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31(1986) A P L I K A C E M A T E M A T I K Y No. 4,257-269 

THE DISPERSION OF GAS EXHALATIONS AND THE PROBLEM 

OF DISTRIBUTION OF NEW SOURCES ON A DRY HILLY SURFACE 

TRAN DIEN HIEN 

(Received November 10, 1984) 

Summary. The process of gas exhalations in the lower layer of the atmosphere and the problem 
of distribution of new sources of exhalations in a hilly terrain are studied. Among other, the 
following assumptions are introduced: (1) the terrain is a hilly one, (2) the exhalations enter 
a chemical reaction with the atmosphere, (3) the process is stationary, (4) the vector of wind 
velocity satisfies the continuity equation. The mathematical formulation of the problem then is 
a mixed boundary value problem for an elliptic equation with the given distribution on its right-
hand side. It is shown that the problem has a unique "very weak" solution which is sufficiently 
smooth if so are the coefficients of diffusion and the components of the wind velocity vector. 
Further, the problem of distribution of new sources of exhalations is discussed and a method of 
calculation of its solution is suggested. 

Keywords: mixed boundary value problem; elliptic equation; weak solution of; gas exhalation, 
dispersion of; sources of exhalation, distribution of 

AMS Subject class.: 35 J 25, 76 N 99. 

INTRODUCTION 

The main goal of this paper is to study the following two problems: 1. Existence, 
unicity and regularity of the "very weak" solution of the boundary value problem 
corresponding to the dispersion of gas exhalations over a dry hilly surface. 2. The 
(optimal) distribution of the source of exhalations on a dry hilly surface. 

The problem of dispersion of gas exhalations over a flat surface was considered 
by many authors (see e.g. Berliand [1] or Sutton [10] etc.). The problem of a reason
able distribution of new sources of exhalations on a flat surface was considered by 
Marchuk [7] and Berliand and coll. [2]. Hino in [4] and Berliand in [1] considered 
the problem of dispersion of exhalations over a hilly surface (under some simplifying 
assumptions). In [9] the author considered existence, unicity and regularity of the 
solution of the boundary value problem corresponding to the process of dispersion 
of gas exhalations over a general wet hilly surface. As to the author's know ledge, 
the problem of dispersion of exhalations and the (optimal) distribution of new 
sources of exhalations on a general dry hilly surface have not been considered as yet. 
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Under the assumptions formulated in section I, the process of exhalation dispersion 
corresponds to the mixed boundary value problem for the elliptic equation of the 
second order with the Dirac distribution on its right-hand side. So we must seek 
the solution of the boundary value problem in a "very weak" sense (see Definition 3). 

Existence, unicity and regularity of the "very weak" solution are proved in 
Section II. 

Section III deals with the problem of the (optimal) distribution of new sources 
of exhalations. 

I. FORMULATION OF THE PROBLEM OF DISPERSION OF EXHALATIONS 
OVER A DRY HILLY SURFACE 

The general continuity equation has the form 

dc 
(1) div (K grad c) + (v, grad c) + ac = f(t, f) , 

dt 
where c = c(t, £) is the concentration of the exhalations, 

lkx 0 0 
K == 0 ky 0 

\0 0 kz 

is the matrix of the coefficients of turbulent diffusion, v = [yx, vy, vz~] is the vector 
of the wind velocity, f = f(t, £) is the density of the given source of exhalations 
and (. , . ) is the inner product in R3. 

Assume that during the process of dispersion of exhalations the following con
ditions are satisfied: 

1. The hilly earth surface over which the exhalations spread is described by 
a twice continuously differentiable function z = z(x, y). 

2. The exhalated gas reacts chemically with the atmosphere. Its loss due to the 
chemical reaction is characterized by a non-negative constant a. 

3. The source of exhalations is situated at the point £0 = [0, 0, K\, where h 
is its effective height, and Q is its emission for a time unit. Thus the right-hand side 
of the equation (1) is given by Q. 3^0, where S4o is the Dirac distribution with its 
support in £0. 

4. The process is stationary, i.e. c = c(x, y, z). 

5. The surface z = z(x, y) consists of two parts Px and P2, where Px corresponds 
to all water surfaces and bogs, part P2 corresponds to dry earth surface. Experi
mentally it was shown that the wet surface Px absorbs almost all exhalations, while 
on the dry part P2 total repulsion takes place. Mathematically it means that 

c(x, y, z)\Pl = 0 
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and 
dc 1 dc . dc , dc 
r- = nxkx — + nyky — + n2fc2 — = 0 , 
Ov |p2 Ox Oj; Oz |p2 

where n = [/tx, n,, n2] is a vector of the external normal to the surface z = z(x, y)-
6. The wind velocity satisfies the mass conservation law: 

dvx dvv dvz 
—- + —-- + —- = 0. 
dx dy dz 

On the earth surface, the vector of the wind velocity lies in the tangent plane to the 
surface z = z(x, y), i.e. 

nxvx + nyvy + nzvz = 0 . 

7. The concentration of exhalations vanishes in the infinity, i.e. 

lim c(x, y, z) = 0 . 
1*1 + |y|+z-*oo 

2>0 

Under these assumptions we can formulate the corresponding boundary value 
problem 

- div (K grad c) + (v grad c) + ac = Q5 0̂(̂ ) , 

dv{P2 

C\tt = 0 , 

lim c(x, y, z) = 0 . 
| x | + \y\+z-+oo 

z > 0 

II. EXISTENCE, UNICITY AND REGULARITY OF THE SOLUTION 

We consider our boundary value problem in the bounded domain 

Q a {£ = [x, y, z] e R3; z > z(x, j;)} . 

Suppose that the boundary dQ is twice continuously differentiable and put F2 = 
= (dQ n P2)° and Fx = dQ\F2. (Both the sets F2 and Fx are open in dQ). 

In the domain Q our boundary value problem is the mixed boundary value problem 
in the form 

(2) Lc = -div (K grad c) + (v grad c) + ac = QO*^) in O , 

(3) c | r i = 0, 

(4) f =0 . 

Remark. Physical considerations make us choose Q in such a way that, roughly 
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speaking, (i) it adheres to the earth surface (i.e., some non-void part of dQ is described 
by the function z = z(x, y); (ii) it contains the point £0 where the source of exhala
tions is situated; (iii) it is sufficiently large so that we can put approximately c = 0 
on the part of dQ which does not adhere to the earth surface. 

By the symbols Wk,2(Q) and Wk,2(Q) we denote the Sobolev spaces (see [3]). 
Moreover, put 

U = {ue C°°(;Q): supp (u) c Q u F2} 

and denote by V the closure of the set U in the space W1,2(Q). Denote by Q)(Q) 
the set of infinitely smooth functions on Q such that supp (u) cz Q. 

Definition 1. Let Q be a space such that @(Q) is dense in Q and the imbedding 
of V into Q is continuous. Denote by Q* the dual space to Q. We say that a function 
u e W1,2(Q) (or u e V) is a weak solution of the differential equation 

(5) Au=- i ± ( a * ) + ibt£.+a(Qu-f 
i,j=idXi\ dXjJ i = i 0Xi 

with f e W~1,2(Q) (or of the mixed boundary value problem 

(6) Au=j, 

(7) "ir, = 0 , 

(8) J =0, 

with the right-hand side f e Q*, respectively) if for all v e W1'2(Q)(ve V) the relation 

(9) ( ( « , , ) ) - i f a u ^ ^ - + i f b ^ v + \ auv = av> 
i^ija dXidxj i = iJQ dxt JQ 

holds, where the symbol <. , .> denotes the duality between W~1,2(Q) and W1,2(Q) 
(Q* and Q, respectively). 

Proposition 1. Let the surface Tx have a positive measure. Then the norm in the 
space V is equivalent to the norm 

M r - ( I ||^"||U)1/2-
l / 5 | = l 

Proof. See [5] or [8], Theorem 1.9, Chapter 1. 

Proposition 2. Let Q be a domain with a twice continuously differentiable bound
ary and let Qx c Ql cz Q u F, where F is any open part of dQ. Further, let the 
following conditions be satisfied: 

(i) There exists y > 0 such that 
3 

y~l\\n\\2 ^ I aij{£)niVj =~ y\n\2 

i , J = l 

for a.e. £ e (R3 and every rj = [rjt, t]2, rj3~\ 4= 0. 
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(ii) The functions atj have Lipschitz derivatives of the first order and bh a are 
Lipschitz on Q. 

Then every weak solution u of the equation (5) with the right-hand side f e L2(o) 
which on F is given by some u0from W2'2(.Qi), i.e. 

Au = f, 

w,r = uo|L , w0 6 W2'2(.Qi) , 

belongs to W2'2(.Qi), while for every subdomain Q2 c= Q2 a Q1KJ F there exists 
a constant M = M(QX, Q2) such that the following inequality holds: 

\u\W2,2{Ql) ^ M(Q1,Q2)(\\f\\Ll{Qy) + | | u | | L a ( I J l ) + | |«o| | fF2.2 ( | J l )) . 

Proof. See [6]. 

Theorem 1. (Existence and unicity of the weak solution.) Let the following con
ditions be satisfied: 

(i) There exists a constant y > 0 such that the inequality 

y-
l\\n\\

2 ^ kfnl + kfWy + m)n; :S y\\n\\2 

holds for every n = [rjx, rjy, f/J + 0 and a.e. £ e R3. 

(ii) kx, ky, kz have Lipschitz derivatives of the first order and vx, vy, vz are 
Lipschitz functions on Q. 

Then the mixed boundary problem 

(10) Lc=f, 

(11) ^ = 0 , 

(12) f =0 
dv\r2 

has a unique weak solution c from Vfor each right-hand sidefe L2(Q). 

If Qx is a subdomain such that dQx n dQ a Fi? then c belongs to W2'2(Ql) and 
for every subdomain Q2 a Q2 c= Qx u {dQ± n dQ] there exists a constant M = 
= M(QU Q2) such that 

(13) \\4w^(Q2) ^ M(QU Q2) (\\f\\L2(Ql) + \\c\\L2iQi)) , 

where the constant M(QU Q2) is independent of f. 

Proof. In the special case of the operator L, the relation corresponding to (9) 
has the form 

((c, w)) = (K grad c, grad w) + (v, grad c) w + acw = fw . 
J.Q JQ JQ JQ 

To prove existence and unicity of a weak solution in Vby means of the Lax-Milgram 
theorem (see e.g. [8], Lemma 3.1, Chapter 1) we need to prove continuity of the 
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bilinear form, which is trivial, and of validity the inequality ((w, w)) ^ a | |HIV ^ o r 

all w e V (with some a > 0). 
Observe first that 

(v, grad w) w = - (v, grad (w2)) = - vnw
2 &S w2 div v = 0 , 

J Q 2 J Q 2 JdQ 2 J n 

Here we used the assumption 6 (Section I) and the fact that w = 0 on Tv Further, 
j " f i aw2 ^ 0 by the assumption 2 (Section I). So we finally obtain 

((*> w)) ^ ľ (. 
Jß 

1ІI- .ЛI2 K grad w, grad w) ^ y г || w 

The inequality (13) follows from Proposition 2. 

Analogously, we get the following result: 

Theorem 1*. Let the conditions of Theorem 1 be satisfied. Then adjoint problem 

(10*) L*c* = — div (K grad c*) — (v grad c*) -f ac* = f* , 

(ii*) 4 . = o, 
<9c* 

(12*) — = 0 
dv | f 2 

/zas a unique weak solution c* from V for an arbitrary f* e L2(Q). If O l 5 0 2 are 

the sub domains from Theorem 1, r/?̂ r2 the solution c* e W2,2(Ql) and the inequality 

(13*) lk*lk>.>(«.) ^ M(0.,-Q 2) ( | | f* | | t 2 ( 0 l ) + | |c* | | L 2 ( f i l ) ) 

holds, where the constant M(Q1, Q2) is independent of f*. 

Remark. According to Theorem 1*, the Green operator 

G*: L2(Q)-+ Vn PV2'2(.QX) 

is defined by the relation 

G*f* = c* , 

where c* is a weak solution of the problem (10*) —(12*). 

Let Q0 be a subdomain of Q such that £0 e Q0 c Q0 c O. Denote 

W(Q0) = PV2 '2(O0)nL2(O), 

introducing the norm 

IMkoio) = IMk2-2(<-o) + H U T O -
Definition 2. T/ze boundary value problem is called W-correct, if for every 

feL2(Q) there exists one and only one weak solution u from PV(O0). 

Definition 3. Let the boundary value problem 

(6*) A*»* = - i ± L/f) - i && + a(t)»* = /*, 
i,j = l OXj \ OXfJ i = l OXi 
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(7*) »*.-,= 0, 

(8*) ^ = 0 
8v {r2 

be W-correct. The function u e L2(Q) is called a "very weak" solution of the mixed 
boundary value problem (6) — (8) with the right-hand side f e W*(Q0), if for 
every f* e L2(Q) the inequality 

(14) (« , /*) = <j, G*j*> 

holds, where the symbol <•, •) means the duality between W*(Q0) and W(Qo) 
and (•, •) is the scalar product in L2(Q)> 

Proposition 3. If Q is a domain with a Lipschitz boundary, then the imbedding 
of the space W2,2(Q) into C(Q) is continuous. 

Proof. The assertion follows as a special case from the imbedding theorem — 
see [8], Theorem 3.8, Chapter 2. 

Lemma 1. The Dirac distribution S^Q belongs to W*(Q0). 

Proof. The assertion follows from the continuity of the imbedding of W2,2(Q0) 
into C(Q0). 

Lemma 2. Define a function 

(15) /„ = - ^ e x p { - n 2 | ^ - ^ H 

for every n e N and £ e R3. Then the sequence of functionals Fn e W*(Q0) defined as 

(16) <F„, <P> = ! MO q>(5) d£ , <p e W(Q0) 

converges weakly* to S^0 in W*(Q0). 

Proof. Let (p e W(Q0). For e > 0 let A > 0 be such that B = BA(£0) c. Q0 and 
\(p(0 - <p(£0)| < s for £ e B. It is easy to check that fn tends to zero uniformly on 
Q\B; this together with the Lebesgue Dominated Convergence Theorem yields 
that 

limf m<p(^d^ = 0. 

Using the fact that lim \Bfn = l w e obtain that 
n-*oo 

I lim [ MZ) (/>(£) dt-<p(i; 
l - i -ooj j j 

< £ , 

Combining these two results with the definition (16) we easily obtain 

lim <F„, q>} = (p(Q = 5io(<p). 
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Theorem 2. (Existence and unicity of the "very weak" solution.) Let the con
ditions (i)—(ii) from Theorem 1 be satisfied. Then the mixed boundary value 
problem (2) —(4) has a unique "very weak" solution ceL2(Q). 

Proof. Let {/„} be the sequence (15). According to Theorem 1, for every n e N 
there exists a weak solution cn of the problem 

(17) Lcn = Qfn on Q , cn\fl = 0 , dcn\dv\l2 = 0 . 

Since cn is also a "very weak" solution of the problem (17), we have (for every 
u e N and / * e L2(Q)) 

(18) (cn,f*) = <QFmG*f*>, 

where Fn is defined by (16). 
From the estimate 

(19) \<QF„, G*j*>| ^ M\\Fn\\w.iQo) | | j*| | t 2 ( 0 ) , 

from (18) and from the boundedness of {F„}£Li which follows from Lemma 2 we 
obtain 

(20) lcJi\Lim^M\\FHlWHih)^Mt. 

So we can find a subsequence {clJk} converging weakly in L2(Q) to some c e L2(Q) 
which is a "very weak" solution of our problem (2) —(4). The uniqueness of the 
"very weak" solution c follows from Definition 3. 

Proposition 4. Let {(pn} be a sequence of distributions such that cp* -> <p* in 
9'(Q) and 

\\D'<p*n\\L2iQ) = C 

for every ne N. Then Dpcp* e L2(Q) and 

IDVIk^C. 
Proof. See [8] - Prop. 2.4, Chap. 2. 

Theorem 3. (Regularity of the "very weak" solution up to the boundary) 

Let the assumptions (i) — (ii) of Theorem 1 be satisfied. Then the "very weak" 
solution c belongs to W2,2(Q1) n W1,2(Q2)for all subdomains Qx and Q2 such that 
Q1 c Q u F1? Q2 c: Q u F2 and Qx n Q0 = Q2 n Q0 = 0. 

Proof. Let c be a "very weak" solution of the problem (2) —(4) and Q1 c Q^ c 
c Q u Tl9 Qxn Q0 = 0. Choose Q[ such that Qx a Q[ u {dQ[ n FJ c Q[ c= 
c Q u rl9 Q[ n D0 = 0. 

Let cn be a weak solution of the problem (15) — (17). According to Theorem 1, 
there exists a constant M = M(Ql9 Q[) independent of n such that the inequality 

hlwi.noo ^ M(QuQ[)(\\fn\\L2iQn + \\cn\\L2(nn) 

holds for every n. 
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This estimate together with the boundedness of both {/„} and {c„} in L2(Q[) 
(See Lemma 2 and the estimate (20)) yields the weak convergence of some sub
sequence {cnk} in W2,2(QX) to some dGW2,2(Q1), which cannot differ fromc|0 l . 
Thus c\Dt e W2'2(.Qi). 

Now, let Q2 cz Q2 c n u F2 and Q2 n Q0 = 0. Choose Q2 such that Q2 c 
cz £>2 u {dOi n F2} c Oi c i2 u f2 and Q2 n Q2 = 0. Further, let 2 be an in
finitely differentiable function in Q such that 

11 for £ e Q2 
S^ \0 for £$Q'2. 

From the coerciveness we obtain 

(21) |WIS".2(0) ^ y((ecB, ec„)) = 

= y|((ecB- ecM)) - ((<?„, e
2c„))| + y|((c„, e2c„))| . 

The definition of the weak solution gives 

(22) |((c„,62c„))|g l / . I ^ a . . , |c„ | t 2 ( Q ) 

for every ne N. 

An easy computation yields 

(23) |((sc„, ec„)) - ((c„, 82c„))| ^ M, j|c„|22(fi) . 

From (21) —(23) we obtain 

IK||Wi>2(ft) = 7||f«||L2(fl2c) ]h||L2(fl) + Afill^H^i,). 

Reasoning as in the case of Q± we conclude c\Dl e W1,2(02). 

Proposition 5. Let the assumption (i)from Proposition 2 be satisfied. Let, further, 
the functions a(j have Lipschitz derivatives of the order k and functions bb a 
Lipschitz derivatives of the order (k — 1) in Q (for k ^ 1). 

Then every weak solution u of the equation (5) with fe Wk~1,2(Q) belongs to 
Wk+1,2(Q1) for any Qt cz Qt cz Q. There exists a constant M = M(QX) such that 

|M|F/«+1.2 (IJI) = M(Q1)(\\u\\Wit2in) + 1/8^-1.2(0)) 

holds, where M(Qi) is independent of f. 

Proof. See [8], Theorem 1.2, Chapter 4. 

Theorem 4. (Interior regularity of the "very weak" solution.) 

Let the condition (i) from Theorem 1 be satisfied. Let, further, the functions 
kx, ky, kz have Lipschitz derivatives of the order k and the functions vx, vy, vz 

derivatives of the order (k — 1) on Q (k = 1). 
Then the "very weak" solution c belongs to Wk+1>2(Q3) for every subdomain 

Q3 cz Q3 cz Q — Q0. 

Proof. Let Q'3 be a subdomain such that Q3 cz Q'3 cz Q'3 cz Q — Q0 and let cn 
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be a weak solution of the problem (15) —(17). According to Proposition 5, there 
exists a constant M = M(Q3, Q3) such that the inequality 

(24) \\en\\wk+u2{Q3) ^ M(Q3, Qs)(\fn\w*-i>Ha>3) + \h\\w^Ha'3)) 

holds for every n. An analogous consideration as in the proof of the preceding theo
rem leads to the estimate 

G25) lhllW^(<r3) ^ y||/»||L2(ii) h iker - ) + Mx\cn\
2

Ll{Q) . 

Now (24) —(25) and Proposition 4 imply our assertion. 

Corollary. If the coefficients K and v are infinitely differ entiable, then the "very 
weak" solution c is infinitely differ entiable with the exception of the point where 
the source is located. 

Proof follows from Theorem 4. 

III. PROBLEM OF DISTRIBUTION AND OPTIMAL DISTRIBUTION 
OF NEW SOURCES OF EXHALATIONS 

Let Q be the domain described at the beginning of Section II. Let Dxy, Dxy,..., Dxy 

be domains in R2 such that the sets D = {£ = [x, y, z] e R3; [x, y] e Dxy, z = 
= z(x, y)} and Dl = {£ = [x, y, z]eR3; [x, y] e Dxy, z = z(x, y)} (i = 1, 2, ...,k} 
are contained in F2. 

Our aim is to locate in D n sources of exhalations (chimneys of factories, power 
plants etc.) with given intervals (fij, Hf) of their heights above the surface and given 
emissions Qj, in such a way that in each domain Dl the value of some exhalation 
functional <Pt (for example, the quantity of exhalation in the domain [Dl

xy x 
x <0, oo)] n Q) does not exceed a given valueN t (i = 1, ..., k) (Nt have the meaning 
of hygienic norms in the domains D\ The domains Dl stand for check points, as e.g. 
densely populated areas, sources of drinking water, agricultural land etc.) 

Denote by C the set of all admissible points where the mouths of the chimneys 
can be situated, i.e. 

(26) C = C! x C2 x . . . x Cn, 

where 

Cj = {£ = [x, y, z]; [x, y] e Dxy, z e (z(x, y) + hj9 z(x, y) + Hj}} n Q . 

If the sources are situated at a point 0 = [ £ l 5 . . . , £n] e C, then the total concentra
tion cQ = cL + . . . + cn is computed as the solution of the mixed boundary value 
problem 

(27) 

where 

[Lc@ = - d i v (K grád c0) + (v, grád c0) + ac0 = f0 , 

\ce\n = 0 , (őc /av)|Г2 = 0 , 

(28) fe - I ЄAí 
У=i 
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Le t /* be the function from L2(Q) representing the exhalation functional <Ph i.e., 

(29) <*.,»>--(/*,«>)-• f f*v, i = l,...,k 
JQ 

for every v e L2(Q). 

The problem, which was roughly described above, can be formulated mathematical
ly as follows: We seek for all points 0 e C such that the "very weak" solution c0 

of (27) satisfies the inequality 

(30) (ff,c0)SNi, i = l,...,k. 

Define St c C as the set of all points 0 for which (/*, ce) :g Nt. The solution of 
our problem is performed in two steps: 

Step 1. Calculate (/*, c@), 0 e C, i = 1, . . . , k. 

Step 2. Comparing the obtained values with the corresponding Nt determine the 
sets St, i = 1, ..., k. 

One of two possibilities can occur: Either S = (~) St 4= 0 — then each 0 e S 
i= i 

solves our problem — or S = 0. In this case there is no solution of the problem. 

Remark . If S = 0 then we must somehow lessen the emissions Qj to make our 
problem solvable. 

To avoid the calculation of the solution c0 at each point 0 e C, which we need 
in Step 1, we use the duality method (see e.g. [7]). Using Theorem 1 and the defini
tion of the "very weak" solution we get 

Theorem 5. (The adjoint expression of the exhalation functional.) If c* is a weak 
solution of the adjoint boundary value problem 

, - , JL*cf = - d i v (K grad c*) - (v, grad c*) + ac* = / * , 
1 j K | r , = 0 , dc*ldv\r2 = 0, 

then the value of'(/*', ce) can be calculated from the relation 

(32) (f?,ce)=(fe,c*y, i = l,2,...,k. 

The continuity of c* in Cj together with the definition of fQ enable us to calculate 
n 

(f&, c*> as YJ Qj c*(^j)- S° this method reduces Step 1 to the slution of k boundary 
J = I 

value problems for c*, i = 1, ..., k and the easy calculations of the expressions 

tQjctU 
j=l 

Together with the problem we have just discussed various problems of optimal 
distribution of sources can be formulated. For example, we want to find 0 e S 
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which on this set minimizes the expression 

<#,-, c@} max — - — — . 
ie{l,...,k} Ni 

Supposing S 4= 0, the problém has always a solution thanks to the continuity of 
the minimized function on the compact set S. 
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Souh rn 

ŠÍŘENÍ PLYNNÝCH EXHALÁTŮ A PROBLÉM ROZLOŽENÍ NOVÝCH ZDROJŮ 
NA SUCHÉM KOPCOVITÉM TERÉNU 

TRAN DIEN HIEN 

V článku je zkoumán proces šíření plynných exhalátů v přízemní vrstvě atmosféry a problém 
rozložení nových zdrojů exhalátů na kopcovitém terénu. Při zkoumání se mimo jiné předpokládá, 
že: 1. Povrch je kopcovitý, 2. exhaláty se účastní chemické reakce s atmosférou, 3. proces je sta
cionární, 4. vektor rychlosti vetru splňuje rovnici kontinuity. Matematickou formulací je pak 
smíšená okrajová úloha pro elliptickou rovnici s pravou stranou zadanou distribucí. Ukazuje se, 
že úloha má právě jedno „velmi slabé" řešení, které je dostatečně hladké, jsou-li koeficienty 
difúze a složky vektoru rychlosti větru dostatečně hladké. Dále se zkoumá existence řešení 
problému rozložení nových zdrojů exhalátů na kopcovitém terénu a ukazuje se postup pro výpo
čet tohoto řešení. 
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Р е з ю м е 

РАСПРОСТРАНЕНИЕ ГАЗОВЫХ ЭКЗГАЛАЦИЙ И ПРОБЛЕМА РАСПОЛОЖЕНИЯ 
ИХ НОВЫХ ИСТОЧНИКОВ В СУХОЙ ХОЛМИСТОЙ МЕСТНОСТИ 

ТКАN ^ I Е N Н1ЕЫ 

В статье исследуется процесс распространения газовых эксгалаций в приземном слое 
атмосферы и проблема расположения новых источников загрязнения воздуха в холмистой 
местности. При этом предполагается, что 1. местность холмистая, 2. эксгалаты химически 
реагируют с атмосферой, 3. процесс стационарен и 4. вектор скорости ветра удовлетворяет 
уравнению непрерывности. Математической формулировкой задачи является смешанная 
краевая задача для эллиптического уравнения с правой частью заданной распределением. 
Оказывается, что задача обладает в точности одним ,,очень слабым" решением, которое 
достаточно гладко, если достаточно гладки коэффициентны диффузии и компоненты вектора 
скорости ветра. Исследуется также существование решения проблемы расположения новых 
источников загрязнения в холмистой местности и указывается приём для вычисления этого 
решения. 

Ашког'з Шгезз: 1ШОг. Тгап ^^еп Шеп, С8с, МЕР ^ К , З о к о ^ з к а 83, 186 00 Ргапа 8. 
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