as follows: 

1. We choose a0 e K and put kx = 0. 

2. kj + 1 -> kj. 

3. If kx > / t or grad l(a0) = 0, we put aopt = a0. The calculation is finished. 

4. We put s0 = — [grad I(a0)]
T. 

5. We put (s0)j = 0 for all j = 1, 2, ..., p satisfying [(a0);- = hj &(s0)j > 0] or 
[(ao)j = dj&(so)j<0]. * 

6. If s0 = 0, we put aopt = a0 and the calculation is finished. 

7. We calculate a0 e M0 so that J(a0 + a0s0) ^ l(a0 + as0) for all a e M0 , where 
M 0 = {a ^ 0; a0 + as0 e K } . 

8. We put ax = a0 + a0s0. 

9. If there exists j such that (s0)7- was replaced by zero in step 5 we put a0 = ax 

and go back to step 2 of the algorithm. 

10. For all i = 1, 2, . . . , p we execute 

a. kj + 1 —> k-. 

b. If kj > lj or grad I(a,-) = 0, we put aopt = a{ and the calculation is finished. 

c. We put m, = _ g ^ d I ( a ^ [ g r a d J ( a t . ) ] T
 ? 

g r a d I ( a ^ J [gradI(a (._j)]T 

sf = - [ g r a d I ( a t ) ] T + m ^ . i . 

d. We calculate af- e Mt such thatI(a,- + afsf) g I(a^ + asf) for all a e Mt, 
where M^ = {a ^ 0, â  + a s f eK} . 

e. We put a / + j = at + a£Sj. 

11. W e p u t a 0 = a p + 1 and return to step 2. 

The just described minimisation method is based on the Fletcher-Reeves algorithm, 
which is included in the standard user's library of the computers of series EC (sub­
routine FMCG) . This algorithm serves to the determination of the local minimum 
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of a nonconvex nonlinear function of many variables defined on Rn, n e /V, By a simple 

modification we obtain our method, which is suitable for the minimisation on multi­

dimensional bounded closed interval. A survey of the methods, which are often used 

for numerical solution of optimal control problems, is given in [3]. 

If for example K = (dly hx) x (d2, h2) x ... x <Jp, hp) f) {*;/(*) _ x}> f l s 

a nonlinear continuous function, we may combine the method introduced above 

with the method of penal function (see Section 3). 

The one-dimensional minimisation needed in steps 7 and 10d of the algorithm 

was taken over from subroutine FMCG. We shall not describe its algorithm here. 

3. EXAMPLE 

In this section we describe one numerical experiment, which can serve to the 

practical identification of the distribution coefficient. For a large concentration of the 

investigated matter in the gas substance the distribution coefficient kl is given by 

a known constant (Ki), for a small concentration by an unknown constant (ax + Kx), 

which is greater than Kt(ax > 0). Our aim is to identify the value a x and the values 

a2, a3 that determine the interval in which the value of the distribution coefficient 

"passes" from ax + Kx to Kx. 

Putting 

(3.1) kx(y, aua2,a3) = 

ay + Kt foг yє(— oo, a2} , 

(t - a2)
2 (a3 — tf dř 

+ *ч 
(ř - a2)

2 (a3 - tf ăt 
2 

îov yє(a2,aъ) , 

Ki for y є <a3, °o) 

we obtain a reasonable expression for the distribution coefficient. kx(-, ax, a2, a3) 

is a piecewise polynomial nonincreasing function from C2^1), kt = ki/<a2, a3) is 

the unique polynomial of the fifth order which satisfies kx(a2) = ax + Kl5 ki(a3) = 

= Ki, kf

x(at) = k'i(a/) = 0, i = 2, 3. In every real situation the physicists are able 

to determine positive constants Kh i = 2, ..., 1 so that ax e <K2, K3>, a2 e <K4, K5>, 

a3 e <K6, K7>. Further (d/dy) (y . kx(y, a)) = 0. Hence we choose 

(3.2) Ki = {(al9 a2, a3) e R3; K2 = a, = K3, K4 = a2 = K5 < K6 = a3 = K7} , 

K2 = | ( a l s a2, a3) e R3; hx(y, a) = —(y. kx(y, a)) = o i , 

K = R1[)R2; a = (au a2, a3) ; p = 3 . 
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The function $'a(y) is given by 

(3.3) K(y)= d - ^ 
1 +—(y-kt(y,a)) 

dy 

where K8 is a known positive constant. The problem of minimisation of the function 
I on K can be replaced by the problem of minimisation of the function I + K9 . p 
on the cartesian product of the intervals Rl9 where K9 is a sufficiently large positive 
real number and p a suitable penal function corresponding to the condition which 
defines the set R2. We choose 

(3.4) p(a) = 0 for all a e R1 for which min {ht(y, a), y ^ 0} ^ 0 , 

p(a) = [min [ht(y, a), y ^ 0}]2 = h\((a2 + a3 + (a\ + a\ - a2a3)
1 / 2)/3, a) 

in the other cases. 
Possible numerical difficulties connected with the case when 1 + hx(-, a) is not 

a positive function can be removed with the help of the following adjustment of the 
function \j/a (which does not change the value of this function on K): 

(3.5) ra(y)-h2(l+j-(y.kl(y,a)Y 

h2(rj)-

K 

—- , ц є <K10, oo) , 
П 

KO 2 K R / TJT \ 

-~rn + — ~ > t]e(-co,K10), 
^ 1 0 ^ 1 0 

where K10 is a small positive real constant. 
In our numerical experiment £ = v(-, /) was used, where v is the solution of the 

problem (LI), (L2), (1.3) and (1.4) with \\/(v) = av, a is a fixed positive real number 
and cp(t) = 1 on <0, t0>, cp(t) = 0 on <t0, T>. Using the Laplace transform, we 
obtain: 

(3.6) v(t, x) = 4" • e(a,2b)X • x • f * —T • e ~(1/4b) Ca2t+(*2/T)] d t . 
V7 1 JmaX(0 , t- to)4V( f o T 3) 

In this case we can check the correctness of the numerical result by an immediate 
comparison. 

Finally, let us look at the result of a particular example. Put: T = 0-01, h = 0-1, 
b = 0-5, h = 15, T = 6, / = 4, L = 12, l0 = 0-7, Kx = 0-9, K2 = 0-01, K3 = 0-9, 
K4 = 0-1, K5 = 0-4, K6 = 0-6, K7 = 0-9, K8 = 2, K9 = 1 and K10 = 0-1. In this 
example the values of the function £ are the approximative values of the function 
v(-9 4) with a = 1, calculated from (3.6) by means of simple Simpson's quadrature 
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Table 1. Iterations of the modified conjugate gradient method for the particular example described 
in the text 

Item °í «2 °ъ т lï(aua2łaъ) 

1 0-6000 0-1200 0-7500 0-001879 

2 0-5694 0-1000 0-7435 0-001642 

3 0-4484 0-1000 0-7144 0-001038 

4 0-3275 0-1000 0-6854 0-000549 

5 0-1288 0-1000 0-6377 0-000175 

6 0-1047 0-1583 0-7054 0-000150 

7 00919 0-1894 0-7416 0-000146 

8 0-1036 0-2539 0-8153 0-000118 

9 0-1153 0-3185 0-8891 0-000098 

10 0-1170 0-3280 0-9000 0-000095 

11 0-1163 0-4000 0-9000 0-000090 

12 0-1157 0-4000 0-9000 0-000090 

formula with the step 0005. As we can see from Table 1, the computation is finished 
after the twelfth iteration. The vector (al9 al9 a3) = (0-1157, 0-4000, 0-9000) gives 
a good approximation of the exact value ij/' = 1 (k^x, a) = 1-0157 on < — oo, 0-4>, 
ki(x, a) = 0*9 on <0-9, oo), kx(x, a) e <0-9, 1-0157)), the "best uniform" approxim­
ation gives the vector (0-1, 0*4, 0-9). Let us remark that the calculation of gradI(a) 
was executed with help of the direct method. 

Remark: For the convergence of the minimisation iterative methods the choice 
of the initial iteration is important. When it is convenient to have an initial iteration 
in our method in the form of a linear function (\\/{u) = aw, a > 0) we can use the fact 
that for all x > 0 and a > 0 there exists a unique point Tmax e (t09 oo) at which 
the function v(-, x) given by formula (3.6) has its maximum. The function a -> Fmax 

with the fixed x > 0 is an injective mapping of the interval (0, oo) into the interval 
(t0, oo). The inverse mapping is defined by the formula 

(3.7) a = {x2lt0 . [- 1/Tmax + l/(Tmax - t0)] + 6b log [(Tmax - to)/rmax]}1/2 • 

Let there exist precisely one point at which the function £, has its maximum. Let us 
write tfor this point. Then we can put 

(3.8) a = {/2 / t0[-l / t + l/(f - toy] + 6b log [(T - t0)\t]}
1/2 

if the expression on the right hand side is defined. 

APPENDIX 

The appendix contains some theoretical results concerning our problem. Lemma 1 
proves the existence of a solution of a certain integral equation which is, as Lemma 2 
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shows, the classical solution of the problem (1.1) —(1.4). The principle of mono-

tonicity for parabolic operators contained in Lemma 3 is used to prove the uniqueness 

of the solution of (LI) —(1.4) in Lemma 4. In Theorem 1 the results of Lemmas 2 

and 4 are summarized and the correctness of the definition of the generalised solution 

is shown. Theorem 2 establishes conditions of existence of the solution of our optimal 

control problem. 

Denote 

(A.l) 

r, <p{t, x) - - f f -^rv, e~x2'iAbz) (P(' - T ) d T > 0 > x ) e < 0 ' T > x <°. °°) • 

(A.2) 
1 ft (* + 00 

v(t - T, x - z) . e-
z2l(4bx) dz dr , It, x) e <0, T> x 

, V ' V(ftV) V ! VяJo 

X <0, oo) , 

where <p and vare arbitrary functions such that the integrals on the right hand side 

of these relations exist. Let 

(A.3) h: <0, T> x ( - c o , oo) -> <0, T> x <0, oo) , 

h = (hl9 h2) , hx(t, x) = t , h2(t, x) = \x\ . 

Lemma 1. Let \j/ e C1^1) and let xj/' be a bounded function on Rl.Let q> e C(<0, T>) 

and (p(0) = 0. Then there exists a unique continuous and bounded solution u = 

= u(t, x) of the integral equation 

(A.4) u(t, x) = Tj cp(t, x) + T2(iyJ oU oh) (t, x) , (t, x) e <0, T> x <0, oo> . 

Let u0 be an arbitrary function, continuous and bounded on <0, T> x <0, oo>. 

Then the sequence of functions {MW}*-0 defined by the recursive formula 

(A.5) un(t, x) = Tt cp(t, x) + T2(\j/ o u„_! o h) (t, x), (t, x) e <0, T> x <0, oo> 

converges uniformly to the function u. 

Proof. Let p e R1. Let us write C ^ for the Banach space of all functions that 

are continuous and bounded on the set <0, T> x <0, oo), with the norm ||v|| = 

= sup {\v(t, x)\ e~pt; (t, x) e <0, T> x <0, oo)}. Let us define the operator T : C(

T% -> 

-> C^, Tu = Txcp + T2(il/ oUoh), p = 4b" 1 sup {I/J'(£)2; £ e R1}. Then for all 

u, ve C ^ the inequality ||Tu — Tv|| ^ -J-||M — v|| is valid. Using the Banach fixed 

point theorem, we obtain the assertion of the lemma. 

Lemma 2. Let \\J e C2^1), \jj' and xjj" be bounded functions and let \\i" be Lipschitz 

continuous. Let cp e C1(<0, T>) and (p(0) = 0. Then the continuous and bounded 
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solution u of the equation (A.4) is the classical solution of the boundary value 

problem (Ll), (L2), (L3) and (1.4); dujdx is a bounded function on (0, T> x (0, co). 

Proof. Let u0 = 0 and un+1 = Tx(p + T2(\j/ o un o ft). By elementary considera­
tions and calculations we obtain the following results: the functions d ldt[Ti<p]9. 
d I dx\Tt(p]9 d2jdx2\T1ip\ are defined, continuous and bounded in (0, T> x (0, co); 
moreover d j dt^^cp] = b d2 / 3x2[T1(^] = Txq>'; dun j dx exists for all n e N and 
(t, x) e (0, T> x (0, co); the function dujdx is continuous and bounded on its 
domain and satisfies 

•^•± i , i . [ r l f f ] + r a r a ( y o K - * ) 1 »-0,1,2, . . . . 
<3x dx dx 

Denote L = sup I — [ 7 > ] . (T1" ; (t, x) e (0, T> x (0, oo)i , 
II dx I j 

KM = s u p { ^ . e~pt;(t9x)e(09 T> x (0, oo)i n = 0 , l , . . . , 

. <Tpf ;(t, X ) G ( 0 , T> x (0, co)i n = 0, 1 , . . . , ?îf«±i 
дx 

Yи = sup 

Zи = sup{|uи 

3x 

- u„| e - " ' ; (r, x) e (0, T) x (0, oo)} n = 0, 1, 

Then it is evident that 

(A.6) Z „ + I fS |Z„ , Z„ ^ (*)" Z 0 , X n + 1 ^ |X„ + L, 

Z„ :g (i)"Z0 + " l (I)1' L n - 0,1,2, . . . , 

ŐX 

дţVм 

<3x 
T, V(„л+1)(^±i-^) + и« п + 1 ) 

дu, 
Ox 

n = 0,1, 

Since t/>"is a bounded function and the sequence {Xn} is bounded (see (A.6)), there 
exists a positive constant R so that Y/?+1 = \Yn + RZ„. Hence we have Y,I + 1 g |YM + 
+ BZ0(|)"5 Y„ g (£)" Y0 + n(\)n~x RZ09 n = 0, 1, ... . This fact evidently implies 
the uniform convergence of the sequence {du„ / dx}^0 on (0, T> x (0, co). Further, 
it is clear that dujdx exists on (0, T> x (0, co), dujdx is continuous and bounded 
on its domain, dunjdx zx dujdx, 

d±=T2
d^aUah) + -[Ti(p-\. 

dx dx dx 
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Analogously we can prove the existence of continuous and bounded functions 
d2unjdx2, dunjdt (for all n e N), d2ujdx2 and dujdt denned on (0, T) x (0, oo) and 
the uniform convergence of the sequences {d2unjdx2} and {dunjdt} to d2ujdx2 and 
dujdt, respectively. In addition, we have 

ÍЃu 

дx2 
(t,x) 

~д2(ф o u o h) 

4Ъф 

~l дx2 

-e-x2«4ьЧz, 

+ — ГriИ + -
ÕX2І l V J V(t> 

дu 

~дt 
(t, x) = T2 

л)Jo 
д(ф o u o h) 

' дф(u(t - x, Щ 

дx 

дt ] +-M, 
where 

du(t,Q)d*' du(t, x) 

dx x^o+ dx 

By repeated use of integration by parts and other simple adjustments we obtain 

from the above formulae that u solves the equation (1.1). It is easy to see that u 

satisfies the conditions (1.2), (1.3) and (1.4). 

Lemma 3. Let functions a and c be defined on (0, T) x (0, /). Let functions u 

and v be continuous on <0, T) x <0, /> and let dujdt, dvjdt, d2ujdx2 and d2vjdx2 be 

continuous on (0, T) x (0, /). Let b be a positive constant. Let 

(A.7) 
du , d2u , s 

b a(t, x) u — a 
8t 8x2 V ' 

dv 

ч du dv 
(t, x) — < — 

J dx dt 

cťv 

dx2 

a(t, x) v - c(t, x) — on (0, F> x (0, / ) , 
õx 

(A.8) u(t, 0) < v(t, 0) t e <0, F> , 

(A.9) u(t, I) < v(t, I) t e <0, T) , 

(A. 10) t/(0, x) < v(0, x) x e <0, /> . 

Then u(t, x) < v(t, x) jor all (t, x) e <0, F> x <0, />. 

Proof . Let us put w = v — u, M = {te(0, T);3xe(0,l), w(t,x) g 0 } . We assume 
that M is a nonempty set. Let us denote t0 = inf [t, t e M}. Then there exist sequences 
{tn} cz M, tn -> t0 and {x„} c (0, /) so that w(tn, xn) ^ 0. We may suppose that {xn} 
converges. Let us denote x0 = lim xn. Evidently, (t0, x0) e (0, T) x (0, /), w(t0, x0) = 0, 

dwjdt(t0, x0) S 0, dwjdx(t0, x0) = 0, d2wjdx2(t0, x0) = 0. Hence we obtain a con­
tradiction with our assumptions. 

Lemma 4. Let \j/ e C2^1), cp e C«0, T » and cp(0) = 0. Let u = u(t, x), v = v(t, x) 
be classical solutions of the problem ( I I ) , (L2), (1.3) and (1.4). Let dujdx be a bounded 
function. Then u= v. 
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Proof . Let us put w = u — v. Then 

(A.И) 

where 

^ w - T- - b 7 T ~ a(ř> *) Ч'> *) - Ф, x) - V (f, x) = 0, (ř, x) e (0, T) 
ôt õx ôx 

x (0, oo) , 
w(0, x) = 0 , w(t, 0) = 0 , x є <0, oo) , t є <0, T> , 
lim sup {\w(t, x)|; t є <0, T>} = 0 , 

a(t, x) = -ij/"(£(t, x)) . dujdx(t, x) , 

c(t,x) = - f (v ( t , x ) ) , 

min (u, v) ^ £ S max (u, v) . 

Let us assume that a(t, x) ^ 0 on (0, T> x (0, oo). Let wr and w2 be some solu­
tions of the linear problem (ATI). Let us put w\n) = wt + t\n + \\n for all ne N. 
Then we have &w[n) ^ (l/n) > 0 = <£w2, w\n)(0, x) = (\\n) > 0 = w2(0, x), 
w^n)(l, 0) = (1/n) t + (l/n) > 0 = w2(t, 0). There exists a sequence {£„}, £„ -> oo 
such that w("\t, x) > w2(t, x), (t, x) e <0, T> x <£„, oo). Using Lemma 3 we obtain 
w(i° > w2 o n <0> -O x <0, oo). Hence it is evident that wi = w2. 

If a(t, x) is not a nonpositive function, then there exists a positive constant £ such 
that a(t, x) ^ c for all (t, x) e (0, T> x (0, oo). Using the substitution w(t, x) = 
w(t, x) . ect, we return to the first case again. 

Theorem 1. Let ij/ e C2^1), y\t' and ij/" be bounded junctions and let ij/" be Lip-

schitz continuous. 

1. Let (p e Cx(<0, T>), (p(0) = 0. Then there exists a unique classical solution 

of the boundary value problem (LI), (L2), (1.3) and (L4). 

2. Let (p e Lt(0, T). Then there exists a sequence {(pn}^0
 c ^((0, T>), (pn(0) = 0 

such that (pn -+ (p in the space L t(0, T). Let us write un for the classical solution 
of the problem (I.l), (1.2), (1.3) and (1.4) for (p = (pn. Let Lr>00 be the Banach space 
of all functions f such thatf(-, x) e Lx(0, T) for all x e <0, oo) and sup {j£\f(t9 x)\ dt; 
x e < 0 , oo)} < oo, with the norm ||/|| = sup {J^ | / ( l , x)| dt; x e <0, oo)}. Then the 
sequence {uw} °̂=0 converges in the space LTcX}. Let us denote u = lim un. The 
function u is independent of the particular choice of the sequence {</>,.} with the above 
introduced properties. 

Proof. 1. This result is an immediate consequence of Lemmas 2 and 4. 

2. Let us remark only that the integral representation of our problem 
makes it possible to derive the estimate. 

\\Un ~~ W m | | p , 2 = 2"||Wn "~ W m | | p , 2 + H^/i ~" ^ m H p . l ? 

where ||u||p,2
 d=' sup I \u(t, x)| . e~pt dt, x e <0, oo)> , 
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p = ĄЪ'1 sup {ф'(č;)2, Ç є R1} . 

Definition. The function u e LT>00 defined in part 2 of Theorem 1 w/l/ be called 

the generalised solution of the problem (LI), (1-2), (1.3) and (L4). 

Lemma 5. Let \jj fulfil the condition of Theorem 1. 

1. Let cp e C(<0, T>), (p(O) = 0. Let u be the classical solution of the problem 
(LI)-(1.4). Then for all (t, x) e <0, T> x <0, oo), inf {<p(x)\ x e <0, T>} g u(t, x) S 

^sup{cp(x);xe(0,T}}. 

2. Let (/> G L^O, T). Let u be the generalised solution of the problem (IA) —(1.4). 
Then for all x e <0, oo), u(-,x)e L^O, T), min {0, vraiinf {cp(x); x e <0, T>}} ^ 

= u(t, x) = max {0, vraisup {(?(T); T e <0, T>}} and |u(t, x)| :g vraisup {|<P(T)|; T G 

G <0, T>} almost everywhere in <0, T>. 

Proof. 1. Let (t0, x 0) e (0, T> x (0, oo) and u(t0, x0) = sup {u(t, x), (t, x) e 

G < 0 , T> x <0, oo)}. 

Put e = u(t0, x0) — sup cp, v(t, x) = u(t, x) + e(T — t)j(2T). Then v(l0, x 0) = 

= u(t0, x0) + s(T - t0)\(2T) > sup (p + e/2 = sup {v(t, x); t = 0 or x = 0}. Thus, 

if v(tu Xj) = sup {v(t, x); (t, x) G <0, T> x <0, oo)} then (tu x x) G (0, T> X (0, oo), 

du\dt(tu xt) = dvjdt(tu xt) + e/(2T) = e|(2T) > 0, du^x^^^) = dv\dx(tu xt) = 0 

d2u\dx2(tuxl) = d2v\dx2(tuxx) ^ 0 and [Ow/dt + \l/'(u)du\dx - b d2u\dx2] 

(tu Xj) ^ s/(2T) which contradicts our assumption. 

2. Let (/),, G C 1 « 0 , T>), (p„(0) = 0, (/>„ -> cp in L^O, T). Denote M = max {0, 

vraisup {cp(x); x e <0, T>}}, i/t„ = inf (M, <pB) G C«0, T » , ^ ( 0 ) = 0. 

Let c„ e C 1 « 0 , T » , £„(0) = 0, sup |^„ - £.| -> 0 for n -* oo. Then £„ - x p in 
Lj(0, T). We can suppose that the sequence {sup £,,} is convergent and for all e > 0 

there exists n0 e N so that n _ n0 => un _ sup £„ = M + 8 where u„ is the classical 
solution of (1.1) —(1.4) with cp = £„. If x G <0, OO), ji(t, u(t, x) > M + 2e) = <5 > 0 

>T 

|u(t, x) — un(t, x)\ dt ^ e5 for all n = n0. 
o 

then 

Theorem 2. Let i//: R1 x K -+ R1 and let K be a compact subset of Rn. For all 

aeK let \jja = i/J(*, a) e C2(/^)1), \jj'a and \jj"a be bounded functions and let y\i"a be 

Lipschitz continuous. Let cp e L^(0, T). Let us write uafor the generalised solution 
of the boundary value problem (IA), (1.2), (1.3) and (1.4) for \jj = \j/a. For all a0 e K 

and e > 0 let there exist S > 0 such that for all x e R1 and aeK the following 

implication holds: \\a — a0\\ < 5 => \\j/(x, a) — \j/(x, a0)\ < e. Let <; e L^(0, T) 

and let I be a positive real number. Then there exists aeK so that for all aeK 

the inequality (ua(t, I) - £(t))2 dt ^ (ua(t, I) - £(t))2 dt is valid. 
Jo Jo 
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Proof. From the integral expression of the problem (IA) —(1.4) we obtain by 
simple estimations that the mapping a -*- ua of the set K into LTm is continuous. 
Therefore, the mapping a —> ufl(*, l) of the set K into L^O, T) is continuous as well. 
Further, for all x e <0, oo) the inequality vraisup {\ua(t, x)|; t e <0, T>} ^ vraisup 

{|^(0| ; * € <0, T>} holds . Thus |0 (u a ) - <P(Ufi)\ = \\ua(', 0 - !! , (• , 0|kt(O,T) • 
. [2 vraisup I (pI + 2 vraisup |£|] for all a, /? e K. The just introduced facts imply 

the continuity of the functional I : K -> ff1, I(a) = (wa(t, /) - £(t))2 dt. 
Jo 
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S o u h r n 

NUMERICKÁ IDENTIFIKACE KOEFICIENTU 
V PARABOLICKÉ KVASILINEÁRNÍ ROVNICI 

JAN NEUMANN 

V článku je studován následující problém optimálního řízení: určit v kvasilineární 
parciální diferenciální rovnici parabolického typu jistý koeficient tak, aby řešení 
určité okrajové úlohy pro tuto rovnici minimalizovalo daný integrální funkcionál. 
Kromě návrhu a rozboru numerické metody obsahuje práce i řešení základních 
problémů spojených s formulací úlohy (existence a jednoznačnost řešení okrajové 
úlohy, existence řešení úlohy optimální regulace). 

Áuthors address: RNDr. Jan Neumann, Fyzikální ústav ČSAV, Na Slovance 2, 180 40 Praha 8. 
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