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A THERMODYNAMICALLY MOTIVATED OPTIMIZATION ALGORITHM: 
CIRCULAR WHEEL BALANCE OPTIMIZATION 

JOZEF MASARIK 

(Received March 26, 1984) 

1. INTRODUCTION 

Combinatorial optimization problems form a group of problems with a large 
number of practical applications. Recently a new thermodynamically motivated 
optimization method has been developed by Cerny [ l ] and Kirkpatrick et. al. [2], 
which has been applied to find suboptimal solutions to the travelling salesman 
problem. In this paper we use a similar idea for solving the following optimization 
problem. 

Let (m(cf))ir be a set of positive real numbers. Let (c f)^ be a permutation of the 
integers 1, 2, ..., N. Let us construct the sum 

X m ( c Ł ) . e x p i i - ^ f e (-) -*[(-«)] = 

The problem is to find the permutation (c t)^ for which F[(c*)] is minimal. 

One of the applications of this problem is the optimization of the static balance 
of a steam turbine circular wheel. This problem arises from unequal weights of the 
turbine paddles which are uniformly located at apriori determined places on the 
perimeter of the circular wheel. If the paddles are located in a random sequence, it 
could lead to a substantial unbalance of the wheel. If m(ct) represent the masses of 
the paddles then F[(c*)] represents the unbalance of the particular arrangement 
(c'f)? of the paddles. 

The aim of our paper is to bring further evidence for the conjecture that the 
thermodynamically motivated optimization procedure can be effectively used to 
approach a wide class of complicated optimization problems. 

The paper is organized as follows. In the next part we present the details of the 
algorithm and its application to the problem which was formulated abowe. The results 
of computations are presented in Sect 3, while Sect. 4 contains comments and con
clusions. For the sake of completeness, we discuss the thermodynamical motivation 
of the algorithm in Appendix. 
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2. A L G O R I T H M 

We begin with introducing the notations. We consider a circular wheel with N 
paddles on its perimeter. The paddles have masses m(i) i = 1,2, ...,N. Let (s,)?, 
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Fig. 1. Flow-chart of the algorithm discussed. 
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(ci)u (^/)i denote permutations of the integers 1,2,..., N. We shall call the permuta
tions s, c and t the starting, current and trial permutation, respectively. 

The algorithm (the corresponding flow-chart is presented in Fig. 1) which we sfr̂ H 
discuss here produces a sequence (in principle infinite) of permutations (c$. The 
corresponding values F[(cf)] are expected to form a sequence which globally fr^s 
decreasing character. Locally, however, fluctuations with increasing value of F[(£/)] 
will appear. 

STEP 0: Choose an arbitrary starting permutation(st)]. Choose a real number T. 

Comments: Let in our case N = 10 and m{ = i. Then the starting permutation c&n 
be for example 1, 2, ..., 10 (Figure 2). Tis called the temperature of the 
system. The meaning of this parameter will be explaned in Appendix. 

STEP 1: Set ct = st for i = 1, 2 , . . . , N. 
Calculate the corresponding unbalance 

*[(-«)] V f \ f • 2K • 
Z,m(cj).exph—j 
1 = 1 IN 

Comments: In the general case E[(C;)] is called the cost function. 

STEP 2 

STEP 3 

STEP 4 

Set k = 1. 

Generate randomly an integer l, 1 g I ^ n, I 4= k. 

Construct a trial permutation from the current permutation as follows 
find 

l = min (/, k) 

k = max (J, k) 

set 
t. = a for i = 1,2 ... l - 1 

4. _ _ 3 5 .6 

8 9 
Fig. 2. Starting permutation. 

8 9 
Fig. 3. Trial permutation. 
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Comments: 

STEP 5: 

tj + j = Cfi^i for i = 0, 1 ... k — l 

tt = cf for i = k + 1, . . . , N 

Let for example in our case k = 3 and l = 6; then l = 3 and k = 6 
and the trial permutation (f,)? is 1, 2, 6, 5, 4, 3,7, 8, 9, 10 (Figure 3). 
This construction interchange the paddles in the k-th and /-th positions 
and the paddles between then are taken with reversed order. 

Calculate the unbalance corresponding to the trial permutation 
r In 

ғ = ғш = 
{ 

£ m(tj) . exp H N 

STEP 6: If F' ^ F go to Step 7. 

Comments: In this case, the trial permutation is accepted as a new current permuta
tion and is used as the starting point for the generation of the next 
trial permutation. However it could be dangerous to accept only rear
rangements that lower the value of the cost function since the com
putation might end in local minimum. In order to increase the probabili
ty of getting out of the local minimum region also the rearrangements 
leading to an increase of the cost function value are considered for the 
next step. 

STEP 6: If F' > F generate a random number x, 0 ^ x ^ 1, then if x < 
< exp (F - F')/Tgo to Step 7 otherwise go to Step 8. 

Comments: The case F' > F is treated probabilistically, it is here where the 
analogy with thermodynamics is used. The trial permutation will be 
accepted with the probability given by the Boltzmann-Gibbs factor 
exp {—AF/T}, which means that with a certain probability we accept 
also the rearrangements that increase the value of the cost function. 
This is one of the most important properties of the algorithm. 

STEP 7: 

STEP 8: 

Set C: 
^J "J 

Set F = F' 

t for j = 1, 2, ...,N 

Increase k by one. 

Then if k ^ N go to Step 3 otherwise go to Step 2. 

The temperature is a formal parameter controlling the mobility of the system, i.e. 
the flexibility to accept a change increasing the cost function value. At the beginning 
of the minimization T is set at a reasonably high value so that the system is able 
to pass local minima near the starting permutation. One can make some educated 
guess in order to find an appropriate value of the temperature T, or one can find 
such value experimentally by trial and error method. Keeping the temperature T 
constant one shall reach, after a sufficient number of trial permutation generations, 
an equilibrium state, i.e. a state of the system in which the value of the cost function 
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fluctuates around a certain mean value. The reason for this is discussed in Appendix. 
Roughly speaking we simulate the thermal motion of some statistical system and 
such system spontaneously approach an equilibrium state. After reaching the equi
librium the algorithm would generate an infinite sequence of current permutations 
with the corresponding values P[(c*)] fluctuating around some mean value. Therefore 
one should stop the algorithm, decrease the temperature and start the calculation 
again till a new equilibrium state is reached. Since T was decreased, the mean value 
of P[(c;)] in the new equilibrium state should be lower than the previous one. The 
simulation must proceed at each temperature long enough in order the system could 
reach the equilibrium state. At some stage one has to decide to stop the process of 
lowering the temperature and thus to stop the whole calculation. The criterion might 
be the fact that values of F[(c;)] acceptable for practical purposes were reached. An 
other reason for stopping the calculation might be the computational time. 

In order to increase the acceptance rate of the trial permutations one can try to 
repleace Step 3 by the following 

STEP 3: Generate randomly an integer j such that 1 :g m S n < N/2 where n 
is a fixed number and m = min {\j — l |, \j + i + N|, \j — i — N|}. 

Comments: Rearrangements in the sequence of paddles are then more local. Ex
perimentally it can be found that such rearrangements are useful in 
situations near the minimum. 

3. COMPUTATIONAL EXPERIENCE 

To investigate the possibilities of the above discussed algorithm we observed its 
behaviour in several problems, where the exact solutions were known because of 
symmetry reasons. However, it is clear that the fact of some symmetry in the data 
has no significance for the work of the algorithm. Thus if the algorithm finds good 
suboptimal solutions for such problems we can hope that it is able to find solutions 
for arbitrary other problems, as well. 

Example 1. We consider a circular wheel with 10 paddles with masses mt = 
= 1, 2, ..., 10 uniformly located on the perimeter of the circular wheel. The optimal 
sequence e.g. 10, 7, 6, 3, 2, 9, 8, 5, 4, 2 give the unbalance F[(c*)] = 0. Unbalance 
calculated from the starting permutation (Figure 4) is 7, 49. We applied the proposed 
algorithm to our optimization problem starting at the temperature T = 1-0. The 
results of the optimization are presented in Figure 5. In this figure we plot the value 
of the unbalance corresponding to the current permutation after every 100 Monte 
Carlo trials. Quantitatively the picture has the character as expected by the thermo-
dynamical analogy. 

The starting tempetature T= 1-0 seemed to be too high (large fluctuations), 
therefore we cooled the system after 200 Monte Carlo trials to the temperature 
T= 0-5. At this temperature an equilibrium state seemed to be reached after 160 
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5 4 
Fig. 4. Starting permutation — Example 1. 
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Fig. 5. Results of optimization for Example 1. 

4 3 

8 9 
Fig. 6. Optimal solution for Example 1. 
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trials. We repeated this procedure again, choosing the temperature T = 0-1, 0-01, 

0*001. After 1600 Monte Carlo trials the value of unbalance 0*0 was reached which 

means that the optimum was found. The optimal permutation of the paddles is pre

sented in Figure 6. This was quite a nice result, but the problem was rather simple. 

E x a m p l e 2. We consider the circular wheel with 40 paddles, with pairs of paddles 

having equal masses. In the starting permutation the paddles were located in such 

a way that paddles with equal masses were side by side (1*34, 1-34, 1-68, 1*68, , . . ) . 

It is clear that the optimal permutation is that when the paddles with equal masses 

are put in the opposite positions. In this case the unbalance is 0*0. We began the 

optimization process at the temperature T = 1*0. After 10 000 Monte Carlo trials we 

decreased the temperature to the value 0*5. We repeated the procedure choosing 

T= 0-1, 0*01, 0*001, 0*0001. The modified algorithm with Step 3' was used at 
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Fig. 7. Results of optimization for Example 2. 
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Fig. 8. Results of computation for Example 1, with Step 4' instead Step 4. 
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temperature 0-0001. The results are presented in Figure 7. In this case the optimum 
was found again after some 67 000 Monte Carlo trials. The results of some other 
test runs are presented in Table I. In the last example from Table I the total minimum 
was unknown (the masses were choosen randomly). 

In some of the cases presented in Table I we choose the masses of paddles to be 
almost equal, in other cases the masses were fairly different. The algorithm works 
equally well in all cases. 

Table I 

NT TNTRY Starting The minimum Absolute 
unbalance found minimum 

10 1 600 7-49165 0-0 0 
20 17 000 1-70161 0-0 0 
40 67 000 4-66912 0-0 0 
60 98 000 2-56456 2 X 10" -6 0 
30 10 000 17-23736 1-1 X 10" -6 ? 

NT — number of paddles 
TNTRY — number of trials 

4. COMMENTS AND CONCLUSIONS 

In the previous section we presented several examples indicating that by using the 
proposed algorithm one can get suboptimal or even optimal solutions of the given 
problem. 

Our specific optimization problem belongs to a much larger group of combinatorial 
optimization problems [5], These problems have many practical applications e.g. 
in backboard wiring [2], time scheduling or controlling a multiprocessor system [6]. 
The size of the problems arising in practice is in general too high to allow for exact 
solution methods. In practice (it is also our case) it is sufficient to find an approximate 
solution of the problem with using minimum of computation time. For the solution 
of problems of this type the proposed algorithm is very appropriate. 

The algorithm was originally proposed [ l ] , [2] for the travelling salesman 
problem: Given a list of N cities and a means of calculating the cost of travelling 
between any two cities one has to plan the salesman's route which will pass through 
each city once and finally return to the starting point, minimizing the total cost. 
In the algorithm the matrix structure of the travelling salesman problem is not im
portant at all, so one can expect that the algorithm can be useful for other com
binatorial problems as well. Our results suggest that it is indeed so. The slow increase 
of effort along with the increasing number of elements of the optimized system gives 
promise that the algorithm could serve as a widely applicable optimization method 
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not only for the travelling salesman problem and for our problem but also for a large 
group of problems characterized by a large combinatorial complexity. This belief 
is based also on the fact that the algorithm operates only with two objects: with the 
configuration of the system and with the objective function which is minimized. 

One of the open problems is the universality of this algorithm with respect to the 
generation of the trial permutation from the current one. In Section 2 we discussed 
a modification of Step 3, in which the change of the permutation is more local. The 
substantial modification of algorithm can be performed in Step 4. If we have a con
figuration with N elements, so there are N! possibilities how to generate a trial per
mutation from the current one. Some possibilities were investigated by Croes [8] 
and Lin [7]. The problem is not trivial since one can easily find rearrangements 
which empirically significantly lower the convergence rate of the method: 

Instead of Step 4 we also tried to use 

STEP 7: Construct the trial permutation as follows 

t. = a i = 1, 2, ..., 7 - 1, / + 1, ..., k - 1, k + 1, ..., N 
U = ck 

h = ci 
Here only the 7th and kth positions are interchanged. Modifying the algorithm in 
this way we obtained, for the case described as Example 1, the results presented in 
Figure 8. We can see that the qualitative behaviour is the same as in Figure 5. Quanti
tatively, however, the results are substantially different (slower convergence), in 
agreement with what was found in [7]. 

To conclude: Our results support the conjecture [1], [2] that the thermody-
namically motivated optimization algorithm is a powerful and very general 
method to approach combinatorial optimization problems. The results of applica
tions to various problems so far do not even indicate the necessity to look for alter
natives for "STEP 4" (a move from current to trial permutation). However, we feel 
that it is necessary to keep in mind that the universality of the algorithm need not be 
so strong in this respect and it is always good to try alternative moves e.g. so discus
sed by Lin and Kerninghan [7]. 

APPENDIX: THERMODYNAMICAL MOTIVATIONS 

Statistical Thermodynamics [3] is one of the central disciplines of theoretical 
physics. It contains many tricks for extracting properties of a macroscopic system 
from the microscopic average. Because the number of atoms is of the order 1023 per 
cubic centimeter, only the most probable behaviour of the macroscopic system at 
a given temperature can be observed in practice. This can be characterized by an 
average and small fluctuations about the average behaviour of the system. 

One of the main principles of statistical thermodynamics says that a large system 
spontaneously approaches the equilibrium state in most cases irresepectively of the 
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initial state. The probability to find the system in a particular microscopic configura
tion i is given by the Boltzmann-Gibbs distribution 

Ft = C .exp{-£ , . /T} 

where Et is the energy of the configuration, T is the temperature and C is the nor
malization constant. The equilibrium state is characterized by a certain mean value 
of energy. This mean energy is a function of the temperature. It is clear from the 
Boltzmann-Gibbs formula that lower mean energies correspond to lower temperatures. 

Let us imagine that we want to find experimentally the state of the system with the 
lowest possible energy, the so called ground state. According to the Boltzmann-Gibbs 
formula one has to freeze the system to the temperature T = 0 and the system would 
spontaneously tend to the ground state. But in practice a low temperature is not 
a sufficient condition for finding the ground state of a matter characterized by the 
minimal value of the energy. As an example one can imagine an experiment of growing 
a single crystal from a melt. To get a pellucid crystal one must first melt the substance, 
then lower the temperature slowly and spend a long time at temperatures in the vicini
ty of the freezing point. If we lower the temperature rapidly, the resulting crystal 
will have many defects, or the substance may form a glass with no crystalline structure 
(it is a metastable state, which means it is a local optimum). 

Instead of doing this cooling procedure experimentally one can try to use numerical 
procedure simulating the spontaneous transition to the equilibrium state. 

Metropolis et. al. [4] proposed a simple procedure that can be used for numerical 
simulation of a collection of atoms in equilibrium state at a given temperature. This 
procedure consists of a loop over a random displacement generator that produces 
changes in energy. The algorithm starts from an arbitrary state with energy E and 
temperature T To this state we apply the random displacement and calculate the 
corresponding change dE of the energy of the system. If this change is less than zero, 
the displacement is accepted and the value of the energy is reduced by dE, the case 
when the change of energy is nonnegative is treated probabilistically according to the 
Boltzmann-Gibbs law 

P(dE) = C.exp{-dE/T}. 

The probability P(dE) is compared with the random variable x uniformly distributed 
in <0, 1 > and the displacement is accepted only if this random variable x is less than 
P(dE). 

Having a general optimization problem we do not usually speak about energy 
but abaut cost function and not about state but for instance about values of some 
parameters. But this is a mere difference in the wording. We can use the Metropolis 
algorithm for finding the ground state of a physical system. It is true, however, that the 
temperature in optimization problems is not defined in a natural way. It is rather 
arbitrary but a very important parameter for optimization problems. An algorithm 
which would accept only rearrangements that lower the value of the cost function 
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is equivalent to our algorithm at T — 0. One should not be surprised that com
putations would end in a local minimum. But at nonzero temperature the system 
fluctuates about the equilibrium state. Therefore if we accept with certain pro
bability also rearrangements which increase the objective function value, the tran
sitions out of a local minimum are possible. Of course one can never gurantee reaching 
the absolute minimum, but chanches are much higher. 
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Súhrn 

TERMODYNAMICKY MOTIVOVANÝ OPTIMALIZAČNÝ ALGORITMUS: 
OPTIMALIZÁCIA VYVÁŽENIA PARNÉHO KOLESA 

JOZEF MASARIK 

V článku uvádzame Monte Carlo algoritmus na hiadanie suboptimálneho alebo 
dokonca optimálneho riešenia poměrné širokej triedy komplikovaných optimalizač-
ných úloh charakterizovaných velkou kombinatorickou komplexnosťou. Tento 
algoritmus bol aplikovaný na jeden konkrétny problém — optimalizáciu statického 
vyváženia oběžného kolesa parnej turbíny. Pomalé narastanie času potřebného na 
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optimalizáciu v závislosti so vzrastaním rozmerov optimalizačnej úlohy nás vedie 
k presvedčeniu, že termodynamicky motivovaný optimalizačný algoritmus móže byť 
poměrné univerzálny a efektívny optimalizačný algoritmus. 

Authoťs address: Dr. Jozef Masarik, Katedra jádrovej fyziky UK, Mlýnská dolina, 842 15 
Bratislava. 
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