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THE OPTIMIZATION OF THE STATIONARY HEAT EQUATION 

WITH A VARIABLE RIGHT-HAND SIDE 

CTIRAD MATYSKA 

(Received May 17, 1984) 

Summary. Solving the stationary heat equation we optimize the temperature on part of the 
boundary of the domain under investigation. First the Poisson equation is solved; both the 
Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, 
the distribution of the heat sources being variable. In the second case, the heat equation also 
contains a convective term, the distribution of heat sources is specified and the Neumann con
dition is variable on part of the boundary. 

Keywords: stationary heat equation, boundary value problem, distribution of heat sources — 

optimization, Neumann boundary condition, Newton boundary condition, Poisson equation. 

1. INTRODUCTION 

Computing the Earth's temperature field we regard the terrestrial heat flow and 

temperature as available empirical data and we also have some notion about the 

heat conductivity of the rocks of the upper part of the Earth (lithosphere). If we 

confine ourselves to the investigation of the temperature field of this part, we can 

regard it as a stationary one. In order to be able to solve the heat equation, we need 

to know the detailed distribution of heat sources as well as the conditions on the 

whole boundary of the domain. We shall use two known boundary conditions on 

the Earth's surface by considering the Neumann condition there (or the Newton 

condition on part of the surface) and by optimizing the temperature. 

In the first case (Problem 1 in Section 2), we are going to determine the interface y 

which separates two subdomains with different densities of heat sources, i.e. with 

Fig. 1. 
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different densities of radioactive elements. The situation is sketched in Fig. 1. We 
shall solve this problem on a rectangle whose upper side, F, is the Earth's surface 
and the lower one, F', is the bottom of the investigated domain. F'or simplicity, 
we shall suppose that the heat flow crossing the sides dQ\T is negligible. The 
problem is only suitable for regions in which no heat transfer by convection occurs. 
Since this is the inverse problem for Poisson's equation, it may be also useful in 
gravimetry. 

In the second case (Problem 2 in Section 2), we expect to know the heat sources 
distribution (if necessary it may be supposed that they are negligible). A more 
general case is considered when the heat equation also contains the convective term. 
The problem is formulated for a region near the so-called mid-oceanic ridges where 
the rocks of the upper mantle are going up and forming the lithspheric plate which 
is moving horizontally with a velocity of about several cm/year, as the hypothesis 
of the global plate tectonics asserts (see [1, 4, 6, 9, 11, 14, 16, 17, 18]). Now F re
presents the oceanic floor, x1 is the horizontal distance from a mid-oceanic ridge 
and F is the bottom of the lithospheric plate. The horizontal component of the 
heat flow beneath the ridge is supposed to vanish owing to the symmery. The same 
is true for the component on the side F3 because of a great distance from a thermally 
disturbed region near a mid-ocean ridge. In this problem we are going to determine 
the unknown boundary condition on the lithospheric bottom F so that the tempera
ture on the oceanic floor may be optimized. 

Hitherto we have tacitly supposed that the velocity pattern of the moving litho-
sphere appearing in the convective term is known. We shall use the model of the 
velocity pattern defined by Problem 3 in Section 2. In this model the velocity pattern 
is supposed to have the scalar potential Vand to satisfy the Laplace equation (for V), 
which is nothing else than the stationary equation of continuity. We suppose that 
the material enters the domain Q only across the parts of the boundary r1 as well 
as F2 and flows out across the side F3 as a solid plate moving horizontally. We do 
not know the function describing the flow on Fx; we are going to determine it in 
such a way that the motion of the rocks in the domain may "aproach" the motion of 
a solid plate. We shall use the corresponding Newton condition on F2 in order that 
the horizontal component of the gradient Vmay be equal to the velocity of the plate 
provided the vertical component of the gradient vanishes. A detailed numerical 
realization of Problems 2 and 3 is described in [8]. 

2. VARIATIONAL FORMULATION AND EXISTENCE OF SOLUTIONS 

We shall use the following notation: 

Q, dQ — a domain in En and its boundary, 

Hk(Q) — the Sobolev space of functions having square-integrable derivatives of all 
orders from 1 to k in Q; we shall denote H(Q) = H\Q), L2(Q) = H°(Q), 
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L°(Q) — the space of bounded measurable functions, 

("> ')k,Q> ("> ' )^ ' (*' *)(?*-* ~ t n e i n n e r product in Hk(Q), l}(Q), L2(dQ), respectively, 
|| * \\k,Q - t l i e norm in Hk(Q), k = 0, 
u . v — the inner product of vectors from En, 
QeCk, QeCk'1 — Q has a boundary of order Ck or the derivatives of order k 
satisfying the Lipschitz condition, respectively (for exact definition see [5, 12]). 
If no misunderstanding may arise, we shall omit the symbol Q in the notation of the 
function spaces, the inner products and the norms. 

Let us now consider (see also Fig. 1): a domain Q c E2, Qe C0,1; F£ cz dQ, 
i = 1, ..,, 4, F. nTj = 0 for i #= j ; F c <3Q, F' cz dQ; F n F' = 0; F, F' and Ff 

are open sets of positive one-dimensional measure; k e /^(Q), k = k0 > 0, k0 e Ex; 
DeL°°(Q), O = O^o > 0, O0eKi; CGL°°(Q), c = c0 > 0, CQEE^, AEL2(Q), Ade 
€L2(Q); d! eL"(dQ), a1 = 0 on d Q \ F 4 , o^ > 0 on F4; <J2 e L°°(<3Q), cr2 = 0 on 
dQ\T2, <T2 > 0 on F2; f e L2(dQ), f = 0 on £ Q \ F ; g e L2(<3Q), a = 0 on dQ\ 
\ ( F 2 u F 3 ) . 

Problem 1. In addition to the above conditions, let Q be the rectangle described 

in Fig. 1 and let the constant d > 0 be given. Let us denote 

U = {y(x1)eC«,0,h1}): 

0 g y(Xl) S h2 , \y(a) - y(b)\ rg d\a - b\ Va, b e <0, ft.)} , 

where h1 and h2 are the lengths of the sides F and F3, respectively, 

(2.1) a(w, v) = k Vu . Vvdx + 
J a 

Let us seek functions Te H and y e U such that 

a^váS . 
dQ 

(2.2) a(T, ę) = (A, ę) + (f, ę)ea + ' I ' Aáę âx, åx2 V<p є H , 
J o J o 

(2.3) Ғ(Г) = j ] T2dS 

is minimal 

Problem 2. Moreover, let Ve H be given. Let us denote 

(2.4) O(u, v) = a(u, v) + QCV VV. Vu dx . 
J Q 

Let us seek h e l}(dQ), h = 0 On dQ \ F', and Te H such that 

(2.5) O(T, cp) = (A, cp) + (f, <p)ea + (h, cp)ea McpeH 

and F(T) defined by (2.3) is minimal. 
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Problem 3. Moreover, let V0e H be given. Let us denote 

(2.6) b(u, v) = Q Vu . Vv dx -f r/2uv dS . 
J Q J dQ 

Let us seek g e l3(dQ), g = 0 on dQ \ Fi and Ve H such that 

(2.7) b(V, cp) = (q, cp)dQ + (g, (p)m V<p e H , 

(2-8) G(V) = f [V(V - V0)] . [V(V - V0)] dx 
J Q 

is minimal. 

Lemma 2.1. Let us define the C-norm in the space C(<0, h±y) by 

(2.9) ||y | |c = max |y(*i) | . 
*ie<0,/ii> 

Then there exists a solution of Problem 1. 

Proof. According to the Arzela theorem, U is a compact set in C(<0, hi>) with 
the C-norm specified by (2.9). The bilinear form a is elliptic and the right-hand side 
of (2.2) is a continuous linear form for each fixed y e U. It follows from the Lax-
Milgram theorem that there exists one and only one solution T(y) of (2.2) for each 
y e U. Let us denote Y(y) (xl9 x2) = ^4d(xi, x2) for x2 ^ y(xi), ^(y) (xl9 x2) = 0 
for x2 > y(x±). The trace theorem, the Lax-Milgram theorem (see [12, 15]) and 
the Schwarz inequality imply that there exist constants a > 0, jS > 0 such that for 
yt eU, y0e U, 

\\T(y0) - T(yt)\\LHm ^ p\\T(y0) - T(^) | | i = />/« sup (Y(yt) - Y(y0)9 cp) g 
Iklli^i 

s PI* sup ||y(^) - Y(y0)\\0. \\cp\\0 s Pl4Y(yt) ~ Y(yo)\\o. 
IklliSi 

If yt -> y0 in the C-norm, then evidently Y(y/) -> ^(yo) m F2(-^)- F is continuous 
on L2(dQ), so the mapping y r-» F(T(y)) is continuous on U, q.e.d. 

Lemma 2.2. Let Mg be a non-empty bounded convex and closed set from l}(dQ) 
so that all functions from Mg are equal to zero on dQ\T1. Then the functional G 
given by (2.7), (2.8) attains its minimum on Mg. 

Proof. The mapping g i-> G(V(g)) is continuous on l}(dQ). G is a convex positive 
functional and so it attains its minimum on Mg [3], q.e.d. 

If we want to use the solution V of Problem 3 in Problem 2, we need also some 
regularity of the function V Now we shall turn to this problem. We shall use the 
following two theorems. 
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Theorem 2.1 (see [12]): Let Q e Ckfl. Then there exists a linear continuous map
ping 

Tk: l\Hk-'(8Q)^Hk(Q) 
1=0 

such that for all 

K « i , . . , ą - i ) є П Я ќ l(дQ), Tk(u0,uí9...,uk_í) = vt 

1=0 

OŞ 

ôvl = u. 

holds on dQ for I = 0, 1, ..., k — 1. 

(The symbol dlfdvl is the /-th derivative in the direction of the outer normal to the 
boundary dQ.) 

Theorem J2.2 (see [10]): Let Qe C2, Q a En, Ae L2(Q), a(x) = (ax(x),..., an(x)), 
at(x) e C\Q), i = 1,..., n, a e C\dQ). Let Ve H satisfy 

(2A0) J VV. Vcpdx + j cpVV.adx + j aVcp dS = J Acp dx Mq> e H(Q) . 
JQ JQ J dQ JQ 

Then VeH2(Q). 

Lemma 2.3. If Q e C2'1, g e C2(Q), a2 e C\dQ), gjg e H(dQ), qjg e H(dQ), then 
the solution V of (2.7) is from H2(Q). 

Proof. Let g e H2(Q) satisfy 

(2.H) 
ÕV 

(q + g)lв, 

(2.12) 9\ea = 0 . 

According to Theorem 2.1 this function exists. Let us find the solution Vof the 

equation (2.7) in the form V = V + g. Then V satisfies 

(2.13) b(V, cp) = (q + g, cp)eQ - Q Vg . Vcp dx - a2gcp dS . 
J Q J dQ 

It follows from (2.12) that the third term on the right-hand side of (2.13) vanishes. 

We use the Green theorem [12, 13] for the second term and by means of (2.11), 

(2.12) we conclude 

(2.14) Ь(Ў, ę) = ({? Уg) ę dx . 
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Since CX(Q) is dense in H(Q), it is sufficient to take the trial function (p e Cl(Q). 
Now we can rewrite the first term of the bilinear form b (see (2.6)) as 

O VV . V<p dx = j V(Ocp) . VVdx 
Q J Q 

Putting q> = Q(p, it is evident that (2.14) is equivalent with 

(2.15) f VV.V<£dx -
J Q 

cpWcp . VVdx. 
Q 

-? VO . VVdx + 
QQ 

a2V^-åS 

-V(OV#)dx V ^ e C 1 ^ ) . 

Since (\\o)V(Q^g)el}(Q), it follows from Theorem 2.2 that VeH2(:Q), and so 
VeH2(]Q), q.e.d. 

Consider now Problem 2, which is more complicated. First, we have to show the 
convergence of the integral on the right-hand side of (2.4) for u e H, v e H. We shall 
use the following theorem. 

Theorem 2.3. (see [5]): Let Q c E2,Q e C0'1. Then H(Q) Q Lp for all p e <1, oo> 
(The symbol Q denotes the embedding.) 

Using this theorem we get dVJdxt e L4, i = 1, 2, v e L4; since dujdxt e L2, i = 1, 2, 
and £ e L00, the integral in (2.4) converges and the bilinear form o is bounded. 

In general, there may exist no solution of Problem 2. We shall use part of the 
Fredholm alternative: 

Theorem 2.4 (see [10]): Let Q e C2, Q c E2, a = (au a2), a^C^Q), i = 1, 2, 
a e C1(dQ), A e l}(Q). Let us consider the equation 

(2.16) J VT. Vcp dx + \ (pa. VTdx + j aTcp dS = j A(p dx V<p e H(Q) . 
JQ JQ J dQ JQ 

If there is no non-trivial solution of (2.16) for A — 0, then there exists one and only 
one solution for all A e l!(Q). Moreover, we can find a constant a > 0 such that 

(2.17) \\T\l £*\\A\\0. 

Remark . In order to use this theorem, we need to rewrite the equation (2.5) into 
the form of (2.16) with coefficients belonging to the spaces as those described in 
Theorem 2.4. Let us consider Q e C2>\ k e C2(Q), a1 e C\dQ), Q e C\Q), c e Cl(Q), 
Ve C2(Q), h e H(dQ), feH(dQ). We can find a solution of (2,5) in the form T = 
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T + h where h e H2 satisfies 

ÕҺ 

дv 

f+ h 

Since k\dQe H(dQ) [12], the existence of h follows from Theorem 2.1. In the same 
way as in the proof of Lemma 2.3 we get 

(2.18) VŤ.Vcpáx + 
k k 

f «,т. Lľ dS = 

- <p dx + í ^ V(/c V/í) dx 
k }Qk 

QC 
(pVV.Vháx VcpeH(Q). 

Lemma 2.4. Let Mh be a non-empty bounded convex and closed set from H(dQ) 
so that all functions from Mh are equal to zero on dQ\r'. If Q e C2?1, ke C2(Q), 
GX e Cl(dQ), Q e C\Q), c e Cl(Q), h e H(dQ), f e H(dQ), Ve C2(Q) and the equation 
(2.18) has no non-trivial solution for the zero right-hand side, then there exists 
a solution of Problem 2. 

Proof. In view of (2.17) and the convexity of the cost functional F: l}(dQ) i—• Ex, 
it is sufficient to prove that the second and third terms on the right-hand side of 
(2.18) are continuous linear functional on l3(Q) for h —> 0 in H(dQ). This is true, 
because h -> 0 in H2(Q) according to Theorem 2.1, q.e.d. 

Remark . In the lemma we require V to be from C2(Q). For V as a solution of 
Problem 3 we only discussed such situation when Ve H2(Q). But, in general, it is 
true that the smoother dQ and Q, a2, g, g can be given, the more regular Vcan be 
obtained. Since for Q a E2, Qe C0'1 we have H2(Q) Q C(Q) [5], it is sufficient 
for VtobefromH4(.Q). 

3. SOLUTION 

In this section we shall look for the Frechet differential of the cost functional F 
and G. For finding solutions of the problems we shall present an algorithm which is 
the analogue of that described in [7], 

Lemma 3.1. The mapping Ti-> F(T) from H(Q) to E1 has the Frechet differential 
F'(T) and 

(3-1) F'(T) (ÔT) = 2 TSTdS . 
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Proof . The relation (3.1) directly follows from the trace theorem and the definition 

of the Frechet differential. 

Now we shall examine the general dependence of the solution T(y) of (2.2) on y. 

Let y be an arbitrary function on <0, hty. Then let us denote 

Py = {(xi9 x2); 0 = x± = hl9 x2 = y(xl)} , Qy = Qn Py, 

y(x^ = min (h2, y+(x1)) where y+(x^ = max (0, y(xt)), 

l(<p) = (A, <p) + (/, <p)dQ . 

If, moreover, Ad e C(Q), u and v are measurable functions on <0, ht}, let us define 

the linear functionals on H(Q), 

f f 
(3.2) l(v) (<p) = Ad<p dx, l(u) (<p) = Ad<p dx, 

J Qv J Qu 

rhi r ru(xo * -i 
l'(u, v) (<p) = Ad(xl9 u(xt)) <p(xl9 0) + — (xl9 rj) drj (v(xx) - u(xx)) dxi , 

where <p(xu 0) is the trace of the function <p. Then 

rhi 
l'(u, v) (<p)\ = const фi,Ö) + 

f"(*i) дę 
дx7 

(xl9 ц) drj dxx = const | |<p||i,n. 

According to the Lax-Milgram theorem, there exists T'(u, v) e H(Q) such that 

a(T\u9 v), <p) = l'(u, v) (<p) VrD e H(Q) . 

Let us put R(u, v) = T(v) — F(u) — T'(u, v). Then R(u, v) is the solution of the 

equation 

a(R(u, v), <p) = L(u, v) (<p) Vrp e H(Q) , 

where 

L u, v) = l\v) — l(u) — l'(u, v) . 

According to the Lax-Milgram theorem 

\\R(u,v)l^-\\L{u,v)\\w, 
OC 

where H' is the space of linear continuous functionals on H and a > 0 is the constant 

of ellipticity of the bilinear form a. Now 

L(u9 v) (<p) = Ad<p dx — Ad<p dx — Ad(xl9 u(*i)) <p(xX9 0) 
JQV JVu J° L 

+ 
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+ 
' " ( J f j ) дę 

(xu rj) dr] (v(xi) - û(xx)) dxx 

- Ad(xi, u;xi)) ( cp(xu 0) + 

We shall use the formula 

<-ü(Xí) д ( p 

дxn 

>v(xi) r 

ü(Xi) 

(xu r]) dr] 

Ad(xux2)ę(xux2) 

dx2 \ dxx . 

cp(xu x2) = cp(xu 0) + ~ (xu rj) dr] + - ^ (xu r]) dr] , 
Jo d*2 Ju(Xí)

dx2 

which holds almost everywhere (see [5]). 
Now we can write 

(•hi / pv(xi) 

L(u, v) (cp) = 
Ü(Xí) 

Ad(xl, *> Г ř 
J Ö(X І ) ^ * ! 

(xi, r]) dr] 

Çhx Г ЛØ(*i) 

+ ф i , o) 
Jo L Jß(л-i) 

cp(xu 0) I (v4d(x1? x2) - Ad(xi, u(xx))) dx 
U(Xl) 

dx2 ) dxi + 

dxi + 

+ 
Г Гй(xí) дę 

(xu r]) dr] 
1 Гv(xi) 

\L J 0 ^ X 2 J J i 7 ( j c i ) 

= Lx(cp) + L2(<p) + L3(cp) 

We shall need the formula 

(*b / (*x \ fb 

[Ad(xu x2) - Ad(xi, u *i))] dx 2 ) dx! = 

Cb / Cx \ cb 

M f(y) dyUx = (b - n) f{n) dlí . 

We have 

|Li(<p)| g const 
p/íi /»ø 

J 0 J ßl 

fftt 

= const 

( * i ) 

v(xi) 

v(x{) / px2 

\J G(Xi) 

(v(xx) - rj) 

д(p 

дx 
Ҷ * i - ^) dr; I dx 2 

d x i 

< const \\v — u\ 

ß ( * l ) 

L°°(0,/íi) 

дcp 

дx*> 
(xu r]) \dr]\ dxi g 

< const v — u L°°(05/îi) 

ЛØ(лj ) 

Jß(Лi) 

<3<p 

<3x^ 
(xi, r]) \dt]\ dx ! 

|v(xi) - u(xi)| d x j ||<B||i ѓ 
1/2 

S const ||v - u||LL
2

((Vll) |Mli -

Moreover, let us suppose that Ad e H(Q), then 

M < p ) | 2 = (<K*i,0) ^ ( X l > f / ) d i , dx 2 dx, 
J o V J u(Xl) \Ju(xi)VX2 J J 
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< 

< const 

U(x1;o) (v<yXx)-n)^(Xun)ényx, 
J o V Jw(*i) ®X2 / 

%hí Çhi r Çv(xt) ^ H2 

(p 2 (x l 5 0) dXi (v(Xi) - i?) —-* ( x 1 ? 17) d^ d x i <, 
0 J O LJ ň(xi) VX2 J 

IMI2 í 17 P W i ) - nf d«) r:i) (^ (Xl, ,)Y d,l 
Jo l\Ju(Xl) /.Vo \Sx2 ) J 

dXj <I 

= const \\(p\\\ ||v — u"3 

L^ÍO,/?!) • 

Analogously, 

(xг, ц) dц 
(•hi r /»w(xi) 

Jo LJo 

g A , - V 
— - ( x 1 ? rç) drç ) dxx = const ||(/)||2 ||v — u 
dx2 ) 

(v(xj) - /?) . 

|L*(0,/ц) •> 

and consequently 

|L((D)| <i const \ty\\ ||v — u 

According to the Lax-Milgram theorem, 

(3.3) llMMili 

13/2 
!L°°(0,/ІI) • 

v — w 
S const I» - uj | |L 2

( 0 ) f c l ) . 
\\L™(0,ln) 

In the space C(<0, h^), there is the norm L00 equivalent to the C-norm (1.9). Let us 
denote dv = v — u. f'(u, u + dv) is not the Frechet differential of the mapping 
y 1—> T(y) because dv i-> ?'(u, u + dv) is not linear, as one can see from (3.2). Let 
u e C(<0, ht}) be such that 0 < u(xt) < h2. For arbitrary dv e C(<0, ht}) there 
exists 8 > 0 such that 0 < u(xx) + e ^ v ^ ) < h2. Let us define 

(3.4) T'(u) (ðv) = - Ť'(u, u + sðv) . 
8 

If u lies on the boundary of the set U, we can analogously define the Frechet dif
ferential for an increment dv directing only into the interior of the set U. 

Let us suppose Ad e C(Q) n H(Q) in Problem 1. If we omit the terms of higher 
orders, we can get ST = T(v) — T(u) for u -> v in the C-norm (2.9) as a solution 
of the equation 

(2.5) a(ST, <p) = V(u, v) (cp) . 

Let us define P e H as a solution of the adjoint equation 

(3.6) .(Р, (?) = - 2 T(й) ф d S 

As the trace theorem implies, the right-hand side of (3.6) is a continuous linear 
functional, therefore P is correctly defined. (3.5) and (3.6) must be satisfied for all 
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cp e H. Let us put (p = P in (3.5) and cp = STAn (3.6). Since a is the symmetrical 

bilinear form, we find by means of (3A) and (3.2), that 

Chl I Ca(Xl) dP \ 
(3.7) SF = - Ad(xl5 a{xj)) P(x l 3 0) + — (x1 ? n) drj (v(xx) - u^)) dx1 . 

Jo V Jo Sx2 ) 
If we take 

(3.8) Sv = v{xx) - u(xx) = p(Xl) Ad(x1? u(xx)) P(x 1 ? 0) + (x1 ? */) d?/ 
\ Jo dx2 ) 

for ^(xj) ^ 0 "sufficiently small", we obtain <5F < 0 (in the case that Sv is not 

identically equal to zero). If the functions k, a and the boundary dQ are sufficiently 

smooth, P is so regular that 

P(xu 0) + 
•й(x,) ÕP 

(xurj) drj is continuous . 

By an appropriate choice of ^ (x^ it is now easy to guarantee that u + Sv lies in U. 

We get the following algorithm: 

1) Choose yt e U, put i = 1. 

2) Compute Tt from (2.2). 

3) Compute Pt from (3.6). 

4) Compute Syt from (3.8). 

5) Put y f + 1 - y(- + Syt. 

6) Add one to i and go to point 2). 

The situation is easier in the case of Problems 2 and 3. The functional F and G 

have the Frechet differentials because the functions h i—> T(h) and g i—> V(^f) are 

continuous affine mappings. Therefore, we can use the analogue of the algorithm 

presented. 

The numerical realization of Problems 2 and 3 is described in (8) for the East 

Pacific Rise region. 
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S o u h r n 

OPTIMALIZACE STACIONÁRNÍ ROVNICE ŠÍŘENÍ TEPLA 
PODLE PRAVÉ STRANY 

CTIRAD MATÝSKA 

Při řešení stacionární rovnice šíření teplaje ve dvou případech optimalizována teplota na části 
hranice zkoumané oblasti. V prvním případě je pro Poissonovu rovnici předepsána na části 
hranice Neumannova podmínka, na zbytku hranice Newtonova podmínka a mění se rozložení 
zdrojů tepla. V druhém případě obsahuje rovnice šíření tepla navíc konvekční člen, rozložení 
zdrojů teplaje dáno a proměnná je Neumannova okrajová podmínka na části hranice. 

Pe3K>Me 

O^THMAJIH3A^HiI CT^HOHAPHOTO yPABHEHHil TEnJIOnPOBO/lHOCTH 
C nEPEMEHHOM DPABOÍÍ HACTBK) 

CTIRAD MATÝSKA 

Peuiaa CTauHOHapHoe ypaBHemie TennonpOBOAHOCTH, aBTOp onTHMH3HpyeT pacnpeflejieHHe 
HCTOHHHKOB Tenna HJIH TenjiOBOH noTOK Ha HacTH rpaHHHM paccMaTpHBaeMoií o6uacTii TaKHM 
o6pa30M, HTo6bi TeMnepaTypa Ha /rpyroH nacra rpaHHHbi cxotfHjiacb K HVJHO. 
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